Electronic Journal of Differential Equations, Vol. 2009(2009), No. 02, pp. 1-11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

NONEXISTENCE RESULTS FOR SEMILINEAR SYSTEMS IN UNBOUNDED DOMAINS

BRAHIM KHODJA, ABDELKRIM MOUSSAOUI

Abstract. This paper concerns the non-existence of nontrivial solutions for the semi-linear system of gradient type

$$
\lambda \frac{\partial^{2} u_{k}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(p_{i}(x) \frac{\partial u_{k}}{\partial x_{i}}\right)+f_{k}\left(x, u_{1}, \ldots, u_{m}\right)=0 \quad \text { in } \Omega, k=1, \ldots, m
$$

with Dirichlet, Neumann or Robin boundary conditions. The functions f_{k} : $\mathcal{D} \times \mathbb{R}^{m} \rightarrow \mathbb{R}(k=1, \ldots, m)$ are locally Lipschitz continuous and satisfy

$$
2 H\left(x, u_{1}, \ldots, u_{m}\right)-\sum_{k=1}^{m} u_{k} f_{k}\left(x, u_{1}, \ldots, u_{m}\right) \geq 0 \quad(\text { resp. } \leq 0)
$$

for $\lambda>0$ (resp. $\lambda<0$). We establish the non-existence of nontrivial solutions using Pohozaev-type identities. Here u_{1}, \ldots, u_{m} are in $H^{2}(\Omega) \cap L^{\infty}(\Omega), \Omega=$ $\mathbb{R} \times \mathcal{D}$ with $\mathcal{D}=\prod_{i=1}^{n}\left(\alpha_{i}, \beta_{i}\right)$ and $H \in \mathcal{C}^{1}\left(\overline{\mathcal{D}} \times \mathbb{R}^{m}\right)$ such that $\frac{\partial H}{\partial u_{k}}=f_{k}$, $k=1, \ldots, m$.

1. Introduction

In this paper we study the semi-linear system

$$
\begin{array}{cc}
\lambda \frac{\partial^{2} u_{1}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(p_{i}(x) \frac{\partial u_{1}}{\partial x_{i}}\right)+f_{1}\left(x, u_{1}, \ldots, u_{m}\right)=0 & \text { in } \Omega \\
\lambda \frac{\partial^{2} u_{2}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(p_{i}(x) \frac{\partial u_{2}}{\partial x_{i}}\right)+f_{2}\left(x, u_{1}, \ldots, u_{m}\right)=0 & \text { in } \Omega \tag{1.1}\\
\ldots \\
\lambda \frac{\partial^{2} u_{m}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(p_{i}(x) \frac{\partial u_{m}}{\partial x_{i}}\right)+f_{m}\left(x, u_{1}, \ldots, u_{m}\right)=0 & \text { in } \Omega,
\end{array}
$$

under Dirichlet, Neumann or Robin boundary conditions. Here $\Omega=\mathbb{R} \times \mathcal{D}$ where $\mathcal{D}=\prod_{i=1}^{n}\left(\alpha_{i}, \beta_{i}\right), \lambda$ is a real parameter, $f_{k}: \mathcal{D} \times \mathbb{R}^{m} \rightarrow \mathbb{R}(k=1, \ldots, m)$ are locally Lipschitz continuous functions such that

$$
f_{k}(x, 0, \ldots, 0)=0 \quad \text { in } \mathcal{D}
$$

[^0]so that $\left(u_{1}, \ldots, u_{m}\right)=0$ is a solution of (1.1) and $p_{i}: \overline{\mathcal{D}} \rightarrow \mathbb{R}(i=1, \ldots, n)$ are continuous functions satisfying
$$
p_{i}(x)>0 \text { or } p_{i}(x)<0 \quad \text { in } \mathcal{D} .
$$

We assume that system 1.1 is of the gradient type; that is, there is a real-valued differentiable function $H\left(x, u_{1}, \ldots, u_{m}\right)$ such that

$$
\frac{\partial H}{\partial u_{k}}=f_{k}, \quad H(x, 0, \ldots, 0)=0 \quad \text { for } x \in \mathcal{D} .
$$

For $k=1, \ldots, m, u_{k}$ are in $H^{2}(\Omega) \cap L^{\infty}(\Omega)$ and satisfy

$$
\begin{equation*}
u_{k}(t, s)=0, \quad(t, s) \in \mathbb{R} \times \partial \mathcal{D} \tag{1.2}
\end{equation*}
$$

(Dirichlet boundary condition), or

$$
\begin{equation*}
\frac{\partial u_{k}(t, s)}{\partial n}=0, \quad(t, s) \in \mathbb{R} \times \partial \mathcal{D} \tag{1.3}
\end{equation*}
$$

(Neumann boundary condition), or

$$
\begin{equation*}
\left(u_{k}+\varepsilon \frac{\partial u_{k}}{\partial n}\right)(t, s)=0, \quad(t, s) \in \mathbb{R} \times \partial \mathcal{D} \tag{1.4}
\end{equation*}
$$

(Robin boundary condition), where ε is a positive real number. Throughout this paper we denote the boundary of Ω by

$$
\partial \Omega=\mathbb{R} \times \partial \mathcal{D}=\Gamma_{\alpha_{1}} \cup \Gamma_{\beta_{1}} \cup \Gamma_{\alpha_{2}} \cup \Gamma_{\beta_{2}} \cdots \cup \Gamma_{\alpha_{n}} \cup \Gamma_{\beta_{n}},
$$

where

$$
\Gamma_{\mu_{s}}=\left\{\left(t, x_{1}, \ldots, x_{s-1}, \mu_{s}, x_{s+1}, \ldots x_{n}\right), t \in \mathbb{R}, \quad 1 \leq s \leq n\right\}
$$

$(t, x)=\left(t, x_{1}, \ldots, x_{n}\right)$, and

$$
n(t, s)=\left(0, n_{1}(t, s), n_{2}(t, s), \ldots, n_{n}(t, s)\right)
$$

is the outward normal to $\partial \Omega$ at the point (t, s). If $x \in \prod_{i=1}^{n}\left(\alpha_{i}, \beta_{i}\right), l=1,2, \ldots, n$ and $\tau \in\left\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \ldots, \alpha_{n}, \beta_{n}\right\}$ one writes

$$
x_{l}^{\tau}=\left(x_{1}, \ldots, x_{l-1}, \tau, x_{l+1}, \ldots, x_{n}\right), \quad d x_{l}^{*}=d x_{1} \ldots d x_{l-1} d x_{l+1} \ldots d x_{n}
$$

and

$$
\begin{aligned}
& \int_{\alpha_{1}}^{\beta_{1}} \ldots \int_{\alpha_{i-1}}^{\beta_{i-1}} \int_{\alpha_{i+1}}^{\beta_{i+1}} \cdots \int_{\alpha_{n}}^{\beta_{n}} f_{k}\left(x, r_{1}, \ldots, r_{m}\right) d x_{1} \ldots d x_{i-1} d x_{i+1} \ldots d x_{n} \\
& =\int_{\mathcal{D}_{i}^{*}} f_{k}\left(x, r_{1}, \ldots, r_{m}\right) d x_{i}^{*} \text { for all } k=1, \ldots, m
\end{aligned}
$$

The question of non-existence of nontrivial solutions for elliptic problems has been studied extensively in both bounded and unbounded domain (see [3], [4], [7]-[9] and their references). In particular, Amster et al. in [1] showed the non-solvability of the gradient elliptic system

$$
\begin{gathered}
-\Delta u_{i}=g_{i}(u) \quad \text { in } \Omega \\
u_{i}=0 \quad \text { on } \partial \Omega, i=1, \ldots, n
\end{gathered}
$$

where Ω is a starshaped domain. A similar result was given for Hamiltonian systems by N. M. Chuong and T. D. Ke [2] in k-starshaped domain and by Khodja [6] in unbounded domain $\mathbb{R}^{+} \times \mathbb{R}$.

In the scalar case, when Ω is an unbounded domain, Haraux and Khodja 4] established that under assumptions

$$
\begin{gathered}
f(0)=0 \\
2 F(u)-u f(u) \leq 0, \quad u \neq 0
\end{gathered}
$$

$\left(F(u)=\int_{0}^{u} f(s) d s\right)$, the problem

$$
\begin{aligned}
& -\Delta u+f(u)=0 \quad \text { in } \Omega \\
& \left(u \text { or } \frac{\partial u}{\partial n}\right)=0 \quad \text { on } \partial \Omega
\end{aligned}
$$

has only a trivial solution in $H^{2}(\Omega) \cap L^{\infty}(\Omega)$, where $\Omega=J \times \omega, J \subset \mathbb{R}$ is an unbounded interval and ω a domain in \mathbb{R}^{N}. The case of Robin boundary conditions was treated by Khodja [5] and it was shown nonexistence results for the equation

$$
\lambda \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial}{\partial x}\left(p(x, y) \frac{\partial u}{\partial x}\right)-\frac{\partial}{\partial y}\left(q(x, y) \frac{\partial u}{\partial y}\right)+f(x, y, u)=0 \quad \text { in } \Omega
$$

where $\Omega=\mathbb{R} \times] \alpha_{1}, \beta_{1}[\times] \alpha_{2}, \beta_{2}[$. In the above works, the integral identity of Pohozaev was adapted for each problem treated and applied to obtain the nonexistence results. The present study extends and complements these works. We shall prove the non-solvability results to the class of semi-linear system of gradient type (1.1) under Dirichlet, Neumann or Robin boundary conditions. By using a Pohozaev-type identity, our demonstration strategy will be to show that the function

$$
\mathcal{E}(t)=\int_{\mathcal{D}}\left(\sum_{k=1}^{m}\left|u_{k}(t, x)\right|^{2}\right) d x
$$

is convex in \mathbb{R}, and then, from the Maximum Principle, we obtain that any solution $\left(u_{1}, \ldots, u_{m}\right)$ to the problems $(1.1)-(1.2),(1.1)-(1.3)$ and $(1.1)-(1.4)$ is trivial. We draw the attention of the reader to the use of the Pohozaev-type identity which, to the best of our knowledge, was not explored before in connection with gradient systems in an unbounded cylindrical-type domain.

This paper is organized as follows. In the next section, we give a Pohozaev-type identity adapted to the systems with Dirichlet, Neumann and Robin boundary conditions; section 3 gives our main results and some examples will be illustrated in section 4.

2. Integral identities

The proof of our main results which will appear in the next section use the following type of Pohozaev identity, adapted for systems.

Theorem 2.1. Let u_{1}, \ldots, u_{m} in $H^{2}(\Omega) \cap L^{\infty}(\Omega)$ be a solution of problem (1.1)(1.4). Then for each $t \in \mathbb{R}$ and $\varepsilon>0$, we have

$$
\begin{align*}
& \int_{\mathcal{D}}\left[\frac{\lambda}{2} \sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial t}\right|^{2}+\sum_{i=1}^{n} \frac{p_{i}(x)}{2}\left(\sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial x_{i}}\right|^{2}\right)+H\left(x, u_{1}, \ldots, u_{m}\right)\right] d x \\
& +\frac{1}{2 \varepsilon} \sum_{i=1}^{n} \int_{\mathcal{D}_{i}^{*}}\left[p_{i}\left(x_{i}^{\beta_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\beta_{i}}\right)+p_{i}\left(x_{i}^{\alpha_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\alpha_{i}}\right)\right] d x_{i}^{*}=0 . \tag{2.1}
\end{align*}
$$

Proof. For $t \in \mathbb{R}$ we consider a function

$$
\mathcal{K}(t)=\int_{\mathcal{D}}\left[\frac{\lambda}{2} \sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial t}\right|^{2}+\sum_{i=1}^{n} \frac{p_{i}(x)}{2}\left(\sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial x_{i}}\right|^{2}\right)+H\left(x, u_{1}, \ldots, u_{m}\right)\right] d x
$$

The hypothesis on $u_{k}, f_{k}(k=1, \ldots, m)$ and $p_{i}(i=1, \ldots, n)$ implies that \mathcal{K} is absolutely continuous and thus differentiable almost everywhere on \mathbb{R}; we have

$$
\begin{align*}
\frac{d \mathcal{K}(t)}{d t}= & \int_{\mathcal{D}}\left[\lambda \sum_{k=1}^{m} \frac{\partial u_{k}}{\partial t} \frac{\partial^{2} u_{k}}{\partial t^{2}}+\sum_{i=1}^{n} p_{i}(x)\left(\sum_{k=1}^{m} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial^{2} u_{k}}{\partial t \partial x_{i}}\right)\right. \\
& \left.+\sum_{k=1}^{m} \frac{\partial u_{k}}{\partial t} f_{k}\left(x, u_{1}, \ldots, u_{m}\right)\right] d x \tag{2.2}
\end{align*}
$$

Fubini's theorem and an integration by part give

$$
\begin{aligned}
& \int_{\mathcal{D}} \sum_{i=1}^{n} p_{i}(x)\left(\sum_{k=1}^{m} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial^{2} u_{k}}{\partial t \partial x_{i}}\right)(t, x) d x \\
& =-\int_{\mathcal{D}} \sum_{i=1}^{n}\left[\sum_{k=1}^{m} \frac{\partial}{\partial x_{i}}\left(p_{i}(x) \frac{\partial u_{k}}{\partial x_{i}}\right) \frac{\partial u_{k}}{\partial t}\right](t, x) d x \\
& \quad+\sum_{i=1}^{n} \int_{\mathcal{D}_{i}^{*}}\left[p_{i}\left(x_{i}^{\beta_{i}}\right)\left(\sum_{k=1}^{m} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial t}\right)\left(t, x_{i}^{\beta_{i}}\right)-p_{i}\left(x_{i}^{\alpha_{i}}\right)\left(\sum_{k=1}^{m} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial t}\right)\left(t, x_{i}^{\alpha_{i}}\right)\right] d x_{i}^{*} .
\end{aligned}
$$

Replacing in 2.2 we find

$$
\begin{aligned}
& \frac{d \mathcal{K}(t)}{d t} \\
& =\sum_{k=1}^{m} \int_{\mathcal{D}}\left[\lambda \frac{\partial^{2} u_{k}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(p_{i}(x) \frac{\partial u_{k}}{\partial x_{i}}\right)+f_{k}\left(x, u_{1}, \ldots, u_{m}\right)\right](t, x) \frac{\partial u_{k}}{\partial t} d x \\
& \quad+\sum_{i=1}^{n} \int_{\mathcal{D}_{i}^{*}}\left[p_{i}\left(x_{i}^{\beta_{i}}\right)\left(\sum_{k=1}^{m} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial t}\right)\left(t, x_{i}^{\beta_{i}}\right)-p_{i}\left(x_{i}^{\alpha_{i}}\right)\left(\sum_{k=1}^{m} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial t}\right)\left(t, x_{i}^{\alpha_{i}}\right)\right] d x_{i}^{*}
\end{aligned}
$$

Let us consider on $\partial \Omega$ the expression $u_{k}+\varepsilon \frac{\partial u_{k}}{\partial n}=0$. For $k=1, \ldots, m$

$$
u_{k}+\varepsilon \frac{\partial u_{k}}{\partial n}=0 \Longleftrightarrow\left\{\begin{array}{l}
\left(u_{k}-\varepsilon \frac{\partial u_{k}}{\partial x}\right)\left(t, x_{i}^{\alpha_{i}}\right)=0 \\
\left(u_{k}+\varepsilon \frac{\partial u_{k}}{\partial x}\right)\left(t, x_{i}^{\beta_{i}}\right)=0 \\
t \in \mathbb{R}, \alpha_{i}<x_{i}<\beta_{i}, i=1, \ldots n
\end{array}\right.
$$

Then for $\varepsilon>0$, one can write

$$
\begin{aligned}
& \sum_{i=1}^{n} \int_{\mathcal{D}_{i}^{*}}\left[p_{i}\left(x_{i}^{\beta_{i}}\right)\left(\sum_{k=1}^{m} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial t}\right)\left(t, x_{i}^{\beta_{i}}\right)-p_{i}\left(x_{i}^{\alpha_{i}}\right)\left(\sum_{k=1}^{m} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial t}\right)\left(t, x_{i}^{\alpha_{i}}\right)\right] d x_{i}^{*} \\
& =\frac{-1}{\varepsilon} \sum_{i=1}^{n} \int_{\mathcal{D}_{i}^{*}}\left[p_{i}\left(x_{i}^{\beta_{i}}\right)\left(\sum_{k=1}^{m} u_{k} \frac{\partial u_{k}}{\partial t}\right)\left(t, x_{i}^{\beta_{i}}\right)+p_{i}\left(x_{i}^{\alpha_{i}}\right)\left(\sum_{k=1}^{m} u_{k} \frac{\partial u_{k}}{\partial t}\right)\left(t, x_{i}^{\alpha_{i}}\right)\right] d x_{i}^{*} \\
& =\frac{-1}{2 \varepsilon} \frac{d}{d t}\left(\sum_{i=1}^{n} \int_{\mathcal{D}_{i}^{*}}\left[p_{i}\left(x_{i}^{\beta_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\beta_{i}}\right)+p_{i}\left(x_{i}^{\alpha_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\alpha_{i}}\right)\right] d x_{i}^{*}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \frac{d}{d t}\left(\mathcal{K}(t)+\frac{1}{2 \varepsilon} \sum_{i=1}^{n} \int_{\mathcal{D}_{i}^{*}}\left[p_{i}\left(x_{i}^{\beta_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\beta_{i}}\right)\right.\right. \\
& \left.\left.+p_{i}\left(x_{i}^{\alpha_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\alpha_{i}}\right)\right] d x_{i}^{*}\right)=0
\end{aligned}
$$

Integrating with respect to t, we obtain

$$
\begin{aligned}
& \mathcal{K}(t)+\frac{1}{2 \varepsilon} \sum_{i=1}^{n} \int_{\mathcal{D}_{i}^{*}}\left[p_{i}\left(x_{i}^{\beta_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\beta_{i}}\right)\right. \\
& \left.+p_{i}\left(x_{i}^{\alpha_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\alpha_{i}}\right)\right] d x_{i}^{*}=\mathrm{const}
\end{aligned}
$$

and since $\left(u_{1}(t, x), \ldots, u_{m}(t, x)\right) \in\left(H^{2}(\Omega) \cap L^{\infty}(\Omega)\right)^{m}$, one must get

$$
\begin{aligned}
& \int_{\mathbb{R}}\left(\mathcal{K}(t)+\frac{1}{2 \varepsilon} \sum_{i=1}^{n} \int_{\mathcal{D}_{i}^{*}}\left[p_{i}\left(x_{i}^{\beta_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\beta_{i}}\right)\right.\right. \\
& \left.\left.+p_{i}\left(x_{i}^{\alpha_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\alpha_{i}}\right)\right] d x_{i}^{*}\right) d t<\infty
\end{aligned}
$$

It follows that the constant must be 0 , which is the desired result.
For the Dirichlet or Neumann boundary conditions, we have the integral identity given in the following theorem.
Theorem 2.2. Let u_{1}, \ldots, u_{m} in $H^{2}(\Omega) \cap L^{\infty}(\Omega)$ be a solution of problems (1.1)(1.2) or (1.1)-(1.3). Then for each $t \in \mathbb{R}$, we have

$$
\begin{equation*}
\int_{\mathcal{D}}\left[\frac{\lambda}{2} \sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial t}\right|^{2}+\sum_{i=1}^{n} \frac{p_{i}(x)}{2}\left(\sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial x_{i}}\right|^{2}\right)+H\left(x, u_{1}, \ldots, u_{m}\right)\right] d x=0 \tag{2.3}
\end{equation*}
$$

Proof. To prove 2.3 it suffices to check that the expression

$$
\sum_{i=1}^{n} \int_{\mathcal{D}_{i}^{*}}\left[p_{i}\left(x_{i}^{\beta_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\beta_{i}}\right)+p_{i}\left(x_{i}^{\alpha_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\alpha_{i}}\right)\right] d x_{i}^{*}
$$

vanishes if

$$
\begin{equation*}
u_{1}(t, s)=u_{2}(t, s)=\cdots=u_{m}(t, s)=0,(t, s) \in \mathbb{R} \times \partial \mathcal{D} \tag{2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial u_{1}(t, s)}{\partial n}=\frac{\partial u_{2}(t, s)}{\partial n}=\cdots=\frac{\partial u_{m}(t, s)}{\partial n}=0,(t, s) \in \mathbb{R} \times \partial \mathcal{D} \tag{2.5}
\end{equation*}
$$

Indeed, suppose that 2.4 holds then it is known that

$$
\nabla u_{k}=\frac{\partial u_{k}}{\partial n} \cdot n, \quad k=1, \ldots, m
$$

i.e.,

$$
\left[\begin{array}{c}
\frac{\partial u_{k}}{\partial t}(t, s) \\
\frac{\partial u_{k}}{\partial x_{1}}(t, s) \\
\cdots \\
\frac{\partial u_{k}}{\partial x_{n}}(t, s)
\end{array}\right]=\left[\begin{array}{c}
0 \\
n_{1} \frac{\partial u_{k}}{\partial n}(t, s) \\
\cdots \\
n_{n} \frac{\partial u_{k}}{\partial n}(t, s)
\end{array}\right], \quad(t, s) \in \mathbb{R} \times \partial \mathcal{D}, \quad k=1, \ldots, m
$$

Consequently, for $k=1, \ldots, m$,

$$
\frac{\partial u_{k}}{\partial t}\left(t, x_{i}^{\alpha_{i}}\right)=\frac{\partial u_{k}}{\partial t}\left(t, x_{i}^{\beta_{i}}\right)=0, \quad i=1, \ldots, n
$$

Now if the boundary condition is 2.5 , then for $k=1, \ldots, m$, one can write

$$
0=\frac{\partial u_{k}}{\partial n}(t, s)=\left\langle\nabla u_{k}, n\right\rangle \text { on } \Gamma_{\alpha_{1}} \cup \Gamma_{\beta_{1}} \cup \Gamma_{\alpha_{2}} \cup \Gamma_{\beta_{2}} \cdots \cup \Gamma_{\alpha_{n}} \cup \Gamma_{\beta_{n}}
$$

i.e.,

$$
\frac{\partial u_{k}}{\partial x_{i}}\left(t, x_{i}^{\alpha_{i}}\right)=\frac{\partial u_{k}}{\partial x_{i}}\left(t, x_{i}^{\beta_{i}}\right)=0, \quad \text { for all } t \in \mathbb{R}, \quad i=1, \ldots, n, k=1, \ldots, m
$$

In both cases $\frac{d \mathcal{K}(t)}{d t}=0$ for all $t \in \mathbb{R}$ which completes the proof.

3. Main Results

Before giving our main results, we note that the parameter λ plays, in fact, an important part as it allows (1.1) to be dealt with in two manners based on whether its value is positive or negative. Indeed, if λ is positive (resp. negative), the system (1.1) is a hyperbolic (resp. elliptic) problem.
3.1. Semi-linear hyperbolic problems. Using identity 2.1 we obtain the following first result.

Theorem 3.1. Let $\lambda>0$ and $u_{1}, \ldots, u_{m} \in H^{2}(\Omega) \cap L^{\infty}(\Omega)$. Assume $p_{i}(x)>0$ in $\mathcal{D}(i=1, \ldots, n)$ and $f_{k}(k=1, \ldots, m)$ satisfying

$$
H\left(x, u_{1}, \ldots, u_{m}\right) \geq 0
$$

Then problems (1.1)-(1.2), (1.1)-(1.3 and (1.1)-1.4) have no nontrivial solutions.
Proof. Applying formula (2.1) (resp. 2.3) we immediately obtain

$$
\frac{\partial u_{k}}{\partial t}(t, x)=\frac{\partial u_{k}}{\partial x_{i}}(t, x)=0 \quad \text { in } \Omega, i=1, \ldots, n, k=1, \ldots, m
$$

Thus u_{1}, \ldots, u_{m} are constant and since for $k=1, \ldots, m$,

$$
\int_{\Omega}\left|u_{k}(t, x)\right|^{2} d x d t \leq 0
$$

these constants are necessarily zero.
The next theorem gives a non-existence result if the functions $f_{k}(k=1, \ldots, m)$ satisfy another type of non-linearity.

Theorem 3.2. Let $\lambda>0$ and $u_{1}, \ldots, u_{m}: \Omega \rightarrow \mathbb{R}$ be a solution of problem (1.1)(1.4). Suppose that $u_{1}, \ldots, u_{m} \in H^{2}(\Omega) \cap L^{\infty}(\Omega)$ and $f_{k}(k=1, \ldots, m)$ verify the following condition

$$
\begin{equation*}
2 H\left(x, u_{1}, \ldots, u_{m}\right)-\sum_{k=1}^{m} u_{k} f_{k}\left(x, u_{1}, \ldots, u_{m}\right) \geq 0 \tag{3.1}
\end{equation*}
$$

Then problem (1.1)-1.4 has no nontrivial solutions.
Remark 3.3. Since u_{1}, \ldots, u_{m} are bounded in Ω, from the Maximum Principle, the function $\mathcal{E}(t)$ is convex in \mathbb{R} which implies that the solution to the problem (1.1)- 1.4 is identically equal to zero.

Proof of Theorem 3.2. It is easy to see that almost everywhere in Ω

$$
\left(u_{k} \frac{\partial^{2} u_{k}}{\partial t^{2}}\right)(t, x)=\left(\frac{1}{2} \frac{\partial^{2}\left(u_{k}^{2}\right)}{\partial t^{2}}-\left|\frac{\partial u_{k}}{\partial t}\right|^{2}\right)(t, x), \quad k=1, \ldots, m
$$

Let us multiply the k-th equation of 1.1 by $u_{k} / 2$ and integrate over \mathcal{D} we obtain

$$
\begin{align*}
& \int_{\mathcal{D}}\left[\lambda \frac{\partial^{2} u_{k}}{\partial t^{2}} \frac{u_{k}}{2}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(p_{i}(x) \frac{\partial u_{k}}{\partial x_{i}}\right) \frac{u_{k}}{2}+f_{k}\left(x, u_{1}, \ldots, u_{m}\right) \frac{u_{k}}{2}\right](t, x) d x \\
& =\int_{\mathcal{D}}\left[\frac{\lambda}{4} \frac{\partial^{2}\left(u_{k}^{2}\right)}{\partial t^{2}}-\frac{\lambda}{2}\left|\frac{\partial u_{k}}{\partial t}\right|^{2}\right](t, x) d x \tag{3.2}\\
& \quad+\int_{\mathcal{D}}\left[-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(p_{i}(x) \frac{\partial u_{k}}{\partial x_{i}}\right) \frac{u_{k}}{2}+f\left(x, u_{1}, \ldots, u_{m}\right) \frac{u_{k}}{2}\right](t, x) d x
\end{align*}
$$

Let us transform

$$
\begin{aligned}
& \int_{\mathcal{D}}\left(-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(p_{i}(x) \frac{\partial u_{k}}{\partial x_{i}}\right) \frac{u_{k}}{2}\right)(t, x) d x \\
& =\int_{\mathcal{D}} \sum_{i=1}^{n} \frac{p_{i}(x)}{2}\left|\frac{\partial u_{k}(t, x)}{\partial x_{i}}\right|^{2} d x \\
& \quad-\frac{1}{2} \sum_{i=1}^{n} \int_{\mathcal{D}_{i}^{*}}\left[p_{i}\left(x_{i}^{\beta_{i}}\right)\left(u_{k} \frac{\partial u_{k}}{\partial x_{i}}\right)\left(t, x_{i}^{\beta_{i}}\right)-p_{i}\left(x_{i}^{\alpha_{i}}\right)\left(u_{k} \frac{\partial u_{k}}{\partial x_{i}}\right)\left(t, x_{i}^{\alpha_{i}}\right)\right] d x_{i}^{*}
\end{aligned}
$$

The substitution of this formula in 3.2 gives

$$
\begin{align*}
& \int_{\mathcal{D}} {\left[\lambda \frac{\partial^{2} u_{k}}{\partial t^{2}} \frac{u_{k}}{2}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(p_{i}(x) \frac{\partial u_{k}}{\partial x_{i}}\right) \frac{u_{k}}{2}+f\left(x, u_{1}, \ldots, u_{m}\right) \frac{u_{k}}{2}\right](t, x) d x } \\
&= \int_{\mathcal{D}}\left(\frac{\lambda}{4} \frac{\partial^{2}\left(u_{k}^{2}\right)}{\partial t^{2}}-\frac{\lambda}{2}\left|\frac{\partial u_{k}}{\partial t}\right|^{2}\right)(t, x) d x \\
&+\int_{\mathcal{D}} \sum_{i}^{n} \frac{p_{i}(x)}{2}\left|\frac{\partial u_{k}(t, x)}{\partial x_{i}}\right|^{2} d x+\int_{\mathcal{D}}\left(\frac{u_{k}}{2} f\left(x, u_{1}, \ldots, u_{m}\right)\right)(t, x) d x \\
&-\frac{1}{2} \sum_{i=1}^{n} \int_{\mathcal{D}_{i}^{*}}\left[p_{i}\left(x_{i}^{\beta_{i}}\right)\left(u_{k} \frac{\partial u_{k}}{\partial x_{i}}\right)\left(t, x_{i}^{\beta_{i}}\right)-p_{i}\left(x_{i}^{\alpha_{i}}\right)\left(u_{k} \frac{\partial u_{k}}{\partial x_{i}}\right)\left(t, x_{i}^{\alpha_{i}}\right)\right] d x_{i}^{*} \tag{3.3}\\
&= \int_{\mathcal{D}}\left(\frac{\lambda}{4} \frac{\partial^{2}\left(u_{k}^{2}\right)}{\partial t^{2}}-\frac{\lambda}{2}\left|\frac{\partial u_{k}}{\partial t}\right|^{2}\right)(t, x) d x \\
& \quad+\int_{\mathcal{D}} \sum_{i=1}^{n} \frac{p_{i}(x)}{2}\left|\frac{\partial u_{k}(t, x)}{\partial x_{i}}\right|^{2} d x+\int_{\mathcal{D}}\left(\frac{u_{k}}{2} f\left(x, u_{1}, \ldots, u_{m}\right)\right)(t, x) d x \\
& \quad+\frac{1}{2 \varepsilon} \sum_{i=1}^{n} \int_{\mathcal{D}_{i}^{*}}\left[p_{i}\left(x_{i}^{\beta_{i}}\right)\left|u_{k}\left(t, x_{i}^{\beta_{i}}\right)\right|^{2}+p_{i}\left(x_{i}^{\alpha_{i}}\right)\left|u_{k}\left(t, x_{i}^{\alpha_{i}}\right)\right|^{2}\right] d x_{i}^{*} .
\end{align*}
$$

Adding these identities for $k=1, \ldots, k_{0}$, we get

$$
\begin{aligned}
& \frac{\lambda}{4} \int_{\mathcal{D}}\left(\sum_{k=1}^{m} \frac{\partial^{2}\left(u_{k}^{2}\right)}{\partial t^{2}}\right)(t, x) d x-\frac{\lambda}{2} \int_{\mathcal{D}}\left(\sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial t}\right|^{2}\right)(t, x) d x \\
& \quad+\int_{\mathcal{D}} \sum_{i=1}^{n} \frac{p_{i}(x)}{2}\left(\sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial x_{i}}\right|^{2}\right)(t, x) d x+\frac{1}{2} \int_{\mathcal{D}}\left(\sum_{k=1}^{m} u_{k} f_{k}\left(x, u_{1}, \ldots, u_{m}\right)\right)(t, x) d x \\
& +\frac{1}{2 \varepsilon} \sum_{i=1}^{n} \int_{\mathcal{D}_{i}^{*}}\left[p_{i}\left(x_{i}^{\beta_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\beta_{i}}\right)+p_{i}\left(x_{i}^{\alpha_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\alpha_{i}}\right)\right] d x_{i}^{*}=0
\end{aligned}
$$

which combined with (2.1) yields

$$
\begin{align*}
\frac{\lambda}{4} \frac{d^{2}}{d t^{2}}\left(\int_{\mathcal{D}}\left(\sum_{k=1}^{m} u_{k}^{2}\right)(t, x) d x\right)= & \lambda \int_{\mathcal{D}}\left(\sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial t}\right|^{2}\right)(t, x) d x+\int_{\mathcal{D}}\left[H\left(x, u_{1}, \ldots, u_{m}\right)\right. \\
& \left.-\frac{1}{2}\left(\sum_{k=1}^{m} u_{k} f_{k}\left(x, u_{1}, \ldots, u_{m}\right)\right)(t, x, y)\right] d x \tag{3.4}
\end{align*}
$$

The assumptions (3.1) and $\lambda>0$ enable us to assert that

$$
\frac{\lambda}{4} \frac{d^{2}}{d t^{2}}\left(\int_{\mathcal{D}}\left(\sum_{k=1}^{m} u_{k}^{2}\right)(t, x) d x\right) \geq \lambda \int_{\mathcal{D}}\left(\sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial t}\right|^{2}\right)(t, x) d x \geq 0
$$

for all $t \in \mathbb{R}$. This completes the proof.
Theorem 3.4. Let $\lambda>0$ and f_{k} be as described in Theorem 3.2. Assume that $u_{1}, \ldots, u_{m} \in H^{2}(\Omega) \cap L^{\infty}(\Omega)$ is a solution of (1.1)-1.2) or (1.1)-(1.3). Then problems (1.1)-(1.2) and (1.1)-1.3 have no nontrivial solutions.

Proof. By a similar arguments as in the proof of Theorem 3.2 we obtain

$$
\begin{aligned}
& \frac{\lambda}{4} \int_{\mathcal{D}}\left(\sum_{k=1}^{m} \frac{\partial^{2}\left(u_{k}^{2}\right)}{\partial t^{2}}\right)(t, x) d x-\frac{\lambda}{2} \int_{\mathcal{D}}\left(\sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial t}\right|^{2}\right)(t, x) d x \\
& +\int_{\mathcal{D}} \sum_{i=1}^{n} \frac{p_{i}(x)}{2}\left(\sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial x_{i}}\right|^{2}\right)(t, x) d x \\
& +\frac{1}{2} \int_{\mathcal{D}}\left(\sum_{k=1}^{m} u_{k} f_{k}\left(x, u_{1}, \ldots, u_{m}\right)\right)(t, x) d x \\
& +\frac{1}{2 \varepsilon} \sum_{i=1}^{n} \int_{\mathcal{D}_{i}^{*}}\left[p_{i}\left(x_{i}^{\beta_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\beta_{i}}\right)+p_{i}\left(x_{i}^{\alpha_{i}}\right)\left(\sum_{k=1}^{m}\left|u_{k}\right|^{2}\right)\left(t, x_{i}^{\alpha_{i}}\right)\right] d x_{i}^{*}=0
\end{aligned}
$$

If

$$
u_{1}(t, s)=\cdots=u_{m}(t, s)=0, \quad(t, s) \in \mathbb{R} \times \partial \mathcal{D}
$$

or

$$
\frac{\partial u_{1}(t, s)}{\partial n}=\cdots=\frac{\partial u_{m}(t, s)}{\partial n}=0,(t, s) \in \mathbb{R} \times \partial \mathcal{D}
$$

this formula reduces to

$$
\frac{\lambda}{4} \int_{\mathcal{D}}\left(\sum_{k=1}^{m} \frac{\partial^{2}\left(u_{k}^{2}\right)}{\partial t^{2}}\right)(t, x) d x-\frac{\lambda}{2} \int_{\mathcal{D}}\left(\sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial t}\right|^{2}\right)(t, x) d x
$$

$$
\begin{aligned}
& +\int_{\mathcal{D}} \sum_{i=1}^{n} \frac{p_{i}(x)}{2}\left(\sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial x_{i}}\right|^{2}\right)(t, x) d x \\
& +\frac{1}{2} \int_{\mathcal{D}}\left(\sum_{k=1}^{m} u_{k} f_{k}\left(x, u_{1}, \ldots, u_{m}\right)\right)(t, x) d x=0
\end{aligned}
$$

We can now employ (2.3) to transform this identity into the form

$$
\begin{align*}
& \frac{\lambda}{4} \int_{\mathcal{D}}\left(\sum_{k=1}^{m} \frac{\partial^{2}\left(u_{k}^{2}\right)}{\partial t^{2}}\right)(t, x) d x \\
& =\lambda \int_{\mathcal{D}}\left(\sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial t}\right|^{2}\right)(t, x) d x \tag{3.5}\\
& \quad+\int_{\mathcal{D}}\left[H\left(x, u_{1}, \ldots, u_{m}\right)-\frac{1}{2}\left(\sum_{k=1}^{m} u_{k} f_{k}\left(x, u_{1}, \ldots, u_{m}\right)\right)(t, x, y)\right] d x
\end{align*}
$$

This completes the proof.
3.2. Semi-linear elliptic problems. We shall prove that a dual result holds for $\lambda<0$.

Theorem 3.5. Let $\left(u_{1}, \ldots, u_{m}\right) \in\left(H^{2}(\Omega) \cap L^{\infty}(\Omega)\right)^{m}$ be a solution of (1.1))-(1.4), $\lambda<0$ and $f_{k}(k=1, \ldots, m)$ satisfying

$$
\begin{equation*}
2 H\left(x, u_{1}, \ldots, u_{m}\right)-\sum_{k=1}^{m} u_{k} f_{k}\left(x, u_{1}, \ldots, u_{m}\right) \leq 0 \tag{3.6}
\end{equation*}
$$

Then problem (1.1)-(1.4) has no nontrivial solutions.
Proof. Formula (3.4) combined with the assumption (3.6) yields

$$
\frac{\lambda}{4} \frac{d^{2}}{d t^{2}}\left(\int_{\mathcal{D}}\left(\sum_{k=1}^{m} u_{k}^{2}\right)(t, x) d x\right) \leq \lambda \int_{\mathcal{D}}\left(\sum_{k=1}^{m}\left|\frac{\partial u_{k}}{\partial t}\right|^{2}\right)(t, x) d x, \quad \text { for all } t \in \mathbb{R}
$$

and $\lambda<0$ gives the desired result.

Theorem 3.6. Let $\lambda<0$ and $f_{k}(k=1, \ldots, m)$ be as described in Theorem 3.5. We assume that

$$
u_{1}, \ldots, u_{m} \in H^{2}(\Omega) \cap L^{\infty}(\Omega)
$$

is a solution of $(1.1)-(1.2)$ or 1.1-(1.3). Then problems $\sqrt{1.1})-(\sqrt{1.2})$ and 1.1$)-(1.3)$ have no nontrivial solutions.

This theorem follows from (3.5) and (3.6) with $\lambda<0$.

4. Examples

In this section, we illustrate our theoretical results by giving some examples.

Example 1. Let $\theta: \mathcal{D} \rightarrow \mathbb{R}$ be a continuous function, the exponents $\alpha_{s}>0$, $s=1, \ldots, m$ and

$$
p_{i}(x)>0 \quad \text { or } \quad p_{i}(x)<0 \text { in } \mathcal{D}, \quad i=1, \ldots, n .
$$

Then system 1.1 with

$$
f_{k}\left(x, u_{1}, \ldots, u_{m}\right)=\theta(x)\left[\prod_{s=1, s \neq k}^{m} \frac{1}{\alpha_{s}+1}\left|u_{s}\right|^{\alpha_{s}+1}\right]\left|u_{k}\right|^{\alpha_{k}-1} u_{k}, \quad k=1, \ldots, m
$$

subject to Dirichlet, Neumann or Robin boundary conditions, does not have nontrivial solutions. Indeed, when $\lambda>0$ and $p_{i}, \theta>0$ in $\mathcal{D},(i=1, \ldots, n)$, we have

$$
H\left(x, u_{1}, \ldots, u_{m}\right)=\theta(x)\left[\prod_{s=1}^{m} \frac{1}{\alpha_{s}+1}\left|u_{s}\right|^{\alpha_{s}+1}\right]
$$

and Theorem 3.1 gives the desired result.
When $\lambda>0$ (resp. $\lambda<0$), $\theta(x) \leq 0$ (resp. $\theta(x) \geq 0)$ in \mathcal{D} and $p_{i}(x)>0$ or $p_{i}(x)<0$ in $\mathcal{D}, i=1, \ldots, n$, we have

$$
\begin{aligned}
& 2 H\left(x, u_{1}, \ldots, u_{k_{0}}\right)-\sum_{k=1}^{m} u_{k} f_{k}\left(x, u_{1}, \ldots, u_{m}\right) \\
& =\theta(x) \frac{2-\sum_{k=1}^{m}\left(\alpha_{k}+1\right)}{\prod_{k=1}^{m}\left(\alpha_{k}+1\right)} \prod_{k=1}^{m}\left|u_{k}\right|^{\alpha_{k}+1} \leq 0 \quad(\text { resp. } \geq 0)
\end{aligned}
$$

We conclude by using Theorem 3.2 or Theorem 3.4 (resp. Theorem 3.5 or Theorem 3.6) as the system is subject to Robin, Neumann or Dirichlet boundary conditions.

Example 2. Let us consider the system with $m=2$ and

$$
\begin{aligned}
& f_{1}\left(x, u_{1}, u_{2}\right)=\rho(x) u_{2}\left(\left|u_{1}\right|^{\alpha-1} u_{1}+\frac{1}{\beta+1}\left|u_{2}\right|^{\beta-1} u_{2}\right), \\
& f_{2}\left(x, u_{1}, u_{2}\right)=\rho(x) u_{1}\left(\frac{1}{\alpha+1}\left|u_{1}\right|^{\alpha-1} u_{1}+\left|u_{2}\right|^{\beta-1} u_{2}\right),
\end{aligned}
$$

where the continuous function $\rho(x)$ is positive (resp. negative) and α, β are positive real number. Then this problem does not have nontrivial solutions. It suffices to remark that

$$
H\left(x, u_{1}, u_{2}\right)=\rho(x)\left(u_{2} \frac{\left|u_{1}\right|^{\alpha+1}}{\alpha+1}+u_{1} \frac{\left|u_{2}\right|^{\beta+1}}{\beta+1}\right)
$$

and a simple computation gives

$$
\begin{aligned}
& 2 H\left(x, u_{1}, u_{2}\right)-u_{1} f_{1}\left(x, u_{1}, u_{2}\right)-u_{2} f_{2}\left(x, u_{1}, u_{2}\right) \\
& =\rho(x)\left[\left(\frac{1}{\alpha+1}-1\right)\left|u_{1}\right|^{\alpha+1} u_{2}+\left(\frac{1}{\beta+1}-1\right)\left|u_{2}\right|^{\beta+1} u_{1}\right] \leq 0 \quad(\text { resp. } \geq 0)
\end{aligned}
$$

The conclusion is the same as in the previous example.
4.1. Example3. For the scalar case $(m=1)$, let $\theta_{1}, \theta_{2}: \overline{\mathcal{D}} \rightarrow \mathbb{R}$ be two nonnegative continuous functions, $p, q \geq 1$ and

$$
f(x, u)=\delta u+\theta_{1}(x)|u|^{p-1} u+\theta_{2}(x)|u|^{q-1} u
$$

where δ is a real constant. Then the problem

$$
\begin{gathered}
-\frac{\partial^{2} u}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(p_{i}(x) \frac{\partial u}{\partial y_{i}}\right)+f(x, u)=0 \quad \text { in } \Omega \\
u+\varepsilon \frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

does not have nontrivial solutions. A simple computation gives

$$
2 H(x, u)-u f(x, u)=\theta_{1}(x)\left(\frac{2}{p+1}-1\right)|u|^{p+1}+\theta_{2}(x)\left(\frac{2}{q+1}-1\right)|u|^{q+1} \leq 0
$$

and an application of Theorem 3.5 gives the desired result.

References

[1] P. Amster, P. De Napoli and M. C. Mariani; Existence of solutions for elliptic systems with critical Sobolev exponent, Elect. Journal of Diff. Eqts 2002, no. 49 (2002), 1-13.
[2] N. M. Chuong and T. D. Ke; Existence of solutions for a nonlinear degenerate elliptic system, Elect. Journal of Diff. Eqts 2004, no. 93 (2004), 1-15.
[3] M. J. Esteban and P. L. Lions; Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proceeding of Royal Society of Edinburgh, Section A 93 (19821983).
[4] A. Haraux and B. Khodja; Caractère trivial de la solution de certaines équations aux dérivées partielles non linéaires dans des ouverts cylindriques de \mathbb{R}^{N}, Portugaliae Mathematica 42 (1982), 209-219.
[5] B. Khodja; A nonexistence result for a nonlinear PDE with Robin condition, International Journal of Math. and math. Sciences (2006), 1-12.
[6] B. Khodja; Nonexistence of solutions for semilinear equations and systems in cylindrical domains, Comm. on Applied Nonlinear Analysis 7 (2000), 19-30.
[7] J. S. McGough; Nonexistence and uniqueness in semilinear elliptic systems, Diff. Eqts and Dynamical Syst. 4 (1996), 157-176.
[8] Y. Naito; Nonexistence results of positive solutions for semilinear elliptic equations in \mathbb{R}^{N}, Journal Math. Society Japan 52 (2000), 637-644.
[9] S. I. Pohozaev; Eingenfunctions of the equation $\Delta u+\lambda u=0$, Soviet Mathematics Doklady, 6(1965), 1408-1411.

Brahim Khodja
Department of mathematics, Badji Mokhtar University, B.P. 12 Annaba, Algeria
E-mail address: bmkhodja@yahoo.fr
Abdelkrim Moussaoui
Department of mathematics, Bejaia University, Targa Ouzemour Bejaia, Algeria
E-mail address: remdz@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 35J45, 35J55.
 Key words and phrases. Semi linear systems; Pohozaev identity; trivial solution;
 Robin boundary condition.
 (C)2009 Texas State University - San Marcos.

 Submitted April 10, 2008. Published January 2, 2009.

