Electronic Journal of Differential Equations, Vol. 2009(2009), No. 02, pp. 1-11.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

NONEXISTENCE RESULTS FOR SEMILINEAR SYSTEMS IN
UNBOUNDED DOMAINS

BRAHIM KHODJA, ABDELKRIM MOUSSAQOUI

ABSTRACT. This paper concerns the non-existence of nontrivial solutions for
the semi-linear system of gradient type
0%uy,
ot2

LR Ouy .
_Zi(pl(x)7)+fk($7ul77um):0 inQ, k=1,....,m
i—1 Bzz 8$1

with Dirichlet, Neumann or Robin boundary conditions. The functions f; :
DxR™ —-R (k=1,...,m) are locally Lipschitz continuous and satisfy

m
2H(r,u1,...,um) - Zkak(fL’,’lLl,...,um) >0 (resp. < 0)

for A > 0 (resp. A < 0). We establish the non-existence of nontrivial solutions
using Pohozaev-type identities. Here u1, ..., um are in H2(Q) N L®(Q), Q =
R x D with D = [[",(a;, ;) and H € CY(D x R™) such that ngi = fu,s
k=1,...,m

1. INTRODUCTION

In this paper we study the semi-linear system

8Ul Zam aU1)+f1('r Uy ..., u m):O inQ,

auz Zax 3u2)_|_f2(g; Up,y. ooy Um) =0 in W)

0?u,y, O, P
/\7 Z&xl i )89(: )+ fm(x,ur, .. up) =0 in

under Dirichlet, Neumann or Robin boundary conditions. Here 2 = R x D where
D = [ ,(a,3), X is a real parameter, fr, : D x R™ — R (k = 1,...,m) are
locally Lipschitz continuous functions such that

fx(x,0,...,0) =0 in D,
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so that (u1,...,u,) = 0 is a solution of (I.I) and p; : D — R (i = 1,...,n) are
continuous functions satisfying
pi(x) >0 or pi(z) <0 inD.
We assume that system (1.1)) is of the gradient type; that is, there is a real-valued

differentiable function H(x,u, ..., Uy, ) such that
H
oH = fr, H(z,0,...,0)=0 forzxzeD.
6uk
For k=1,...,m, uy are in H*(Q) N L>(Q) and satisfy
ug(t,s) =0, (t,8) e Rx 9D (1.2)
(Dirichlet boundary condition), or
Oug(t
Quelhis) o (45) e R x oD (1.3)
on
(Neumann boundary condition), or
0
(up + Eﬂ)(t, s)=0, (t,s) €eRxID (1.4)

on

(Robin boundary condition), where ¢ is a positive real number. Throughout this
paper we denote the boundary of 2 by

0 =Rx 9D =T, Uls Ula, ULy, - UT,, UTs,,
where
Tp, ={z1,...,Zs1, fls; Tog1,...2pn), tER, 1 <5< n},
(t,z) = (t,x1,...,2,), and
n(t,s) = (0,n1(t,8),n2(t,s),...,n,(t,s))
is the outward normal to 9Q at the point (¢,s). If x € [\ (o, 8:), I =1,2,...,n

and 7 € {aq, 81,2, 02, ..., 0n, On} one writes
] = (Z1, . X1, Ty T 1y - oy Bp),  dax] =dxy...dri—1dxigy ... de,
and
B1 Bi—1  pBi+1 Bn
/ / / felz,r, oo rm)dey .o oda;_qdaig .. doy,
(%} Qi1 Q41 Qp
= fe(z,r, .. orp)def forallk=1,...,m.
Dy

The question of non-existence of nontrivial solutions for elliptic problems has
been studied extensively in both bounded and unbounded domain (see [3],[4], [7]-[9]
and their references). In particular, Amster et al. in [I] showed the non-solvability
of the gradient elliptic system

—Au; = g;(u) in Q,
u; =0 ond,i=1,...,n,

where (0 is a starshaped domain. A similar result was given for Hamiltonian systems
by N. M. Chuong and T. D. Ke [2] in k-starshaped domain and by Khodja [6] in
unbounded domain Rt x R.
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In the scalar case, when  is an unbounded domain, Haraux and Khodja [4]
established that under assumptions

f(0) =0,
Flu) —uf(u) <0, u#0
fo ), the problem
—Au+ f(u) =0 inQ,
(u or g—g) =0 on 09,

has only a trivial solution in H2(2) N L>=(Q), where Q@ = J x w, J C R is an
unbounded interval and w a domain in R"V. The case of Robin boundary conditions
was treated by Khodja [B] and it was shown nonexistence results for the equation

Pu 0 ou 0 ou
A _ ) - = — = in Q
T~ 5 @5 — e F) + S =0 i,
where Q = Rx]aq, f1[X]ag, B2 In the above works, the integral identity of

Pohozaev was adapted for each problem treated and applied to obtain the non-
existence results. The present study extends and complements these works. We
shall prove the non-solvability results to the class of semi-linear system of gradient
type under Dirichlet, Neumann or Robin boundary conditions. By using a
Pohozaev-type identity, our demonstration strategy will be to show that the func-

tion
/ Z |ug(t, x)
D

k=1
is convex in R, and then, from the Maximum Principle, we obtain that any solution
(u1,...,Um) to the problems —, — and - is trivial. We
draw the attention of the reader to the use of the Pohozaev-type identity which,
to the best of our knowledge, was not explored before in connection with gradient
systems in an unbounded cylindrical-type domain.

This paper is organized as follows. In the next section, we give a Pohozaev-type
identity adapted to the systems with Dirichlet, Neumann and Robin boundary
conditions; section 3 gives our main results and some examples will be illustrated
in section 4.

2. INTEGRAL IDENTITIES

The proof of our main results which will appear in the next section use the
following type of Pohozaev identity, adapted for systems.

Theorem 2.1. Let ui, ..., uy, in H>(Q) N L>®(Q) be a solution of problem (L.1])—
(1.4). Then for eacht € R and & > 0, we have

/{ Z|8Uk‘2 ZP: (Z|3uk )+H(x,u1,...,um)}dx
12/ pile Z'“k' )+ pile LZW #)]dat = o0.
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Proof. For t € R we consider a function

IC(t):/D[ Z a“’€|2 ZW > Z’“ )+ H(z,ua, .. )] da.
1=1 k=1

K3

The hypothesis on ug, fr (k =1,...,m) and p; ( = 1,...,n) implies that K is
absolutely continuous and thus differentiable almost everywhere on R; we have

dK(t) " Quy, Oy, " _ Ouy, O%uy
at _/D[Ak <ot o +;p’ (Z Y 6t8a:)

s (2.2)
+Z ;kfk(‘raula 7um)}dl’
k=1
Fubini’s theorem and an integration by part give
- Buk 3 UL
/ sz- (Z Bz, 8158331) e)de
5‘u ou
LB Lot
=1 k=
8uk 8uk 51 1 3uk (‘3uk al_ *
+Z/ 8x ot ¢ )(B) - (Z dx; Ot ) )]dxi'
Replacing in we find
dK(t)
dt
" 0*u 0] ou 0
:Z/ [ 8t2k 72833(1)1(35)8 k)+fk(xaula 7um):|(t7 )Ttkd
k=1 i=1 " v
- " Oy, Ou " Quy Ou
(B k %%k Bi o k OUg a *
3 [ [t GE G - et (3 gt et
Let us consider on 02 the expression uy + 56"’“ =0. For k=1,.
9u (uk—e%zk)(tx =0,
Uk-l-aairf =0 (uk+56“k)(t ;') =0,
teRa; <x; < Bi,i=1,...n
Then for € > 0, one can write
" " Quy Ou Oug, Ou
(B K Qug 5L _ ) K Oug % x
;/D [ i(; )< < 9x; Ot )(t’x Z:: dx; Ot ) )]dx’
1< . Ou . o u o .
-=>/ [mxfi)(zuka—f)(mfl)+pi<xl-z)(Zuka—j)u,x;)}da
i=1"D; k=1 k=1

m m

= T [ PO e ) e (3 )57 )

i k=1 k=1
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Therefore,

Gk 212 /D [pﬂx?"')(i i) (¢, 7
+pi(e Z|uk| } ) —0.

Integrating with respect to ¢, we obtain

252/ Pz Z|Uk|

+ pi(x Z uk| ]dm = const
k=
and since (u1(t,z),. .., un(t,x)) € (H*(Q) N L>(Q))™, one must get

1 L
/R (K(0) + 2—223 |, et A o

+pi(al) (3 luel?) (8 a) | da )t < oo

k=1
It follows that the constant must be 0, which is the desired result.

O

For the Dirichlet or Neumann boundary conditions, we have the integral identity

given in the following theorem.

Theorem 2.2, Let uy, ..., Uy, in H2(2) N L>®(Q) be a solution of problems ((1.1))-

or m—n Then for each t € R, we have
/[ Z‘auk) pi(w (Z|3uk )+qu1,..., m)}dx:()_

Proof. To prove ([2.3) it suffices to check that the expression

S [ O ) a3 ) 1) o
i=17D; k=1 k=1
vanishes if
ur(t,8) = ua(t,8) = - =up(t,s) =0, (t,s) € R x 9D
T oulhs) o) Du (1,
uy (2, s ua (2, s U, (T, 8
_ e = t R D.
on on on 0, (t:5) eRx 0
Indeed, suppose that (2.4)) holds then it is known that
Var =% o k=1,m;
on
ie.,
ot (t,9) L0
Oup Uk
or (B8N MGt g eRxOD, k=1,....m

(2.3)
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Consequently, for k =1,...,m,

0 _ 0 .
%(t,x?l) = %(t,mf’) =0, i=1,...,n.
Now if the boundary condition is (2.5]), then for k =1,...,m, one can write
0
0= %(t,s) = (Vug,n) on Ty, UT, UTa, UTs, -+ UTy, UTg ;
ie.,
0 0 v
%(t,w?") = auk(t,xf") =0, forallteR, i=1,....,n, k=1,...,m.
i €X;
In both cases d’fiit) = 0 for all ¢ € R which completes the proof. O

3. MAIN RESULTS

Before giving our main results, we note that the parameter A plays, in fact, an
important part as it allows ([1.1)) to be dealt with in two manners based on whether
its value is positive or negative. Indeed, if A is positive (resp. negative), the system

(1.1)) is a hyperbolic (resp. elliptic) problem.

3.1. Semi-linear hyperbolic problems. Using identity (2.1)) we obtain the fol-
lowing first result.

Theorem 3.1. Let A > 0 and uy, ..., U, € H?(Q) N L>(Q). Assume p;(z) > 0 in
D(i=1,...,n) and fr (k=1,...,m) satisfying

H(xz,uy,...,upy) > 0.
Then problems (1.1)-(1.2), (L.1))-(1.3) and (1.1)-(1.4) have no nontrivial solutions.
Proof. Applying formula ([2.1)) (resp. (2.3)) we immediately obtain

8uk 8uk . .
W(t,m) = %(t,x) =0 inQ,i=1,...,n, k=1,...,m.
3
Thus u1,...,u,, are constant and since for k =1,...,m,
/ lun(t, ) 2dzdt < 0,
Q
these constants are necessarily zero. |
The next theorem gives a non-existence result if the functions fr (k=1,...,m)

satisfy another type of non-linearity.

Theorem 3.2. Let A > 0 and uq, ..., Uy : @ — R be a solution of problem (L.1))-
(1.4). Suppose that ui, ..., uy, € H2(Q)NL>®(Q) and fr (k= 1,...,m) verify the
following condition

m
2H(x,u1,...,um)—Zukfk(x,ul,...,um)ZO. (3.1)
k=1

Then problem (1.1)-(1.4) has no nontrivial solutions.

Remark 3.3. Since uq, ..., U, are bounded in €, from the Maximum Principle,
the function £(¢) is convex in R which implies that the solution to the problem

(1.1)-(1.4) is identically equal to zero.
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Proof of Theorem[3.3. Tt is easy to see that almost everywhere in

(ukaa;k)(t,a?):(la(uk) |8“k )( r), k=1,...,m.

2 Ot?

Let us multiply the k-th equation of (1.1) by ug/2 and integrate over D we obtain

0?uy, ug 5uk g w
/{ o2 2 Zaxl pi(x )?Jrfk(fﬂ ULy .oy U m)z}(tx)d:c

Z

:/[gaa(ﬁ) 2|aau1t’c *J(t 2)dz (3.2)

/ [ i 8Ulj)%—|—f(l’ ul,...7um)%}(t7gg)dx.

Let us transform

i=1
_ " pi(x)  Qur(t, ) 2
D
D=1 Li
_1 - Bi k ﬂl, 011 auk? [e 7} *
302 J [P G0 = e g )

The substitution of this formula in (3.2)) gives

e "9 )
/D [A 8;1@%@ _Zaim(pi(x)a%’;)% —|—f(gc,u1,...,um)%} (t,x)dx
B AN (u2) X Ouy 4
_/ (Z 8t2k 21 >( z)dz

/sz ) Qe lt, x)\QdH/(%f(x,ul,...,um))(t,x)dm

b2
- 2;/ i)

. 0
o) 1, 2) — pi(af) (e Tk

A %

)(t,x5) | de} (3.3)

- [ - 3 ey
/sz M\Zd /D(%f(x’ul,,_,7um))(t,:c)d:17

+*Z/ 7 o (8, 7P+ paard ) ?| daf.

K3

(¢, 23")
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Adding these identities for k = 1,..., ko, we get

P (T e g [ () s

pi(.’lf - 0uk
*/D 7 Q75 P ta)de + 3 /Zukfwu»-.,um))(ux)dx

i=1 k=1

n m

: Z/ pi(x |uk| )( )+pz( L)(Z|uk|2)(t,xfl)]dxf =0,

k 1 k=1
which combined with . 2.1) yields

ij;(/D(Zuk tmdw —)\/ Z|aUk t$d$+/lj[H(maul7-~-v“m)

— 5(2 up fre(T,ur, ..o um))(t, y)} dx.
k=1

(3.4)
The assumptions ([3.1) and A > 0 enable us to assert that

ic‘li(/p(liuk)(t 7)dz >/\/ 8;5’“ 2)(t,2)de = 0,

for all ¢ € R. This completes the proof. O

Theorem 3.4. Let A > 0 and fi be as described in Theorem [3.9. Assume that

Uty ooy Uy € H2(Q) N L®(Q) is a solution of (LI)-(1.2) or (LI)-(1.3). Then
problems (1.1) )-(1.2) and (L.1)-(1.3) have no nontrivial solutions.

Proof. By a similar arguments as in the proof of Theorem we obtain

2/7)(2828(;%)>(t,x)dx—;/ (Z|aUk )( x)dx
_1_/1)1:12% (Z|8uk )

1
+2/D(;ukfk(x?uh"‘7um)>(t,x)dm
+21?Z/ Pl (3 ) (8 ) + piaf) (D ) (1 5) | daf = 0.
e k=t k=1

If

ur(t,s) = =up(t,s) =0, (t,s) € Rx 9D
" ou(t,5) Dup (1)

uy (L, s __ Oup t,s)

T— = on —O, (t,S)GRX@D,

this formula reduces to

1] (S T wee =3 [ (315w

k=1
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o [ G
+ %/D (ki::lukfk(w,ul,...,um))(t,x)dx =0.

We can now employ (2.3]) to transform this identity into the form
A [ ()
1, (X% ><w>dw
6’u;g
1\ / Z | Tt (3.5)

+/D {H(m,ul,...,um)— 2(éukfk(x,u1,...7um))(t,x7y)}dx.

This completes the proof. ([

3.2. Semi-linear elliptic problems. We shall prove that a dual result holds for
A <0.

Theorem 3.5. Let (uy, ..., uy) € (H*(Q)NL>®(Q)™ be a solution of (L.1)) )-(L.4),
A<0and fr, (k=1,...,m) satisfying

2H(x,u17...,um)—Zukfk(x,ul,...,um)§0. (3.6)

Then problem (1.1)-(1.4]) has no nontrivial solutions.

Proof. Formula (3.4]) combined with the assumption (3.6]) yields

i\(j;(/p(iui)(t,x)dx) /(Z\a“’“ 2)(t,@)dw, forall t € R
k=1

and A < 0 gives the desired result. |

Theorem 3.6. Let A\ < 0 and f, (k=1,...,m) be as described in Theorem .
We assume that

Uy ..Uy € H2(Q) N L®(Q)

is a solution of — 01". Then problems — and —

have no nontrivial solutions.

This theorem follows from (3.5) and (3.6) with A < 0.

4. EXAMPLES

In this section, we illustrate our theoretical results by giving some examples.
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Example 1. Let 8 : D — R be a continuous function, the exponents ay; > 0,
s=1,...,m and

pi(x) >0 or pi(zr)<0inD, i=1,...,n.
Then system (L.1)) with

m

fe(zyur, .o ty) [ H

s=1, s#k

as+1 ‘uk|ak—1

. k=1,...,
Oés-l-l Uk m

subject to Dirichlet, Neumann or Robin boundary conditions, does not have non-

trivial solutions. Indeed, when A > 0 and p;,6 > 0in D, (i =1,...,n), we have
H(x,ui,...,um) =06(x) 1 L lus
ag +1

s=1

and Theorem [3.1] gives the desired result.
When A > 0 (resp. A < 0), 6(z) <0 (resp. O(x) > 0) in D and p;(x) > 0 or
pi(x) <0inD,i=1,...,n, we have

2H (z,uy,. .., Ug,) —Zukfk(a:,ul,...,um)

Zk1@k+1
=0 artl < . >0).
(@) |||u| (resp. > 0)

We conclude by using Theorem or Theorem (resp. Theorem or Theorem
as the system is subject to Robin, Neumann or Dirichlet boundary conditions.

Example 2. Let us consider the system ({1.1)) with m = 2 and

fi(z,ur, ug) = p(@)ug(lug|* ug + 311 |ua | ),
1
fa(x, w1, ug) = P(x)ul(a 1 lut [Py + Jugl " ug),

where the continuous function p(z) is positive (resp. negative) and «, § are positive
real number. Then this problem does not have nontrivial solutions.
It suffices to remark that

Jug [*H |ug|

H(x,U1,U2):P(x)(u2 a_|_1 T 6+1 )

and a simple computation gives
2H (2, u1, uz) — w1 f1(2, w1, uz) — uz fa(z, u, u2)

1
@[5

1
=)l + (g~ Dl | <0 esp. >0,

The conclusion is the same as in the previous example.
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4.1. Example3. For the scalar case (m = 1), let 61,05 : D — R be two nonnegative
continuous functions, p,q > 1 and

fz,u) = 6u + 0y (x)|uP~ u 4 0g(2)|ul|T tu,
where ¢ is a real constant. Then the problem
0%u "9 ou )
o Z %(Pi(m)afy,) + flz,u) =0 inQ,
i=1 '
ou _
on

does not have nontrivial solutions. A simple computation gives

u+e 0 on 09,

2H (2, 1) = uf (:0) = 04 @) (= = DIl +0a(0)

and an application of Theorem gives the desired result.

_ 1)‘u|q+1 <0,
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