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ANNULUS OSCILLATION CRITERIA FOR SECOND ORDER
NONLINEAR ELLIPTIC DIFFERENTIAL EQUATIONS WITH

DAMPING

RONG-KUN ZHUANG

Abstract. We establish oscillation criteria for the second-order elliptic dif-

ferential equation

∇ · (A(x)∇y) + BT (x)∇y + q(x)f(y) = e(x), x ∈ Ω,

where Ω is an exterior domain in RN . These criteria are different from most

known ones in the sense that they are based on the information only on a
sequence of annulus of Ω, rather than on the whole exterior domain Ω. Both

the cases when ∂bi
∂xi

exists for all i and when it does not exist for some i are

considered.

1. Introduction

In this paper, we consider the oscillation of solutions to the second-order elliptic
differential equation

∇ · (A(x)∇y) + BT (x)∇y + q(x)f(y) = e(x), (1.1)

where x ∈ Ω, an exterior domain in RN , ∇ = ( ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xN

). The fol-
lowing notation will be adopted in this article: R and R+ denote the intervals
(−∞,+∞), (0,+∞), respectively. The norm of x is denoted by |x| = [

∑N
i=1 x2

i ]
1/2.

For a positive constant a > 0, let

Sa = {x ∈ RN : |x| = a}, G(a,+∞) = {x ∈ RN : |x| > a},
G[a, b] = {x ∈ RN : a ≤ |x| ≤ b}, G(a, b) = {x ∈ RN : a < |x| < b}.

For the exterior domain Ω in RN , there exists a positive number a0 such that
G(a0,+∞) ⊂ Ω.

A function y ∈ C2+µ
loc (Ω, R), µ ∈ (0, 1) is said to be a solution of (1.1) in Ω, if

y(x) satisfies (1.1) for all x ∈ Ω. For the existence of solutions of (1.1), we refer
the reader to the monograph [3]. We restrict our attention only to the nontrivial
solution y(x) of (1.1); i.e., for any a > a0, sup{|y(x)| : |x| > a} > 0 . A nontrivial
solution y(x) of (1.1) is called oscillatory if the zero set {x : y(x) = 0} of y(x) is
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unbounded, otherwise it is called nonoscillatory. (1.1) is called oscillatory if all its
nontrivial solutions are oscillatory.

In the qualitative theory of nonlinear partial differential equations, one of the
important problems is to determine whether or not solutions of the equation under
consideration are oscillatory. For the similinear elliptic equation

∇ · (A(x)∇y) + q(x)f(y) = 0, (1.2)

the oscillation theory is fully developed by many authors. Noussair and Swanson
[7] first extended the Wintner theorem by using the following partial Riccati type
transformation equation

W (x) = − α(|x|)
f(y(x))

(A∇y)(x), (1.3)

where α ∈ C2 is an arbitrary positive function. Swanson [3] summarized the oscil-
lation results for (1.2) up to 1979. For recent contributions, we refer the reader to
[13, 14, 12]. However, as far as we know that the (1.1) has never been the subject
of systematic investigations.

When N = 1, (1.1) reduces to second-order ordinary differential equations such
as:

y′′(t) + q(t)f(y) = e(t), (1.4)

(r(t)y′(t))′ + q(t)y(t) = e(t), (1.5)

(r(t)y′(t))′ + q(t)f(y) = e(t), (1.6)

There is a great number of papers devoted to (1.4)-(1.6) (see, for example, [8, 9,
10] and the references quoted therein). Some of the known oscillation criteria are
established by making use of a technique introduced by Kartsatos [5] where it is
assumed that there exists a second derivative function “h(t)” such that h′′(t) = e(t)
in order to reduce (1.4) or (1.5) to a second order homogeneous equation. However,
these results require the information of “q” on the entire half-line [t0,∞).

In 1993, El-Sayed [1] gave an interval oscillation criterion for (1.4) which depends
only on the behavior of “q” in certain subintervals of [t0,∞). In 1999, Wong [11]
and Kong [6] have, respectively, noted that interval criteria which Ei-Sayed [1]
established for oscillation of (1.5) are not very sharp, because a comparison with a
equation of constant coefficients is used in Ei-Sayed’s proof. Therefore, some other
interval criteria for oscillation,that is, criteria given by the behavior of (1.5) and
(1.5) with e(t) = 0 only a sequence of subintervals of [t0,∞) are obtained by Wong
[11] and Kong [6], respectively.

In 2003, Yang [15] employed the technique in the work of Philos [8] and Kong
[6] for (1.4), and presented several Interval oscillation criteria for (1.6). One of the
oscillation criteria of Kamenev’s type in [15] is as follows.

Theorem 1.1. Suppose f(y)/y ≥ K|y|ν−1 for y 6= 0, K > 0 and ν > 1. Then
(1.4) with r(t) ≡ 1 is oscillatory provided that for each t ≥ t0 and for some λ > 1,
the following conditions hold

(1) For any T ≥ t0, there exist T ≤ a1 < b1 ≤ a2 < b2 such that

e(t)

{
≤ 0, t ∈ [a1, b1],
≥ 0, t ∈ [a2, b2]

and q(t) ≥ 0 (6≡ 0), t ∈ [a1, b1] ∪ [a2, b2]
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(2) there exist ci ∈ (ai, bi) for i = 1, 2, such that T ≤ a1 < b1 ≤ a2 < b2 and
the following inequalities hold for i = 1, 2,

1
(ci − ai)λ−1

∫ ci

ai

(s− ai)λ|e(s)|1−(1/ν)[Kq(s)]1/νds ≥ λ2

4(λ− 1)
(1.7)

1
(bi − ci)λ−1

∫ bi

ci

(bi − s)λ|e(s)|1−(1/ν)[Kq(s)]1/νds ≥ λ2

4(λ− 1)
. (1.8)

Motivate by the ideas of Philos [8], Kong [6], and Yang [15]. In this paper, by
using generalized Riccati techniques which are introduced by Noussair [7], we obtain
several annulus criteria for oscillation, that is, criteria given by the behavior of (1.1)
(or of A, q, f and e) only on a sequence of annulus of Ω in RN . Our results improve
and extend the results of Ei-Sayed [1], Kong [6] and Yang [15]. Also information
about the distribution of the zero of solutions for(1.1) is obtained.

2. Oscillation results when ∂bi

∂xi
exists for all i

To establish oscillation theorems when ∂bi

∂xi
exists for all i we shall impose the

following conditions:
(C1) A(x) = (Aij(x))N×N is a real symmetric positive definite matrix func-

tion (ellipticity condition) with Aij ∈ C1+µ
loc (Ω(a0), R), µ ∈ (0, 1), i, j =

1, . . . , N , λmax(x) denotes the largest (necessarily positive) eigenvalue of
the matrix A(x); there exists a function λ ∈ C1(R+, R+) such that λ(r) ≥
max|x|=r λmax(x) for r > 0;

(C2) BT = (bi(x))1×N , bi ∈ C1+µ
loc (Ω(a0), R), i = 1, . . . , N ;

(C3) q ∈ Cµ
loc(Ω(a0), R), µ ∈ (0, 1) and q(x) 6≡ 0 for |x| ≥ a0;

(C4) f ∈ C1(R, R), yf(y) > 0 and f ′(y) ≥ k > 0 for all y 6= 0 and some constant
k.

For convenience, we let

Q1(r) =
∫

Sr

[
q(x)− 1

4k
BT A−1B − 1

2k
∇ ·B

]
dσ,

g1(r) =
ω

k
λ(r)rN−1,

where Sr = {x ∈ RN : |x| = r}, r > 0, dσ denotes the spherical integral element in
RN , ω is the area of unit sphere in RN and k is defined in (C4).

Theorem 2.1. Let (C1)–(C4) hold. Suppose that for any T ≥ a0, there exist
T ≤ a1 < b1 ≤ a2 < b2 such that

e(x)

{
≤ 0, x ∈ G[a1, b1],
≥ 0, x ∈ G[a2, b2]

and q(x) ≥ 0(6≡ 0), x ∈ G[a1, b1] ∪G[a2, b2]. Denote by Ψ(ai, bi) the set{
H ∈ C1[ai, bi],H(r) ≥ 0(6≡ 0),H(ai) = H(bi) = 0,H ′

r = 2h(r)
√

H(r)
}
,

i = 1, 2. If there exist H ∈ Ψ(ai, bi) such that

Mi(H) =
∫ bi

ai

{
g1(s)h2(s)−Q1(s)H(s)

}
ds < 0,

for i = 1, 2, then (1.1) is oscillatory.
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Proof. Suppose to the contrary that there exists a solution y(x) of (1.1) such that
y(x) > 0 for |x| ≥ a1 ≥ a0. Define

W (x) =
1

f(y)
(A∇y)(x) +

1
2k

B, x ∈ G[a1,+∞), (2.1)

V (r) =
∫

Sr

W (x) · γ(x)dσ, x ∈ G[a1,+∞), (2.2)

where ∇y denotes the gradient of y(x), γ(x) = x
|x| , |x| 6= 0 is the outward unit

normal to Sr. From (1.1) and (2.1), it follows that

∇ ·W (x) = − f ′(y)
f2(y)

(∇y)T A∇y − 1
f(y)

[q(x)f(y) + BT∇y − e(x)] +
1
2k
∇ ·B

≤ −k[W − 1
2k

B]T A−1[W − 1
2k

B]− q(x)−BT A−1[W − 1
2k

B]

+
1
2k
∇ ·B +

e(x)
f(y)

= −kWT A−1W − q(x) +
1
4k

BT A−1B +
1
2k
∇ ·B +

e(x)
f(y)

.

(2.3)
where WT denotes the transpose of W . Using Green’s formula in (2.2), we obtain

V ′(r) =
∫

Sr

∇ ·W (x)dσ

≤ −
∫

Sr

q(x)dσ +
∫

Sr

[ 1
4k

BT A−1B +
1
2k
∇ ·B

]
dσ

− k

∫
Sr

(WT A−1W )(x)dσ +
∫

Sr

e(x)
f(y)

dσ.

(2.4)

In view of (C1), we have (WT A−1W )(x) ≥ λ−1
max(x)|W (x)|2. Then, by Cauchy-

Schwartz inequality, we obtain∫
Sr

|W (x)|2dσ ≥ r1−N

ω

[ ∫
Sr

W (x) · γ(x)dσ
]2

.

Moreover, by (2.4) and (2.2), we get

V ′(r) ≤ −
∫

Sr

[
q(x)− 1

4k
BT A−1B − 1

2k
∇ ·B

]
dσ − 1

g1(r)
V 2(r) +

∫
Sr

e(x)
f(y)

dσ

= −Q1(r)−
1

g1(r)
V 2(r) +

∫
Sr

e(x)
f(y)

dσ.

(2.5)
By the assumption, we can choose a1, b1 ≥ T0(a1 < b1) such that e(x) ≤ 0, x ∈
G[a1, b1], then we have for x ∈ G[a1, b1],

V ′(r) ≤ −Q1(r)−
1

g1(r)
V 2(r). (2.6)

Let H(r) ∈ Ψ(a1, b1) be given as in the hypothesis, Multiplying H(r) throughout
(2.6) and integrating from a1 to b1, we obtain∫ b1

a1

H(s)V ′(s)ds ≤ −
∫ b1

a1

Q1(s)H(s)ds−
∫ b1

a1

H(s)
1

g1(s)
V 2(s)ds. (2.7)
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Integrating by parts and using the fact H(a1) = H(b1) = 0, we find

−
∫ b1

a1

2h(s)
√

H(s)V (s)ds ≤ −
∫ b1

a1

Q1(s)H(s)ds−
∫ b1

a1

H(s)
1

g1(s)
V 2(s)ds. (2.8)

which is equivalent to

0 ≤ −
∫ b1

a1

Q1(s)H(s)ds +
∫ b1

a1

[
2h(s)

√
H(s)V (s)− H(s)

g1(s)
V 2(s)

]
ds

=
∫ b1

a1

[g1(s)h2(s)−Q1(s)H(s)]ds−
∫ b1

a1

[√H(s)
g1(s)

V (s)−
√

g1(s)h(s)
]2

ds

= M1(H)−
∫ b1

a1

[√H(s)
g1(s)

V (s)−
√

g1(s)h(s)
]2

ds

(2.9)

Because M1(H) < 0, (2.9) is incompatible. This contradiction proves that y(x)
must be oscillatory.

When y(x) is eventually negative, we use H(r) ∈ Ψ(a2, b2) and e(x) ≥ 0, x ∈
G[a2, b2] to reach a similar contradiction. the proof is complete. �

Following Philos [8] and Kong [6], we introduce the class of function < which
will be extensively and use in the sequel.

Let D = {(r, s) : −∞ < s ≤ r < ∞}, a function H = H(r, s) is said to belong to
<, if H ∈ C(D, R) and satisfies

(H1) H(r, r) = 0, r ≥ a0;H(r, s) > 0 for all r > s ≥ a0;
(H2) H has partial derivatives ∂H/∂r and ∂H/∂s on D such that:

∂H

∂r
= 2h1(r, s)

√
H(r, s)

∂H

∂s
= −2h2(r, s)

√
H(r, s),

where h1, h2 ∈ Lloc(D, R).

Lemma 2.2. Let (C1)–(C4) hold. Assume that there exist c1 < b1 < c2 < b2 such
that q(x) ≥ 0 for x ∈ G[c1, b1] ∪G[c2, b2] and

e(x)

{
≤ 0, x ∈ G[c1, b1],
≥ 0, x ∈ G[c2, b2],

y(x) is a solution of (1.1) such that y(x) > 0 for x ∈ G[c1, b1] and y(x) < 0 for
x ∈ G[c2, b2]. Then for any H ∈ < and i = 1, 2,

1
H(bi, ci)

∫ bi

ci

H(bi, s)Q1(s)ds ≤ V (ci) +
1

H(bi, ci)

∫ bi

ci

g1(s)h2
2(bi, s)ds. (2.10)

Proof. Suppose that y(x) is a solution of (1.1) such that y(x) > 0 for x ∈ G[c1, b1]
and y(x) < 0 for x ∈ G[c2, b2]. Then, similar to the proof of Theorem 2.1, we
multiply (2.6) by H(r, s), integrate it with respect to s from r to ci, we get for



6 R. K. ZHUANG EJDE-2009/04

s ∈ [ci, r)∫ r

ci

H(r, s)Q1(s)ds

≤ −
∫ r

ci

H(r, s)V ′(s)ds−
∫ r

ci

H(r, s)
1

g1(s)
V 2(s)ds

= H(r, ci)V (ci)−
∫ r

ci

2h2(r, s)
√

H(r, s)V (s)ds−
∫ r

ci

H(r, s)
1

g1(s)
V 2(s)ds

= H(r, ci)V (ci) +
∫ r

ci

g1(s)h2
2(r, s)ds−

∫ r

ci

[√H(r, s)
g1(s)

V (s) +
√

g1(s)h2
2(r, s)

]2

ds

≤ H(r, ci)V (ci) +
∫ r

ci

g1(s)h2
2(r, s)ds

Letting r → b−i and dividing both sides by H(bi, ci) we obtain (2.10). �

Lemma 2.3. Let (C1)–(C4) hold. Assume that there exist a1 < c1 < a2 < c2 such
that q(x) ≥ 0 for x ∈ G[a1, c1] ∪G[a2, c2] and

e(x)

{
≤ 0, x ∈ G[a1, c1],
≥ 0, x ∈ G[a2, c2],

y(x) is a solution of (1.1) such that y(x) > 0 for x ∈ G[a1, c1] and y(x) < 0 for
x ∈ G[a2, c2]. Then for any H ∈ < and i = 1, 2,

1
H(ci, ai)

∫ ci

ai

H(s, ai)Q1(s)ds ≤ −V (ci) +
1

H(ci, ai)

∫ ci

ai

g1(s)h2
1(s, ai)ds. (2.11)

Proof. As in the proof of Lemma 2.2, we multiply (2.6) by H(s, r) and integrate it
with respect to s from r to ci. We have∫ ci

r

H(s, r)Q1(s)ds

≤ −
∫ ci

r

H(s, r)V ′(s)ds−
∫ ci

r

H(r, s)
1

g1(s)
V 2(s)ds

= −H(ci, r)V (ci) +
∫ ci

r

2h1(s, r)
√

H(s, r)V (s)ds−
∫ ci

r

H(s, r)
1

g1(s)
V 2(s)ds

= −H(ci, r)V (ci) +
∫ ci

r

g1(s)h2
1(s, r)ds

−
∫ r

ci

[√H(s, r)
g1(s)

V (s)−
√

g1(s)h2
2(r, s)

]2

ds

≤ −H(ci, r)V (ci) +
∫ ci

r

g1(s)h2
1(s, r)ds

Letting r → a+
i and dividing both sides by H(ci, ai) we obtain (2.11). �

The following theorem is an immediate result from Lemmas 2.2 and 2.3.
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Theorem 2.4. Let (C1)–(C4) hold. Suppose that there exist a1 < b1 ≤ a2 < b2

such that q(x) ≥ 0 for x ∈ G[a1, b1] ∪G[a2, b2] and

e(x)

{
≤ 0, x ∈ G[a1, b1],
≥ 0, x ∈ G[a2, b2]

further, there exist some ci ∈ (ai, bi) and some H ∈ < such that

1
H(ci, ai)

∫ ci

ai

[H(s, ai)Q1(s)− g1(s)h1(s, ai)]ds

+
1

H(bi, ci)

∫ bi

ci

[H(bi, s)Q1(s)− g1(s)h2(bi, s)]ds > 0
(2.12)

holds for i = 1, 2, then every nontrivial solution of (1.1) has at least one zero either
in G(a1, b1) or in G(a2, b2).

Proof. Suppose to the contrary that there exists a solution y(x) of (1.1) such that
y(x) > 0 for x ∈ G[T0,+∞)(T0 ≥ a0), by the assumption, we can choose a1, b1 ≥
T0(a1 < b1) such that e(x) > 0, x ∈ G[a1, b1], then from Lemma 2.2 and Lemma
2.3 we see that (2.10) and (2.11) with i = 1 hold. Adding (2.10) and (2.11), we
have that

1
H(c1, a1)

∫ c1

a1

[H(s, a1)Q1(s)− g1(s)h1(s, a1)]ds

+
1

H(b1, c1)

∫ b1

c1

[H(b1, s)Q1(s)− g1(s)h2(b1, s)]ds ≤ 0.

(2.13)

which contradicts the assumption (2.12) with i = 1.
When y(x) is eventually negative, we choose a2, b2 ≥ T0 such that e(x) ≤ 0, x ∈

G[a2, b2] to reach a similar contradiction and hence completes the proof. �

Theorem 2.5. Let (C1)–(C4) hold. Suppose that for any T ≥ a0, the following
conditions hold:

(1) there exist T ≤ a1 < b1 ≤ a2 < b2 such that

e(x)

{
≤ 0, x ∈ G[a1, b1],
≥ 0, x ∈ G[a2, b2]

and q(x) ≥ 0(6≡ 0) for x ∈ G[a1, b1] ∪G[a2, b2]
(2) there exist some ci ∈ (ai, bi), i = 1, 2, and some H ∈ < such that T ≤ a1 <

b1 ≤ a2 < b2 and (2.12) holds.
Then (1.1) is oscillatory.

Proof. Pick up a sequence {Tj} ⊂ [a0,+∞), such that j → ∞, Tj → ∞. By the
assumption, for each j ∈ N , there exist a1, b1, c1, a2, b2, c2 ∈ R such that Tj ≤ a1 <
c1 < b1 ≤ a2 < c2 < b2 and (2.12) holds. From Theorem 2.4, every solution y(x)
has at least one zero on G(a1, b1) or G(a2, b2). Noting that |x| > a1 ≥ Tj , j ∈ N ,
we see that the zero set {x ∈ Ω : y(x) = 0} of y(x) is is unbounded. Thus, every
nontrivial solution of (1.1) is oscillatory. The proof is complete. �

Remark 2.6. With an appropriate choice of function H one can derive a number
of oscillation criteria for (1.1).
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As an immediate consequence of Theorem 2.5 we get the following oscillation
criteria for (1.1).

Corollary 2.7. Let (C1)–(C4) hold. Suppose that for any T ≥ a0, the following
conditions hold:

(1) there exist T ≤ a1 < b1 ≤ a2 < b2 such that

e(x)

{
≤ 0, x ∈ G[a1, b1],
≥ 0, x ∈ G[a2, b2],

and q(x) ≥ 0(6≡ 0) for x ∈ G[a1, b1] ∪G[a2, b2].
(2) there exist some ci ∈ (ai, bi), i = 1, 2, and some H ∈ < such that T ≤ a1 <

b1 ≤ a2 < b2 and the following two inequalities hold for i = 1, 2,∫ ci

ai

[H(s, ai)Q1(s)− g1(s)h2
1(s, ai)]ds > 0, (2.14)∫ bi

ci

[
H(bi, s)Q1(s)− g1(s)h2

2(bi, s)
]
ds > 0. (2.15)

Then (1.1) is oscillatory.

Moreover, let H = H(r − s) ∈ <, we have tha ∂H(r−s)
∂r = −∂H(r−s)

∂s , and denote
them by h(r − s). The subclass of < containing such H(r − s) is denoted by <0.
Applying Theorem 2.5 to <0, we obtain the following result.

Corollary 2.8. Let (C1)–(C4) hold. Suppose that for any T ≥ a0, the following
conditions hold:

(1) there exist T ≤ a1 < 2c1 − a1 ≤ a2 < 2c2 − a2 such that

e(x)

{
≤ 0, x ∈ G[a1, 2c1 − a1],
≥ 0, x ∈ G[a2, 2c2 − a2],

and q(x) ≥ 0(6≡ 0) for x ∈ G[a1, 2c1 − a1] ∪G[a2, 2c2 − a2].
(2) there exist some H ∈ <0 such that T ≤ ai < ci for i = 1, 2 and the following

inequality holds∫ ci

ai

{
H(s− ai)[Q1(s) + Q1(2ci − s)]− [g1(s) + g1(2ci − s)]h2(s− ai)

}
ds > 0.

(2.16)
Then (1.1) is oscillatory.

Proof. Let bi = 2ci − ai, then H(bi − ci) = H(ci − ai) = H((bi − ai)/2), and for
any f ∈ L[a, b], we have∫ bi

ci

H(bi − s)f(s)ds =
∫ ci

ai

H(s− ai)f(2ci − s)ds.

Thus that (2.16) holds implies that (2.12) holds for H ∈ Φ0 and therefor (1.1) is
oscillatory by Theorem 2.4. �

Define
R(r) =

∫ r

a0

1
g1(s)

ds, r ≥ a0, (2.17)

and let
H(r, s) = [R(r)−R(s)]α, r ≥ s ≥ a0, (2.18)
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where α > 1 is a constant. Based on the above results, we obtain the following
oscillation criteria of Kamenev’s type.

Theorem 2.9. Let (C1)–(C4) hold. Assume that limr→∞R(r) = ∞. If for each
T ≥ a0, the following conditions hold:

(1) there exist T ≤ a1 < b1 ≤ a2 < b2 such that

e(x)

{
≤ 0, x ∈ G[a1, b1],
≥ 0, x ∈ G[a2, b2],

and q(x) ≥ 0 (6≡ 0) for x ∈ G[a1, b1] ∪G[a2, b2]
(2) there exist ci ∈ (ai, bi) for i = 1, 2, such that T ≤ a1 < b1 ≤ a2 < b2 and

the following inequalities hold for i = 1, 2,

1
[R(ci)−R(ai)]α−1

∫ ci

ai

[R(s)−R(ai)]αQ1(s)ds ≥ α2

4(α− 1)
, (2.19)

1
[R(bi)−R(ci)]α−1

∫ bi

ci

[R(bi)−R(s)]αQ1(s)ds ≥ α2

4(α− 1)
. (2.20)

Then (1.1) is oscillatory.

Proof. It is easy to see that

h1(r, s) = α[R(r)−R(s)]
α−2

2
1

2g1(r)
, h2(r, s) = α[R(r)−R(s)]

α−2
2

1
2g1(s)

,

Hence we have∫ ci

ai

g1(s)h2
1(s, ai)ds =

∫ ci

ai

g1(s)α2[R(s)−R(ai)]α−2 1
4g2

1(s)
ds

=
∫ ci

ai

[R(s)−R(ai)]α−2 α2

4g1(s)
ds

=
α2

4(α− 1)
[R(ci)−R(ai)]α−1.

(2.21)

From (2.19) and (2.21) we have

1
[R(ci)−R(ai)]α−1

∫ ci

ai

[
H(s, ai)Q1(s)− g1(s)h2

1(s, ai)
]
ds

=
1

[R(ci)−R(ai)]α−1

∫ ci

ai

[R(s)−R(ai)]αQ1(s)ds− α2

4(α− 1)
> 0;

(2.22)

i.e., (2.14) holds. Similarly, (2.20) implies (2.15) holds. From Corollary 2.7, (1.1)
is oscillatory. �

Example. Consider (1.1) with

A = diag
( 1√

r
,

1√
r

)
, BT =

(
− 2x1

r2
,−2x2

r2

)
,

q(x) =
α

r
√

r
, f(y) = y + y3, e(x) =

1
r
√

r
sin
√

r,

where r =
√

x2
1 + x2

2, r ≥ 1, N = 2. Let k = 1, hence

λ(r) =
1√
r
, Q1(r) =

(2α− 1)π√
r

, g1(r) = 2π
√

r.
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Choose a1 = n2π2, b1 = (n + 1)2π2, a2 = (n + 1)2π2, b2 = (n + 2)2π2, and
H(r) = sin2√r. It is easy to see that if α ≥ 3/2, then

M1(H) =
∫ b1

a1

[g1(s)h2(s)−Q1(s)H(s)]ds

= π

∫ (n+1)2π2

n2π2

cos2
√

s

2
√

s
ds− (2α− 1)π

∫ (n+1)2π2

n2π2

sin2√s√
s

ds

= π

∫ (n+1)π

nπ

cos2 sds− 2α− 1
2

∫ (n+1)π

nπ

sin2 sds

=
π2

2
− (2α− 1)π2

4
≤ 0.

Similarly, for a2, b2 we can show that M2(H) ≤ 0. It follows from Theorem 2.1 that
(1.1) is oscillatory when α ≥ 3/2.

3. Oscillation results when ∂bi

∂xi
does not exist for some i

In this section, we establish oscillation criteria for (1.1) in case when ∂bi

∂xi
does

not exist for some i. For convenience, we let

Q2(r) =
∫

Sr

[
q(x)− 1

2k
λ(x)|BT A−1|2

]
dσ, g2(r) =

2λ(r)
k

ωrN−1,

We begin with the following lemma, the proof of this lemma is easy and thus
omitted.

Lemma 3.1. For two n-dimensional vectors u, v ∈ RN , and a positive constant c,
then

cuuT + uvT ≥ c

2
uuT − 1

2c
vvT . (3.1)

Theorem 3.2. Assume (C1),(C3),(C4) and
(C2)’ bi ∈ Cµ

loc(Ω, R), µ ∈ (0, 1), i = 1, . . . , N .
Suppose that for any T ≥ a0, there exist T ≤ a1 < b1 ≤ a2 < b2 such that

e(x)

{
≤ 0, x ∈ G[a1, b1],
≥ 0, x ∈ G[a2, b2]

and q(x) ≥ 0(6≡ 0), x ∈ G[a1, b1] ∪G[a2, b2] If there exist H ∈ Ψ(ai, bi) such that

Mi(H) =
∫ bi

ai

{
g2(s)h2(s)−Q2(s)H(s)

}
ds < 0, for i = 1, 2,

where Ψ(ai, bi) is defined in Theorem 2.1. Then (1.1) is oscillatory.

Proof. Suppose to the contrary that there exists a solution y(x) of (1.1) such that
y(x) > 0 for |x| ≥ a1 ≥ a0. Define

W (x) =
1

f(y)
(A∇y)(x), x ∈ G[a1,+∞), (3.2)

V (r) =
∫

Sr

W (x) · γ(x)dσ, x ∈ G[a1,+∞), (3.3)
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where ∇y denotes the gradient of y(x), γ(x) = x
|x| , |x| 6= 0 is the outward unit

normal to Sr. From (1.1) and (3.2), it follows that

∇ ·W (x) = − f ′(y)
f2(y)

(∇y)T A∇y − 1
f(y)

[q(x)f(y) + BT∇y − e(x)]

≤ −kWT A−1W − q(x)−BT A−1W +
e(x)
f(y)

≤ − k

λ(x)
WT W − q(x)−BT A−1W +

e(x)
f(y)

(By Lemma 3.1)

≤ − k

2λ(x)
|W |2 +

1
2k

λ(x)|BT A−1|2 − q(x) +
e(x)
f(y)

.

(3.4)

where WT denotes the transpose of W . Using Green’s formula in (3.3), we get

V ′(r) =
∫

Sr

∇ ·W (x)dσ

≤ −
∫

Sr

q(x)dσ +
1
2k

∫
Sr

λ(x)|BT A−1|2dσ

− k

2λ(r)

∫
Sr

|W |2dσ +
∫

Sr

e(x)
y(x)

dσ.

(3.5)

By Cauchy-Schwartz inequality,∫
Sr

|W (x)|2dσ ≥ r1−N

ω

[ ∫
Sr

W (x) · γ(x)dσ
]2

.

Moreover, by (3.5) and (3.3),

V ′(r) ≤ −
∫

Sr

[
q(x)− 1

2k
λ(x)|BT A−1|2

]
dσ − 1

g2(r)
V 2(r) +

∫
Sr

e(x)
y(x)

dσ (3.6)

The rest of proof is similar to that of Theorem 2.1 and hence omitted. �

Similar to the discussions in Section 2, we have the following results.

Lemma 3.3. Let (C1), (C2)’, (C3), (C4) hold. Assume that there exist c1 < b1 <
c2 < b2 such that q(x) ≥ 0 for x ∈ G[c1, b1] ∪G[c2, b2] and

e(x)

{
≤ 0, x ∈ G[c1, b1],
≥ 0, x ∈ G[c2, b2],

y(x) is a solution of (1.1) such that y(x) > 0 for x ∈ G[c1, b1] and y(x) < 0 for
x ∈ G[c2, b2]. Then for any H ∈ <, and i = 1, 2,

1
H(bi, ci)

∫ bi

ci

H(bi, s)Q2(s)ds ≤ V (ci) +
1

H(bi, ci)

∫ bi

ci

g2(s)h2
2(bi, s)ds. (3.7)

Lemma 3.4. Let (C1), (C2)’, (C3), (C4) hold. Assume that there exist a1 < c1 <
a2 < c2 such that q(x) ≥ 0 for x ∈ G[a1, c1] ∪G[a2, c2] and

e(x)

{
≤ 0, x ∈ G[a1, c1],
≥ 0, x ∈ G[a2, c2],
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y(x) is a solution of (1.1) such that y(x) > 0 for x ∈ G[a1, c1] and y(x) < 0 for
x ∈ G[a2, c2]. Then for any H ∈ < and i = 1, 2,

1
H(ci, ai)

∫ ci

ai

H(s, ai)Q2(s)ds ≤ −V (ci) +
1

H(ci, ai)

∫ ci

ai

g2(s)h2
1(s, ai)ds. (3.8)

The following theorem is an immediate result from Lemmas 3.3 and 3.4.

Theorem 3.5. Let (C1), (C2)’, (C3), (C4) hold. Suppose that there exist a1 <
b1 ≤ a2 < b2 such that q(x) ≥ 0 for x ∈ G[a1, b1] ∪G[a2, b2] and

e(x)

{
≤ 0, x ∈ G[a1, b1],
≥ 0, x ∈ G[a2, b2]

further, there exist some ci ∈ (ai, bi) and some H ∈ < such that

1
H(ci, ai)

∫ ci

ai

[H(s, ai)Q2(s)− g2(s)h1(s, ai)]ds

+
1

H(bi, ci)

∫ bi

ci

[H(bi, s)Q2(s)− g2(s)h2(bi, s)]ds > 0, i = 1, 2.

(3.9)

Then every nontrivial solution of (1.1) has at least one zero either in G(a1, b1) or
in G(a2, b2).

Theorem 3.6. Let (C1), (C2)’, (C3), (C4) hold. Suppose that for any T ≥ a0, the
following conditions hold:

(1) there exist T ≤ a1 < b1 ≤ a2 < b2 such that

e(x)

{
≤ 0, x ∈ G[a1, b1],
≥ 0, x ∈ G[a2, b2]

and q(x) ≥ 0(6≡ 0) for x ∈ G[a1, b1] ∪G[a2, b2]
(2) there exist some ci ∈ (ai, bi), i = 1, 2, and some H ∈ < such that T ≤ a1 <

b1 ≤ a2 < b2 and (3.9) holds.
Then (1.1) is oscillatory.

Corollary 3.7. Let (C1), (C2)’, (C3), (C4) hold. Suppose that for any T ≥ a0,
the following conditions hold:

(1) there exist T ≤ a1 < b1 ≤ a2 < b2 such that

e(x)

{
≤ 0, x ∈ G[a1, b1],
≥ 0, x ∈ G[a2, b2],

and q(x) ≥ 0(6≡ 0) for x ∈ G[a1, b1] ∪G[a2, b2].
(2) there exist some ci ∈ (ai, bi), i = 1, 2, and some H ∈ < such that T ≤ a1 <

b1 ≤ a2 < b2 and the following two inequalities hold for i = 1, 2,∫ ci

ai

[
H(s, ai)Q2(s)− g2(s)h2

1(s, ai)
]
ds > 0, (3.10)∫ bi

ci

[
H(bi, s)Q2(s)− g2(s)h2

2(bi, s)
]
ds > 0. (3.11)

Then (1.1) is oscillatory.
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Corollary 3.8. Let (C1), (C2)’, (C3), (C4) hold. Suppose that for any T ≥ a0,
the following conditions hold:

(1) there exist T ≤ a1 < 2c1 − a1 ≤ a2 < 2c2 − a2 such that

e(x)

{
≤ 0, x ∈ G[a1, 2c1 − a1],
≥ 0, x ∈ G[a2, 2c2 − a2],

and q(x) ≥ 0(6≡ 0) for x ∈ G[a1, 2c1 − a1] ∪G[a2, 2c2 − a2].
(2) there exist some H ∈ <0 such that T ≤ ai < ci for i = 1, 2 and the following

inequality holds∫ ci

ai

{
H(s− ai)[Q2(s) + Q2(2ci − s)]− [g2(s) + g2(2ci − s)]h2(s− ai)

}
ds > 0.

(3.12)
Then (1.1) is oscillatory.

Theorem 3.9. Let (C1), (C2)’, (C3), (C4) hold. Assume that limr→∞R(r) = ∞.
If for each T ≥ a0, the following conditions hold:

(1) there exist T ≤ a1 < b1 ≤ a2 < b2 such that

e(x)

{
≤ 0, x ∈ G[a1, b1],
≥ 0, x ∈ G[a2, b2],

and q(x) ≥ 0(6≡ 0) for x ∈ G[a1, b1] ∪G[a2, b2]
(2) there exist ci ∈ (ai, bi) for i = 1, 2, such that T ≤ a1 < b1 ≤ a2 < b2 and

the following inequalities hold for i = 1, 2,

1
[R(ci)−R(ai)]α−1

∫ ci

ai

[R(s)−R(ai)]αQ2(s)ds ≥ α2

4(α− 1)
, (3.13)

1
[R(bi)−R(ci)]α−1

∫ bi

ci

[R(bi)−R(s)]αQ2(s)ds ≥ α2

4(α− 1)
. (3.14)

Where R(r) =
∫ r

a0

1
g2(s)

ds.

Then (1.1) is oscillatory.

Remark 3.10. The results of the paper are presented in the form of a high
degree of generality and thus they give wide possibilities of deriving the differ-
ent oscillation criteria with an appropriate choice of the functions H. For in-
stance, if we choose H(r, s) = (r − s)α, [R(r) − R(s)]α, [log(G(r)/G(s))]α, or
[
∫ r

s
dz/ρ(z)]α, etc., for r ≥ s ≥ a0, where α > 1 is a constant, R(r) =

∫ r

a0
ds/g1(s),

or R(r) =
∫ r

a0
ds/g2(s), G(r) =

∫∞
r

ds/g1(s) < ∞, or G(r) =
∫∞

r
ds/g2(s) < ∞,

for r ≥ a0, ρ ∈ C([a0,∞), R+) satisfying
∫∞

a0
dz/ρ(z) = ∞, then we can derive

various explicit oscillation criteria.
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