Electronic Journal of Differential Equations, Vol. 2009(2009), No. 05, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

世-BOUNDED SOLUTIONS FOR LINEAR DIFFERENTIAL SYSTEMS WITH LEBESGUE Ψ-INTEGRABLE FUNCTIONS ON \mathbb{R} AS RIGHT-HAND SIDES

AUREL DIAMANDESCU

Abstract

In this paper we give a characterization for the existence of Ψ bounded solutions on \mathbb{R} for the system $x^{\prime}=A(t) x+f(t)$, assuming that f is a Lebesgue Ψ-integrable function on \mathbb{R}. In addition, we give a result in connection with the asymptotic behavior of the Ψ-bounded solutions of this system.

1. Introduction

This work is concerned with linear differential system

$$
\begin{equation*}
x^{\prime}=A(t) x+f(t) \tag{1.1}
\end{equation*}
$$

where $x(t), f(t)$ are in \mathbb{R}^{d} and A is a continuous $d \times d$ matrix-valued function. The basic problem under consideration is the determination of necessary and sufficient conditions for the existence of a solution with some specified boundedness condition. A clasic result in this type of problems is given by Coppel [4, Theorem 2, Chapter V].

The problem of Ψ-boundedness of the solutions for systems of ordinary differential equations has been studied in many papers, [1, 2, 3, 5, 6, 7, 8, 2, 10, 11]. In [5, 6, 7], the author proposes the novel concept of Ψ-boundedness of solutions, Ψ being a continuous matrix-valued function, allows a better identification of various types of asymptotic behavior of the solutions on \mathbb{R}_{+}.

Similarly, we can consider solutions of 1.1 which are Ψ-bounded not only \mathbb{R}_{+} but on \mathbb{R}. In this case, the conditions for the existence of at least one Ψ-bounded solution are rather complicated, as shown in [8 and below. In 8], it is given a necessary and sufficient condition so that the system 1.1) has at least one Ψ bounded solution on \mathbb{R} for every continuous and Ψ-bounded function f on \mathbb{R}.

The aim of present paper is to give a necessary and sufficient condition so that the nonhomogeneous system of ordinary differential equations 1.1 has at least one Ψ-bounded solution on \mathbb{R} for every Lebesgue Ψ-integrable function f on \mathbb{R}. The introduction of the matrix function Ψ permits to obtain a mixed asymptotic behavior of the components of the solutions. Here, Ψ is a continuous matrix-valued function on \mathbb{R}.

[^0]
2. Definitions, Notations and hypotheses

Let \mathbb{R}^{d} be the Euclidean d-space. For $x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{d}\right)^{T} \in \mathbb{R}^{d}$, let $\|x\|=$ $\max \left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|, \ldots,\left|x_{d}\right|\right\}$ be the norm of x. For a $d \times d$ real matrix $A=\left(a_{i j}\right)$, we define the norm $|A|=\sup _{\|x\| \leq 1}\|A x\|$. It is well-known that

$$
|A|=\max _{1 \leq i \leq d}\left\{\sum_{j=1}^{d}\left|a_{i j}\right|\right\}
$$

Let $\Psi_{i}: \mathbb{R} \rightarrow(0, \infty), i=1,2, \ldots d$, be continuous functions and

$$
\Psi=\operatorname{diag}\left[\Psi_{1}, \Psi_{2}, \ldots \Psi_{d}\right]
$$

Definition. A function $\varphi: \mathbb{R} \rightarrow \mathbb{R}^{d}$ is said to be Ψ-bounded on \mathbb{R} if $\Psi \varphi$ is bounded on \mathbb{R}.

Definition. A function $\varphi: \mathbb{R} \rightarrow \mathbb{R}^{d}$ is said to be Lebesgue Ψ-integrable on \mathbb{R} if φ is measurable and $\Psi \varphi$ is Lebesgue integrable on \mathbb{R}.

By a solution of 1.1 , we mean an absolutely continuous function satisfying (1.1) for almost all $t \in \mathbb{R}$.

Let A be a continuous $d \times d$ real matrix and let the associated linear differential system be

$$
\begin{equation*}
y^{\prime}=A(t) y \tag{2.1}
\end{equation*}
$$

Let Y be the fundamental matrix of 2.1 for which $Y(0)=I_{d}$ (identity $d \times d$ matrix).

Let the vector space \mathbb{R}^{d} be represented as a direct sum of three subspaces X_{-}, X_{0}, X_{+}such that a solution $y(t)$ of 2.1 is Ψ-bounded on \mathbb{R} if and only if $y(0) \in X_{0}$ and Ψ-bounded on $\mathbb{R}_{+}=[0, \infty)$ if and only if $y(0) \in X_{-} \oplus X_{0}$. Also, let P_{-}, P_{0}, P_{+} denote the corresponding projection of \mathbb{R}^{d} onto X_{-}, X_{0}, X_{+}respectively.

3. Main Result

Theorem 3.1. If A is a continuous $d \times d$ real matrix on \mathbb{R}, then (1.1) has at least one Ψ-bounded solution on \mathbb{R} for every Lebesgue Ψ-integrable function $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$ on \mathbb{R} if and only if there exists a positive constant K such that

$$
\begin{gather*}
\left|\Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s)\right| \leq K \quad \text { for } t>0, s \leq 0 \\
\left|\Psi(t) Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s) \Psi^{-1}(s)\right| \leq K \quad \text { for } t>0, s>0, s<t \\
\left|\Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s)\right| \leq K \quad \text { for } t>0, s>0, s \geq t \\
\left|\Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s)\right| \leq K \quad \text { for } t \leq 0, s<t \tag{3.1}\\
\left|\Psi(t) Y(t)\left(P_{0}+P_{+}\right) Y^{-1}(s) \Psi^{-1}(s)\right| \leq K \quad \text { for } t \leq 0, s \geq t, s<0 \\
\left|\Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s)\right| \leq K \quad \text { for } t \leq 0, s \geq t, s \geq 0
\end{gather*}
$$

Proof. First, we prove the "only if" part. Thus, suppose that the system 1.1 has at least one Ψ-bounded solution on \mathbb{R} for every Lebesgue Ψ-integrable function f : $\mathbb{R} \rightarrow \mathbb{R}^{d}$ on \mathbb{R}.

We shall denote by C_{Ψ} the Banach space of all Ψ-bounded and continuous functions $x: \mathbb{R} \rightarrow \mathbb{R}^{d}$ with the norm $\|x\|_{C_{\Psi}}=\sup _{t \in \mathbb{R}}\|\Psi(t) x(t)\|$ and by B the Banach space of all Lebesgue Ψ-integrable functions $x: \mathbb{R} \rightarrow \mathbb{R}^{d}$ with the norm $\|x\|_{B}=\int_{-\infty}^{+\infty}\|\Psi(t) x(t)\| d t$.

We shall denote by D the set of all functions $x: \mathbb{R} \rightarrow \mathbb{R}^{d}$ which are absolutely continuous on all intervals $J \subset \mathbb{R}, \Psi$-bounded on $\mathbb{R}, x(0) \in X_{-} \oplus X_{+}$and $x^{\prime}-A x \in$ B.

Obviously, D is a vector space and $x \rightarrow\|x\|_{D}=\|x\|_{C_{\Psi}}+\left\|x^{\prime}-A x\right\|_{B}$ is a norm on D.

Step 1. $\left(D,\|\cdot\|_{D}\right)$ is a Banach space. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a fundamental sequence of elements of D. Then, it is a fundamental sequence in C_{Ψ}. Therefore, there exists a continuous and Ψ-bounded function $x: \mathbb{R} \rightarrow \mathbb{R}^{d}$ such that $\lim _{n \rightarrow \infty} \Psi(t) x_{n}(t)=$ $\Psi(t) x(t)$, uniformly on \mathbb{R}. From the inequality

$$
\left\|x_{n}(t)-x(t)\right\| \leq \mid \Psi^{-1}(t)\left\|\Psi(t) x_{n}(t)-\Psi(t) x(t)\right\|, \quad t \in \mathbb{R}
$$

it follows that $\lim _{n \rightarrow \infty} x_{n}(t)=x(t)$, uniformly on every compact of \mathbb{R}. Thus, $x(0) \in X_{-} \oplus X_{+}$.

On the other hand, the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$, where $f_{n}(t)=x_{n}^{\prime}(t)-A(t) x_{n}(t)$, is a fundamental sequence in the Banach space B. Thus, there exists $f \in B$ such that

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{+\infty}\left\|\Psi(t)\left(f_{n}(t)-f(t)\right)\right\| d t=0
$$

For a fixed, but arbitrary, $t \in \mathbb{R}$, we have

$$
\begin{aligned}
x(t)-x(0) & =\lim _{n \rightarrow \infty}\left(x_{n}(t)-x_{n}(0)\right) \\
& =\lim _{n \rightarrow \infty} \int_{0}^{t} x_{n}^{\prime}(s) d s \\
& =\lim _{n \rightarrow \infty} \int_{0}^{t}\left[\Psi^{-1}(s)\left(\Psi(s)\left(f_{n}(s)-f(s)\right)+f(s)+A(s) x_{n}(s)\right] d s\right. \\
& =\int_{0}^{t}(f(s)+A(s) x(s)) d s
\end{aligned}
$$

It follows that $x^{\prime}-A x=f \in B$ and x is absolutely continuous on all intervals $J \subset \mathbb{R}$. Thus, $x \in D$.

Now, from

$$
\lim _{n \rightarrow \infty} \Psi(t) x_{n}(t)=\Psi(t) x(t), \quad \text { uniformly on } \mathbb{R}
$$

and

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{+\infty}\left\|\Psi(t)\left[\left(x_{n}^{\prime}(t)-A(t) x_{n}(t)\right)-\left(x^{\prime}(t)-A(t) x(t)\right)\right]\right\| d t=0
$$

it follows that $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|_{D}=0$. Thus, $\left(D,\|\cdot\|_{D}\right)$ is a Banach space.
Step 2. There exists a positive constant K such that, for every $f \in B$ and for corresponding solution $x \in D$ of 1.1 , we have

$$
\begin{equation*}
\sup _{t \in \mathbb{R}}\|\Psi(t) x(t)\| \leq K \int_{-\infty}^{+\infty}\|\Psi(t) f(t)\| d t \tag{3.2}
\end{equation*}
$$

For this, define the mapping $T: D \rightarrow B, T x=x^{\prime}-A x$. This mapping is obviously linear and bounded, with $\|T\| \leq 1$.

Let $T x=0$. Then, $x^{\prime}=A x, x \in D$. This shows that x is a Ψ-bounded solution on \mathbb{R} of 2.1). Then, $x(0) \in X_{0} \cap\left(X_{-} \oplus X_{+}\right)=\{0\}$. Thus, $x=0$, such that the mapping T is "one-to-one".

Now, let $f \in B$ and let x be the Ψ-bounded solution on \mathbb{R} of the system 1.1) which exists by assumption. Let z be the solution of the Cauchy problem

$$
x^{\prime}=A(t) x+f(t), \quad z(0)=\left(P_{-}+P_{+}\right) x(0)
$$

Then $u=x-z$ is a solution of 2.1 with $u(0)=x(0)-\left(P_{-}+P_{+}\right) x(0)=P_{0} x(0)$. From the Definition of X_{0}, it follows that u is Ψ-bounded on \mathbb{R}. Thus, z is Ψ bounded on \mathbb{R}. Therefore, z belongs to D and $T z=f$. Consequently, the mapping T is "onto".

From a fundamental result of Banach: "If T is a bounded one-to-one linear operator of one Banach space onto another, then the inverse operator T^{-1} is also bounded", we have $\left\|T^{-1} f\right\|_{D} \leq\left\|T^{-1}\right\|\|f\|_{B}$, for all $f \in B$.

For a given $f \in B$, let $x=T^{-1} f$ be the corresponding solution $x \in D$ of (1.1). We have

$$
\|x\|_{D}=\|x\|_{C_{\Psi}}+\left\|x^{\prime}-\mathrm{Ax}\right\|_{B}=\|x\|_{C_{\Psi}}+\|f\|_{B} \leq\left\|T^{-1}\right\|\|f\|_{B}
$$

or

$$
\|x\|_{C_{\Psi}} \leq\left(\left\|T^{-1}\right\|-1\right)\|f\|_{B}=K\|f\|_{B}
$$

This inequality is equivalent to 3.2 .
Step 3. The end of the proof. Let $T_{1}<0<T_{2}$ be a fixed points but arbitrarily, and let $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$ a function in B which vanishes on $\left(-\infty, T_{1}\right] \cup\left[T_{2},+\infty\right)$. It is easy to see that the function $x: \mathbb{R} \rightarrow \mathbb{R}^{d}$ defined by

$$
x(t)= \begin{cases}-\int_{T_{1}}^{0} Y(t) P_{0} Y^{-1}(s) f(s) d s-\int_{T_{1}}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s, & t<T_{1} \\ \int_{T_{1}}^{t} Y(t) P_{-} Y^{-1}(s) f(s) d s+\int_{0}^{t} Y(t) P_{0} Y^{-1}(s) f(s) d s & \\ -\int_{t}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s & T_{1} \leq t \leq T_{2} \\ \int_{T_{1}}^{T_{2}} Y(t) P_{-} Y^{-1}(s) f(s) d s+\int_{0}^{T_{2}} Y(t) P_{0} Y^{-1}(s) f(s) d s, & t>T_{2}\end{cases}
$$

is the solution in D of the system (1.1). Now, we put

$$
G(t, s)= \begin{cases}Y(t) P_{-} Y^{-1}(s), & s \leq 0<t \\ Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s), & 0<s<t \\ -Y(t) P_{+} Y^{-1}(s), & 0<t \leq s \\ Y(t) P_{-} Y^{-1}(s), & s<t \leq 0 \\ -Y(t)\left(P_{0}+P_{+}\right) Y^{-1}(s), & t \leq s<0 \\ -Y(t) P_{+} Y^{-1}(s), & t \leq 0 \leq s\end{cases}
$$

This function is continuous on \mathbb{R}^{2} except on the line $t=s$, where it has a jump discontinuity. Then, we have that $x(t)=\int_{T_{1}}^{T_{2}} G(t, s) f(s) d s, t \in \mathbb{R}$. Indeed,

- for $t<T_{1}$, we have

$$
\begin{aligned}
& \int_{T_{1}}^{T_{2}} G(t, s) f(s) d s \\
& =-\int_{T_{1}}^{0} Y(t)\left(P_{0}+P_{+}\right) Y^{-1}(s) f(s) d s-\int_{0}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s \\
& =-\int_{T_{1}}^{0} Y(t) P_{0} Y^{-1}(s) f(s) d s-\int_{T_{1}}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s \\
& =x(t)
\end{aligned}
$$

- for $t \in\left[T_{1}, 0\right]$, we have

$$
\begin{aligned}
\int_{T_{1}}^{T_{2}} G(t, s) f(s) d s= & \int_{T_{1}}^{t} Y(t) P_{-} Y^{-1}(s) f(s) d s-\int_{t}^{0} Y(t)\left(P_{0}+P_{+}\right) Y^{-1}(s) f(s) d s \\
& -\int_{0}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s \\
= & \int_{T_{1}}^{t} Y(t) P_{-} Y^{-1}(s) f(s) d s+\int_{0}^{t} Y(t) P_{0} Y^{-1}(s) f(s) d s \\
& -\int_{t}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s \\
= & x(t)
\end{aligned}
$$

- for $t \in\left(0, T_{2}\right]$, we have

$$
\begin{aligned}
\int_{T_{1}}^{T_{2}} G(t, s) f(s) d s= & \int_{T_{1}}^{0} Y(t) P_{-} Y^{-1}(s) f(s) d s+\int_{0}^{t} Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s) f(s) d s \\
& -\int_{t}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s \\
= & \int_{T_{1}}^{t} Y(t) P_{-} Y^{-1}(s) f(s) d s+\int_{0}^{t} Y(t) P_{0} Y^{-1}(s) f(s) d s \\
& -\int_{t}^{T_{2}} Y(t) P_{+} Y^{-1}(s) f(s) d s \\
= & x(t)
\end{aligned}
$$

- for $t>T_{2}$, we have

$$
\begin{aligned}
\int_{T_{1}}^{T_{2}} G(t, s) f(s) d s & =\int_{T_{1}}^{0} Y(t) P_{-} Y^{-1}(s) f(s) d s+\int_{0}^{T_{2}} Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s) f(s) d s \\
& =\int_{T_{1}}^{T_{2}} Y(t) P_{-} Y^{-1}(s) f(s) d s+\int_{0}^{T_{2}} Y(t) P_{0} Y^{-1}(s) f(s) d s \\
& =x(t)
\end{aligned}
$$

Now, the inequality 3.2 becomes

$$
\sup _{t \in \mathbb{R}}\left\|\Psi(t) \int_{T_{1}}^{T_{2}} G(t, s) f(s) d s\right\| \leq K \int_{T_{1}}^{T_{2}}\|\Psi(\mathrm{t}) \mathrm{f}(\mathrm{t})\| d t
$$

For a fixed points $s \in \mathbb{R}, \delta>0$ and $\xi \in \mathbb{R}^{d}$, but arbitrarily, let f the function defined by

$$
f(t)= \begin{cases}\Psi^{-1}(t) \xi, & \text { for } s \leq t \leq s+\delta \\ 0, & \text { elsewhere }\end{cases}
$$

Clearly, $f \in B,\|f\|_{B}=\delta\|\xi\|$. The above inequality becomes

$$
\left\|\int_{s}^{s+\delta} \Psi(t) G(t, u) \Psi^{-1}(u) \xi d u\right\| \leq K \delta\|\xi\|, \quad \text { for all } \mathrm{t} \in \mathbb{R}
$$

Dividing by δ and letting $\delta \rightarrow 0$, we obtain for any $t \neq s$,

$$
\left\|\Psi(t) G(t, s) \Psi^{-1}(s) \xi\right\| \leq K\|\xi\|, \quad \text { for all } t \in \mathbb{R}, \xi \in \mathbb{R}^{d}
$$

Hence, $\left|\Psi(t) G(t, s) \Psi^{-1}(s)\right| \leq K$, which is equivalent to 3.1. By continuity, 3.1. remains valid also in the excepted case $t=s$.

Now, we prove the "if" part. Suppose that the fundamental matrix Y of 2.1) satisfies the condition (3.1) for some $K>0$. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$ be a Lebesgue Ψ-integrable function on \mathbb{R}. We consider the function $u: \mathbb{R} \rightarrow \mathbb{R}^{d}$ defined by

$$
\begin{align*}
u(t)= & \int_{-\infty}^{t} Y(t) P_{-} Y^{-1}(s) f(s) d s+\int_{0}^{t} Y(t) P_{0} Y^{-1}(s) f(s) d s \\
& -\int_{t}^{\infty} Y(t) P_{+} Y^{-1}(s) f(s) d s \tag{3.3}
\end{align*}
$$

Step 4. The function u is well-defined on \mathbb{R}. Indeed, for $v<t \leq 0$, we have

$$
\begin{aligned}
\int_{v}^{t}\left\|Y(t) P_{-} Y^{-1}(s) f(s)\right\| d s & =\int_{v}^{t}\left\|\Psi^{-1}(t) \Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s)\right\| d s \\
& \leq\left|\Psi^{-1}(t)\right| \int_{v}^{t}\left|\Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s)\right|\|\Psi(s) f(s)\| d s \\
& \leq K\left|\Psi^{-1}(t)\right| \int_{v}^{t}\|\Psi(s) f(s)\| d s
\end{aligned}
$$

which shows that the integral $\int_{-\infty}^{t} Y(t) P_{-} Y^{-1}(s) f(s) d s$ is absolutely convergent. For $t>0$, we have the same result.

Similarly, the integral $\int_{t}^{\infty} Y(t) P_{+} Y^{-1}(s) f(s) d s$ is absolutely convergent. Thus, the function u is well-defined and is an absolutely continuous function on all intervals $J \subset \mathbb{R}$.

Step 5. The function u is a solution of (1.1). Indeed, for almost all $t \in \mathbb{R}$, we have

$$
\begin{aligned}
u^{\prime}(t)= & \int_{-\infty}^{t} A(t) Y(t) P_{-} Y^{-1}(s) f(s) d s+Y(t) P_{-} Y^{-1}(t) f(t) \\
& +\int_{0}^{t} A(t) Y(t) P_{0} Y^{-1}(s) f(s) d s+Y(t) P_{0} Y^{-1}(t) f(t) \\
& -\int_{t}^{\infty} A(t) Y(t) P_{+} Y^{-1}(s) f(s) d s+Y(t) P_{+} Y^{-1}(t) f(t) \\
= & A(t) u(t)+Y(t)\left(P_{-}+P_{0}+P_{+}\right) Y^{-1}(t) f(t)=A(t) u(t)+f(t)
\end{aligned}
$$

This shows that the function u is a solution of 1.1).
Step 6. The solution u is Ψ-bounded on \mathbb{R}. Indeed, for $t<0$, we have

$$
\begin{aligned}
\Psi(t) u(t)= & \int_{-\infty}^{t} \Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& +\int_{0}^{t} \Psi(t) Y(t) P_{0} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& -\int_{t}^{\infty} \Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
= & \int_{-\infty}^{t} \Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& -\int_{t}^{0} \Psi(t) Y(t)\left(P_{0}+P_{+}\right) Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s
\end{aligned}
$$

$$
-\int_{0}^{\infty} \Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s
$$

Then

$$
\|\Psi(t) u(t)\| \leq K \cdot \int_{-\infty}^{\infty}\|\Psi(s) f(s)\| d s
$$

For $t \geq 0$, we have

$$
\begin{aligned}
\Psi(t) u(t)= & \int_{-\infty}^{t} \Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& +\int_{0}^{t} \Psi(t) Y(t) P_{0} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& -\int_{t}^{\infty} \Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
= & \int_{-\infty}^{0} \Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& +\int_{0}^{t} \Psi(t) Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& -\int_{t}^{\infty} \Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s
\end{aligned}
$$

Then

$$
\|\Psi(t) u(t)\| \leq K \cdot \int_{-\infty}^{\infty}\|\Psi(s) f(s)\| d s
$$

Hence,

$$
\sup _{t \in \mathbb{R}}\|\Psi(t) u(t)\| \leq K \cdot \int_{-\infty}^{\infty}\|\Psi(s) f(s)\| d s
$$

which shows that the solution u is Ψ-bounded on \mathbb{R}. The proof is now complete.
In a particular case, we have the following result.
Theorem 3.2. If the homogeneous equation (2.1) has no nontrivial Ψ-bounded solution on \mathbb{R}, then the (1.1) has a unique Ψ-bounded solution on \mathbb{R} for every Lebesgue Ψ-integrable function $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$ on \mathbb{R} if and only if there exists a positive constant K such that

$$
\begin{array}{ll}
\left|\Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s)\right| \leq K & \text { for }-\infty<s<t<+\infty \\
\left|\Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s)\right| \leq K & \text { for }-\infty<t \leq s<+\infty \tag{3.4}
\end{array}
$$

In this case, $P_{0}=0$ and the proof is as above.
Next, we prove a theorem in which we will see that the asymptotic behavior of solutions to (1.1) is determined completely by the asymptotic behavior of the fundamental matrix Y.

Theorem 3.3. Suppose that:
(1) the fundamental matrix $Y(t)$ of (2.1) satisfies:
(a) condition (3.1) is satisfied for some $K>0$;
(b) the following conditions are satisfied:
(i) $\lim _{t \rightarrow \pm \infty}\left|\Psi(t) Y(t) P_{0}\right|=0$;
(ii) $\lim _{t \rightarrow-\infty}\left|\Psi(t) Y(t) P_{+}\right|=0$;
(iii) $\lim _{t \rightarrow+\infty}\left|\Psi(t) Y(t) P_{-}\right|=0$;
(2) the function $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$ is Lebesgue Ψ-integrable on \mathbb{R}.

Then, every Ψ-bounded solution x of (1.1) is such that

$$
\lim _{t \rightarrow \pm \infty}\|\Psi(t) x(t)\|=0
$$

Proof. By Theorem 3.1, for every Lebesgue Ψ-integrable function $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$, the equation (1.1) has at least one Ψ-bounded solution on \mathbb{R}.

Let x be a Ψ-bounded solution on \mathbb{R} of 1.1 . Let u be defined by (3.3). The function u is a Ψ-bounded solution on \mathbb{R} of (1.1).

Now, let the function $y(t)=x(t)-u(t)-Y(t) P_{0}(x(0)-u(0)), t \in \mathbb{R}$. Obviously, y is a solution on \mathbb{R} of 2.1). Because $\Psi(t) Y(t) P_{0}$ is bounded on \mathbb{R}, y is Ψ-bounded on \mathbb{R}. Thus, $y(0) \in X_{0}$. On the other hand,

$$
\begin{aligned}
y(0) & =x(0)-u(0)-Y(0) P_{0}(x(0)-u(0)) \\
& =\left(P_{-}+P_{+}\right)(x(0)-u(0)) \in X_{-} \oplus X_{+}
\end{aligned}
$$

Therefore, $y(0) \in X_{0} \cap\left(X_{-} \oplus X_{+}\right)=\{0\}$ and then, $y=0$. It follows that

$$
x(t)=Y(t) P_{0}(x(0)-u(0))+u(t), t \in \mathbb{R}
$$

Now, we prove that $\lim _{t \rightarrow \pm \infty}\|\Psi(t) u(t)\|=0$. For $t \geq 0$, we write again

$$
\begin{aligned}
\Psi(t) u(t)= & \int_{-\infty}^{0} \Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& +\int_{0}^{t} \Psi(t) Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& -\int_{t}^{\infty} \Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s
\end{aligned}
$$

Let $\varepsilon>0$. From the hypotheses: There exists $t_{0}<0$ such that

$$
\int_{-\infty}^{t_{0}}\|\Psi(s) f(s)\| d s<\frac{\varepsilon}{5 K}
$$

there exists $t_{1}>0$ such that, for all $t \geq t_{1}$,

$$
\left|\Psi(t) Y(t) P_{-}\right|<\frac{\varepsilon}{5}\left(1+\int_{t_{0}}^{0}\left\|Y^{-1}(s) f(s)\right\| d s\right)^{-1}
$$

there exists $t_{2}>t_{1}$ such that, for all $t \geq t_{2}$,

$$
\int_{t}^{\infty}\|\Psi(s) f(s)\| d s<\frac{\varepsilon}{5 K}
$$

there exists $t_{3}>t_{2}$ such that, for all $t \geq t_{3}$,

$$
\left|\Psi(t) Y(t)\left(P_{0}+P_{-}\right)\right|<\frac{\varepsilon}{5}\left(1+\int_{0}^{t_{2}}\left\|Y^{-1}(s) f(s)\right\| d s\right)^{-1}
$$

Then, for $t \geq t_{3}$, we have

$$
\begin{aligned}
&\|\Psi(t) u(t)\| \\
& \leq \int_{-\infty}^{t_{0}}\left|\Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s)\right|\|\Psi(s) f(s)\| d s \\
&+\int_{t_{0}}^{0}\left|\Psi(t) Y(t) P_{-}\right|\left\|Y^{-1}(s) f(s)\right\| d s+\int_{0}^{t_{2}} \mid \Psi(t) Y(t)\left(P_{0}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+P_{-}\right)\left|\left\|Y^{-1}(s) f(s)\right\| d s+\int_{t_{2}}^{t}\right| \Psi(t) Y(t)\left(P_{0}+P_{-}\right) Y^{-1}(s) \Psi^{-1}(s)\|\Psi(s) f(s)\| d s \\
& +\int_{t}^{\infty}\left|\Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s)\right|\|\Psi(s) f(s)\| d s \\
< & K \int_{-\infty}^{t_{0}}\|\Psi(s) f(s)\| d s+\frac{\varepsilon}{5\left(1+\int_{t_{0}}^{0}\left\|Y^{-1}(s) f(s)\right\| d s\right)} \int_{t_{0}}^{0}\left\|Y^{-1}(s) f(s)\right\| d s \\
& +\frac{\varepsilon}{5\left(1+\int_{0}^{t_{2}}\left\|Y^{-1}(s) f(s)\right\| d s\right)} \int_{0}^{t_{2}}\left\|Y^{-1}(s) f(s)\right\| d s \\
& +K \int_{t_{2}}^{t}\|\Psi(s) f(s)\| d s+K \int_{t}^{\infty}\|\Psi(s) f(s)\| d s \\
< & K \frac{\varepsilon}{5 K}+\frac{\varepsilon}{5}+\frac{\varepsilon}{5}+K\left(\int_{t_{2}}^{t}\|\Psi(s) f(s)\| d s+\int_{t}^{\infty}\|\Psi(s) f(s)\| d s\right) \\
< & \frac{3 \varepsilon}{5}+K \frac{\varepsilon}{5 K}<\varepsilon .
\end{aligned}
$$

This shows that $\lim _{t \rightarrow+\infty}\|\Psi(t) u(t)\|=0$.
For $t<0$, we write again

$$
\begin{aligned}
\Psi(t) u(t)= & \int_{-\infty}^{t} \Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& -\int_{t}^{0} \Psi(t) Y(t)\left(P_{0}+P_{+}\right) Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s \\
& -\int_{0}^{\infty} \Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s) \Psi(s) f(s) d s
\end{aligned}
$$

Let $\varepsilon>0$. From the hypotheses, we have: There exists $t^{0}>0$ such that

$$
\int_{t^{0}}^{+\infty}\|\Psi(s) f(s)\| d s<\frac{\varepsilon}{5 K}
$$

there exists $t_{4}<0$ such that, for all $t<t_{4}$,

$$
\left|\Psi(t) Y(t) P_{+}\right|<\frac{\varepsilon}{5}\left(1+\int_{0}^{t^{0}}\left\|Y^{-1}(s) f(s)\right\| d s\right)^{-1}
$$

there exists $t_{5}<t_{4}$ such that, for all $\mathrm{t} \leq t_{5}$,

$$
\int_{-\infty}^{t}\|\Psi(s) f(s)\| d s<\frac{\varepsilon}{5 K}
$$

there exists $t_{6}<t_{5}$ such that, for all $t \leq t_{6}$,

$$
\left|\Psi(t) Y(t)\left(P_{0}+P_{+}\right)\right|<\frac{\varepsilon}{5}\left(1+\int_{t_{5}}^{0}\left\|Y^{-1}(s) f(s)\right\| d s\right)^{-1}
$$

Then, for $t \leq t_{6}$, we have

$$
\begin{aligned}
&\|\Psi(t) u(t)\| \\
& \leq \int_{-\infty}^{t}\left|\Psi(t) Y(t) P_{-} Y^{-1}(s) \Psi^{-1}(s)\right|\|\Psi(s) f(s)\| d s \\
&+\int_{t}^{t_{5}}\left|\Psi(t) Y(t)\left(P_{0}+P_{+}\right) Y^{-1}(s) \Psi^{-1}(s)\right|\|\Psi(s) f(s)\| d s
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{t_{5}}^{0}\left|\Psi(t) Y(t)\left(P_{0}+P_{+}\right)\right|\left\|Y^{-1}(s) f(s)\right\| d s+\int_{0}^{t^{0}}\left|\Psi(t) Y(t) P_{+}\right|\left\|Y^{-1}(s) f(s)\right\| d s \\
& +\int_{t^{0}}^{+\infty}\left|\Psi(t) Y(t) P_{+} Y^{-1}(s) \Psi^{-1}(s)\right|\|\Psi(s) f(s)\| d s \\
< & K \int_{-\infty}^{t}\|\Psi(s) f(s)\| d s+K \int_{t}^{t_{5}}\|\Psi(s) f(s)\| d s \\
& +\frac{\varepsilon}{5\left(1+\int_{t_{5}}^{0}\left\|Y^{-1}(s) f(s)\right\| d s\right)} \int_{t_{5}}^{0}\left\|Y^{-1}(s) f(s)\right\| d s \\
& +\frac{\varepsilon}{5\left(1+\int_{0}^{t^{0}}\left\|Y^{-1}(s) f(s)\right\| d s\right)} \int_{0}^{t^{0}}\left\|Y^{-1}(s) f(s)\right\| d s+K \int_{t^{0}}^{+\infty}\|\Psi(s) f(s)\| d s \\
< & K\left(\int_{-\infty}^{t}\|\Psi(s) f(s)\| d s+\int_{t}^{t_{5}}\|\Psi(s) f(s)\| d s\right)+\frac{\varepsilon}{5}+\frac{\varepsilon}{5}+K \frac{\varepsilon}{5 K} \\
< & K \frac{\varepsilon}{5 K}+\frac{3 \varepsilon}{5}<\varepsilon .
\end{aligned}
$$

This shows that $\lim _{t \rightarrow-\infty}\|\Psi(t) u(t)\|=0$.
Now, it is easy to see that $\lim _{t \rightarrow \pm \infty}\|\Psi(t) x(t)\|=0$. The proof is now complete.

The next result follows from Theorems 3.2 and 3.3 ,

Corollary 3.4. Suppose that

(1) the homogeneous equation (2.1) has no nontrivial Ψ-bounded solution on \mathbb{R};
(2) the fundamental matrix $Y(t)$ of (2.1) satisfies:
(i) the condition (3.4) for some $K>0$.
(ii) $\lim _{t \rightarrow-\infty}\left|\Psi(t) Y(t) P_{+}\right|=0$;
(iii) $\lim _{t \rightarrow+\infty}\left|\Psi(t) Y(t) P_{-}\right|=0$;
(3) the function $f: \mathbb{R} \rightarrow \mathbb{R}^{d}$ is Lebesgue Ψ-integrable on \mathbb{R}.

Then (1.1) has a unique solution x on \mathbb{R} such that

$$
\lim _{t \rightarrow \pm \infty}\|\Psi(t) x(t)\|=0
$$

Note that Theorem 3.3 is no longer true if we require that the function f be Ψ-bounded on \mathbb{R} (more, even $\lim _{t \rightarrow \pm \infty}\|\Psi(t) f(t)\|=0$), instead of the condition (2) in the above the Theorem. This is shown next.

Example. Consider (1.1) with $A(t)=O_{2}$ and $f(t)=(\sqrt{1+|t|}, 1)^{T}$. Then, $Y(t)=$ I_{2} is a fundamental matrix for (2.1). Consider

$$
\Psi(t)=\left(\begin{array}{cc}
\frac{1}{1+|t|} & 0 \\
0 & \frac{1}{(1+|t|)^{2}}
\end{array}\right)
$$

The solutions of 2.1 are $y(t)=\left(c_{1}, c_{2}\right)^{T}$, where $c_{1}, c_{2} \in \mathbb{R}$. Then

$$
\Psi(t) y(t)=\left(\frac{c_{1}}{1+|t|}, \frac{c_{2}}{(1+|t|)^{2}}\right)^{T}
$$

Therefore, $P_{-}=O_{2}, P_{+}=O_{2}$ and $P_{0}=I_{2}$. The conditions 3.1 are satisfied with $K=1$. In addition, the hypothesis (1b) of Theorem 3.3 is satisfied. Because

$$
\Psi(t) f(t)=\left(\frac{1}{\sqrt{1+|t|}}, \frac{1}{(1+|t|)^{2}}\right)^{T}
$$

the function f is not Lebesgue Ψ-integrable on \mathbb{R}, but it is Ψ-bounded on \mathbb{R}, with $\lim _{t \rightarrow \pm \infty}\|\Psi(t) f(t)\|=0$. The solutions of the system 1.1) are $x(t)=(F(t)+$ $\left.c_{1}, t+c_{2}\right)^{T}$, where

$$
F(t)= \begin{cases}-\frac{2}{3}(1-t)^{3 / 2}+\frac{4}{3}, & t<0 \\ \frac{2}{3}(1+t)^{3 / 2}, & t \geq 0\end{cases}
$$

It is easy to see that $\lim _{t \rightarrow \pm \infty}\|\Psi(t) x(t)\|=+\infty$, for all $c_{1}, c_{2} \in \mathbb{R}$. It follows that the all solutions of the system $\sqrt{1.1}$ are Ψ-unbounded on \mathbb{R}.

Remark. If in the above example, $f(t)=\left(\frac{1}{1+|t|}, 0\right)^{T}$, then $\int_{-\infty}^{+\infty}\|\Psi(t) f(t)\| d t=2$. On the other hand, the solutions of 1.1 are $x(t)=\left(u(t)+c_{1}, c_{2}\right)^{T}$, where

$$
u(t)= \begin{cases}-\ln (1-t), & t<0 \\ \ln (1+t), & t \geq 0\end{cases}
$$

We observe that the asymptotic properties of the components of the solutions are not the same: The first component is unbounded and the second is bounded on \mathbb{R}. However, all solutions of 1.1) are Ψ-bounded on \mathbb{R} and $\lim _{t \rightarrow \pm \infty}\|\Psi(t) x(t)\|=0$. This shows that the asymptotic properties of the components of the solutions are the same, via the matrix function Ψ. This is obtained by using a matrix function Ψ rather than a scalar function.

References

[1] Akinyele, O.; On partial stability and boundedness of degree k, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), 65(1978), 259-264.
[2] Boi, P. N.; Existence of Ψ-bounded solutions on R for nonhomogeneous linear differential equations, Electron. J. Diff. Eqns., vol. 2007 (2007), No. 52. pp. 1-10.
[3] Constantin, A.; Asymptotic Properties of Solutions of Differential Equations, Analele Universităţii din Timişoara, Vol. XXX, fasc. 2-3, 1992, Seria Ştiinţe Matematice, 183-225.
[4] Coppel, W. A; Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965.
[5] Diamandescu, A.; Existence of Ψ-bounded solutions for a system of differential equations, Electron. J. Diff. Eqns., Vol. 2004(2004), No. 63, pp. 1-6,
[6] Diamandescu, A.; Note on the Ψ-boundedness of the solutions of a system of differential equations, Acta. Math. Univ. Comenianae, Vol. LXXIII, 2(2004), pp. 223-233
[7] Diamandescu, A.; A Note on the Ψ-boundedness for differential systems, Bull. Math. Soc. Sc. Math. Roumanie, Tome 48(96), No. 1, 2005, pp. 33-43.
[8] Diamandescu, A.; A note on the existence of Ψ-bounded solutions for a system of differential equations on \mathbb{R}, Electron. J. Diff. Eqns., Vol. 2008(2008), No. 128, pp. 1-11.
[9] Hallam, T. G.; On asymptotic equivalence of the bounded solutions of two systems of differential equations, Mich. math. Journal, Vol. 16(1969), 353-363.
[10] Han, Y., Hong, J.; Existence of Ψ-bounded solutions for linear difference equations, Applied mathematics Letters 20 (2007) 301-305.
[11] Morchalo, J.; On $\left(\Psi-L_{p}\right)$-stability of nonlinear systems of differential equations, Analele Universităţii "Al. I. Cuza", Iaşi, XXXVI, I, Matematică, (1990), 4, 353-360.

Aurel Diamandescu
University of Craiova, Department of Applied Mathematics, 13, "Al. I. Cuza" st., 200585
Craiova, Romania
E-mail address: adiamandescu@central.ucv.ro

[^0]: 2000 Mathematics Subject Classification. 34D05, 34C11.
 $K e y ~ w o r d s ~ a n d ~ p h r a s e s . ~ \Psi-b o u n d e d ; ~ \Psi-i n t e g r a b l e . ~$
 (C) 2009 Texas State University - San Marcos.

 Submitted October 9, 2008. Published January 6, 2009.

