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Ψ-BOUNDED SOLUTIONS FOR LINEAR DIFFERENTIAL
SYSTEMS WITH LEBESGUE Ψ-INTEGRABLE FUNCTIONS ON

R AS RIGHT-HAND SIDES

AUREL DIAMANDESCU

Abstract. In this paper we give a characterization for the existence of Ψ-

bounded solutions on R for the system x′ = A(t)x + f(t), assuming that f

is a Lebesgue Ψ-integrable function on R. In addition, we give a result in
connection with the asymptotic behavior of the Ψ-bounded solutions of this

system.

1. Introduction

This work is concerned with linear differential system

x′ = A(t)x + f(t) (1.1)

where x(t), f(t) are in Rd and A is a continuous d× d matrix-valued function. The
basic problem under consideration is the determination of necessary and sufficient
conditions for the existence of a solution with some specified boundedness condition.
A clasic result in this type of problems is given by Coppel [4, Theorem 2, Chapter
V].

The problem of Ψ-boundedness of the solutions for systems of ordinary differen-
tial equations has been studied in many papers, [1, 2, 3, 5, 6, 7, 8, 9, 10, 11]. In
[5, 6, 7], the author proposes the novel concept of Ψ-boundedness of solutions, Ψ
being a continuous matrix-valued function, allows a better identification of various
types of asymptotic behavior of the solutions on R+.

Similarly, we can consider solutions of (1.1) which are Ψ-bounded not only R+

but on R. In this case, the conditions for the existence of at least one Ψ-bounded
solution are rather complicated, as shown in [8] and below. In [8], it is given a
necessary and sufficient condition so that the system (1.1) has at least one Ψ-
bounded solution on R for every continuous and Ψ-bounded function f on R.

The aim of present paper is to give a necessary and sufficient condition so that
the nonhomogeneous system of ordinary differential equations (1.1) has at least
one Ψ-bounded solution on R for every Lebesgue Ψ-integrable function f on R.
The introduction of the matrix function Ψ permits to obtain a mixed asymptotic
behavior of the components of the solutions. Here, Ψ is a continuous matrix-valued
function on R.
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2. Definitions, Notations and hypotheses

Let Rd be the Euclidean d-space. For x = (x1, x2, x3, . . . , xd)T ∈ Rd, let ‖x‖ =
max{|x1|, |x2|, |x3|, . . . , |xd|} be the norm of x. For a d × d real matrix A = (aij),
we define the norm |A| = sup‖x‖≤1 ‖Ax‖. It is well-known that

|A| = max
1≤i≤d

{
d∑

j=1

|aij |}.

Let Ψi : R → (0,∞), i = 1, 2, . . . d, be continuous functions and

Ψ = diag[Ψ1,Ψ2, . . . Ψd].

Definition. A function ϕ : R → Rd is said to be Ψ-bounded on R if Ψϕ is
bounded on R.

Definition. A function ϕ : R → Rd is said to be Lebesgue Ψ-integrable on R if
ϕ is measurable and Ψϕ is Lebesgue integrable on R.

By a solution of (1.1), we mean an absolutely continuous function satisfying
(1.1) for almost all t ∈ R.

Let A be a continuous d× d real matrix and let the associated linear differential
system be

y′ = A(t)y. (2.1)

Let Y be the fundamental matrix of (2.1) for which Y (0) = Id (identity d × d
matrix).

Let the vector space Rd be represented as a direct sum of three subspaces X−,
X0, X+ such that a solution y(t) of (2.1) is Ψ-bounded on R if and only if y(0) ∈ X0

and Ψ-bounded on R+ = [0,∞) if and only if y(0) ∈ X−⊕X0. Also, let P−, P0, P+

denote the corresponding projection of Rd onto X−, X0, X+ respectively.

3. Main result

Theorem 3.1. If A is a continuous d× d real matrix on R, then (1.1) has at least
one Ψ-bounded solution on R for every Lebesgue Ψ-integrable function f : R → Rd

on R if and only if there exists a positive constant K such that

|Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)| ≤ K for t > 0, s ≤ 0

|Ψ(t)Y (t)(P0 + P−)Y −1(s)Ψ−1(s)| ≤ K for t > 0, s > 0, s < t

|Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)| ≤ K for t > 0, s > 0, s ≥ t

|Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)| ≤ K for t ≤ 0, s < t

|Ψ(t)Y (t)(P0 + P+)Y −1(s)Ψ−1(s)| ≤ K for t ≤ 0, s ≥ t, s < 0

|Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)| ≤ K for t ≤ 0, s ≥ t, s ≥ 0

(3.1)

Proof. First, we prove the “only if” part. Thus, suppose that the system (1.1) has
at least one Ψ-bounded solution on R for every Lebesgue Ψ-integrable function f :
R → Rd on R.

We shall denote by CΨ the Banach space of all Ψ-bounded and continuous func-
tions x : R → Rd with the norm ‖x‖CΨ = supt∈R ‖Ψ(t)x(t)‖ and by B the Ba-
nach space of all Lebesgue Ψ-integrable functions x : R → Rd with the norm
‖x‖B =

∫ +∞
−∞ ‖Ψ(t)x(t)‖dt.
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We shall denote by D the set of all functions x : R → Rd which are absolutely
continuous on all intervals J ⊂ R, Ψ-bounded on R, x(0) ∈ X ⊕X+ and x′−Ax ∈
B.

Obviously, D is a vector space and x → ‖x‖D = ‖x‖CΨ + ‖x′ −Ax‖B is a norm
on D.

Step 1. (D, ‖ · ‖D) is a Banach space. Let (xn)n∈N be a fundamental sequence
of elements of D. Then, it is a fundamental sequence in CΨ. Therefore, there exists
a continuous and Ψ-bounded function x : R → Rd such that limn→∞Ψ(t)xn(t) =
Ψ(t)x(t), uniformly on R. From the inequality

‖xn(t)− x(t)‖ ≤ |Ψ−1(t)|‖Ψ(t)xn(t)−Ψ(t)x(t)‖, t ∈ R,

it follows that limn→∞ xn(t) = x(t), uniformly on every compact of R. Thus,
x(0) ∈ X− ⊕X+.

On the other hand, the sequence (fn)n∈N, where fn(t) = x′n(t)−A(t)xn(t), is a
fundamental sequence in the Banach space B. Thus, there exists f ∈ B such that

lim
n→∞

∫ +∞

−∞
‖Ψ(t)(fn(t)− f(t))‖dt = 0.

For a fixed, but arbitrary, t ∈ R, we have

x(t)− x(0) = lim
n→∞

(
xn(t)− xn(0)

)
= lim

n→∞

∫ t

0

x′n(s)ds

= lim
n→∞

∫ t

0

[Ψ−1(s)(Ψ(s)(fn(s)− f(s)) + f(s) + A(s)xn(s)]ds

=
∫ t

0

(
f(s) + A(s)x(s)

)
ds.

It follows that x′ − Ax = f ∈ B and x is absolutely continuous on all intervals
J ⊂ R. Thus, x ∈ D.

Now, from
lim

n→∞
Ψ(t)xn(t) = Ψ(t)x(t), uniformly on R

and

lim
n→∞

∫ +∞

−∞
‖Ψ(t)[(x′n(t)−A(t)xn(t))− (x′(t)−A(t)x(t))]‖dt = 0,

it follows that limn→∞ ‖xn − x‖D = 0. Thus, (D, ‖ · ‖D) is a Banach space.
Step 2. There exists a positive constant K such that, for every f ∈ B and for

corresponding solution x ∈ D of (1.1), we have

sup
t∈R

‖Ψ(t)x(t)‖ ≤ K

∫ +∞

−∞
‖Ψ(t)f(t)‖dt, (3.2)

For this, define the mapping T : D → B, Tx = x′−Ax. This mapping is obviously
linear and bounded, with ‖T‖ ≤ 1.

Let Tx = 0. Then, x′ = Ax, x ∈ D. This shows that x is a Ψ-bounded solution
on R of (2.1). Then, x(0) ∈ X0 ∩

(
X− ⊕X+

)
= {0}. Thus, x = 0, such that the

mapping T is “one-to-one” .
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Now, let f ∈ B and let x be the Ψ-bounded solution on R of the system (1.1)
which exists by assumption. Let z be the solution of the Cauchy problem

x′ = A(t)x + f(t), z(0) = (P− + P+)x(0).

Then u = x− z is a solution of (2.1) with u(0) = x(0)− (P− + P+)x(0) = P0x(0).
From the Definition of X0, it follows that u is Ψ-bounded on R. Thus, z is Ψ-
bounded on R. Therefore, z belongs to D and Tz = f . Consequently, the mapping
T is “onto” .

From a fundamental result of Banach: “If T is a bounded one-to-one linear
operator of one Banach space onto another, then the inverse operator T−1 is also
bounded” , we have ‖T−1f‖D ≤ ‖T−1‖‖f‖B , for all f ∈ B.

For a given f ∈ B, let x = T−1f be the corresponding solution x ∈ D of (1.1).
We have

‖x‖D = ‖x‖CΨ + ‖x′ − Ax‖B = ‖x‖CΨ + ‖f‖B ≤ ‖T−1‖‖f‖B

or
‖x‖CΨ ≤

(
‖T−1‖ − 1

)
‖f‖B = K‖f‖B .

This inequality is equivalent to (3.2).
Step 3. The end of the proof. Let T1 < 0 < T2 be a fixed points but arbitrarily,

and let f : R → Rd a function in B which vanishes on (−∞, T1] ∪ [T2,+∞). It is
easy to see that the function x : R → Rd defined by

x(t) =


−
∫ 0

T1
Y (t)P0Y

−1(s)f(s)ds−
∫ T2

T1
Y (t)P+Y −1(s)f(s)ds, t < T1∫ t

T1
Y (t)P−Y −1(s)f(s)ds +

∫ t

0
Y (t)P0Y

−1(s)f(s)ds

−
∫ T2

t
Y (t)P+Y −1(s)f(s)ds, T1 ≤ t ≤ T2∫ T2

T1
Y (t)P−Y −1(s)f(s)ds +

∫ T2

0
Y (t)P0Y

−1(s)f(s)ds, t > T2

is the solution in D of the system (1.1). Now, we put

G(t, s) =



Y (t)P−Y −1(s), s ≤ 0 < t,

Y (t)(P0 + P−)Y −1(s), 0 < s < t,

−Y (t)P+Y −1(s), 0 < t ≤ s,

Y (t)P−Y −1(s), s < t ≤ 0,

−Y (t)(P0 + P+)Y −1(s), t ≤ s < 0,

−Y (t)P+Y −1(s), t ≤ 0 ≤ s .

This function is continuous on R2 except on the line t = s, where it has a jump
discontinuity. Then, we have that x(t) =

∫ T2

T1
G(t, s)f(s)ds, t ∈ R. Indeed,

• for t < T1, we have∫ T2

T1

G(t, s)f(s)ds

= −
∫ 0

T1

Y (t)(P0 + P+)Y −1(s)f(s)ds−
∫ T2

0

Y (t)P+Y −1(s)f(s)ds

= −
∫ 0

T1

Y (t)P0Y
−1(s)f(s)ds−

∫ T2

T1

Y (t)P+Y −1(s)f(s)ds

= x(t)
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• for t ∈ [T1, 0], we have∫ T2

T1

G(t, s)f(s)ds =
∫ t

T1

Y (t)P−Y −1(s)f(s)ds−
∫ 0

t

Y (t)(P0 + P+)Y −1(s)f(s)ds

−
∫ T2

0

Y (t)P+Y −1(s)f(s)ds

=
∫ t

T1

Y (t)P−Y −1(s)f(s)ds +
∫ t

0

Y (t)P0Y
−1(s)f(s)ds

−
∫ T2

t

Y (t)P+Y −1(s)f(s)ds

= x(t),

• for t ∈ (0, T2], we have∫ T2

T1

G(t, s)f(s)ds =
∫ 0

T1

Y (t)P−Y −1(s)f(s)ds +
∫ t

0

Y (t)(P0 + P−)Y −1(s)f(s)ds

−
∫ T2

t

Y (t)P+Y −1(s)f(s)ds

=
∫ t

T1

Y (t)P−Y −1(s)f(s)ds +
∫ t

0

Y (t)P0Y
−1(s)f(s)ds

−
∫ T2

t

Y (t)P+Y −1(s)f(s)ds

= x(t),

• for t > T2, we have∫ T2

T1

G(t, s)f(s)ds =
∫ 0

T1

Y (t)P−Y −1(s)f(s)ds +
∫ T2

0

Y (t)(P0 + P−)Y −1(s)f(s)ds

=
∫ T2

T1

Y (t)P−Y −1(s)f(s)ds +
∫ T2

0

Y (t)P0Y
−1(s)f(s)ds

= x(t).

Now, the inequality (3.2) becomes

sup
t∈R

‖Ψ(t)
∫ T2

T1

G(t, s)f(s)ds‖ ≤ K

∫ T2

T1

‖Ψ(t)f(t)‖dt.

For a fixed points s ∈ R, δ > 0 and ξ ∈ Rd, but arbitrarily, let f the function
defined by

f(t) =

{
Ψ−1(t)ξ, for s ≤ t ≤ s + δ

0, elsewhere.

Clearly, f ∈ B, ‖f‖B = δ‖ξ‖. The above inequality becomes

‖
∫ s+δ

s

Ψ(t)G(t, u)Ψ−1(u)ξdu‖ ≤ Kδ‖ξ‖, for all t ∈ R.

Dividing by δ and letting δ → 0, we obtain for any t 6= s,

‖Ψ(t)G(t, s)Ψ−1(s)ξ‖ ≤ K‖ξ‖, for all t ∈ R, ξ ∈ Rd.
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Hence, |Ψ(t)G(t, s)Ψ−1(s)| ≤ K, which is equivalent to (3.1). By continuity, (3.1)
remains valid also in the excepted case t = s.

Now, we prove the “if” part. Suppose that the fundamental matrix Y of (2.1)
satisfies the condition (3.1) for some K > 0. Let f : R → Rd be a Lebesgue
Ψ-integrable function on R. We consider the function u : R → Rd defined by

u(t) =
∫ t

−∞
Y (t)P−Y −1(s)f(s)ds +

∫ t

0

Y (t)P0Y
−1(s)f(s)ds

−
∫ ∞

t

Y (t)P+Y −1(s)f(s)ds.

(3.3)

Step 4. The function u is well-defined on R. Indeed, for v < t ≤ 0, we have∫ t

v

‖Y (t)P−Y −1(s)f(s)‖ds =
∫ t

v

‖Ψ−1(t)Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)Ψ(s)f(s)‖ds

≤ |Ψ−1(t)|
∫ t

v

|Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ds

≤ K|Ψ−1(t)|
∫ t

v

‖Ψ(s)f(s)‖ds,

which shows that the integral
∫ t

−∞ Y (t)P−Y −1(s)f(s)ds is absolutely convergent.
For t > 0, we have the same result.

Similarly, the integral
∫∞

t
Y (t)P+Y −1(s)f(s)ds is absolutely convergent. Thus,

the function u is well-defined and is an absolutely continuous function on all inter-
vals J ⊂ R.

Step 5. The function u is a solution of (1.1). Indeed, for almost all t ∈ R, we
have

u′(t) =
∫ t

−∞
A(t)Y (t)P−Y −1(s)f(s)ds + Y (t)P−Y −1(t)f(t)

+
∫ t

0

A(t)Y (t)P0Y
−1(s)f(s)ds + Y (t)P0Y

−1(t)f(t)

−
∫ ∞

t

A(t)Y (t)P+Y −1(s)f(s)ds + Y (t)P+Y −1(t)f(t)

= A(t)u(t) + Y (t)(P− + P0 + P+)Y −1(t)f(t) = A(t)u(t) + f(t).

This shows that the function u is a solution of (1.1).
Step 6. The solution u is Ψ-bounded on R. Indeed, for t < 0, we have

Ψ(t)u(t) =
∫ t

−∞
Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

+
∫ t

0

Ψ(t)Y (t)P0Y
−1(s)Ψ−1(s)Ψ(s)f(s)ds

−
∫ ∞

t

Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

=
∫ t

−∞
Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

−
∫ 0

t

Ψ(t)Y (t)(P0 + P+)Y −1(s)Ψ−1(s)Ψ(s)f(s)ds
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−
∫ ∞

0

Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)Ψ(s)f(s)ds .

Then

‖Ψ(t)u(t)‖ ≤ K ·
∫ ∞

−∞
‖Ψ(s)f(s)‖ds.

For t ≥ 0, we have

Ψ(t)u(t) =
∫ t

−∞
Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

+
∫ t

0

Ψ(t)Y (t)P0Y
−1(s)Ψ−1(s)Ψ(s)f(s)ds

−
∫ ∞

t

Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

=
∫ 0

−∞
Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

+
∫ t

0

Ψ(t)Y (t)(P0 + P−)Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

−
∫ ∞

t

Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)Ψ(s)f(s)ds .

Then

‖Ψ(t)u(t)‖ ≤ K ·
∫ ∞

−∞
‖Ψ(s)f(s)‖ds.

Hence,

sup
t∈R

‖Ψ(t)u(t)‖ ≤ K ·
∫ ∞

−∞
‖Ψ(s)f(s)‖ds,

which shows that the solution u is Ψ-bounded on R. The proof is now complete. �

In a particular case, we have the following result.

Theorem 3.2. If the homogeneous equation (2.1) has no nontrivial Ψ-bounded
solution on R, then the (1.1) has a unique Ψ-bounded solution on R for every
Lebesgue Ψ-integrable function f : R → Rd on R if and only if there exists a
positive constant K such that

|Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)| ≤ K for −∞ < s < t < +∞
|Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)| ≤ K for −∞ < t ≤ s < +∞

(3.4)

In this case, P0 = 0 and the proof is as above.
Next, we prove a theorem in which we will see that the asymptotic behavior

of solutions to (1.1) is determined completely by the asymptotic behavior of the
fundamental matrix Y .

Theorem 3.3. Suppose that:
(1) the fundamental matrix Y (t) of (2.1) satisfies:

(a) condition (3.1) is satisfied for some K > 0;
(b) the following conditions are satisfied:

(i) limt→±∞ |Ψ(t)Y (t)P0| = 0;
(ii) limt→−∞ |Ψ(t)Y (t)P+| = 0;
(iii) limt→+∞ |Ψ(t)Y (t)P−| = 0;
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(2) the function f : R → Rd is Lebesgue Ψ-integrable on R.
Then, every Ψ-bounded solution x of (1.1) is such that

lim
t→±∞

‖Ψ(t)x(t)‖ = 0.

Proof. By Theorem 3.1, for every Lebesgue Ψ-integrable function f : R → Rd, the
equation (1.1) has at least one Ψ-bounded solution on R.

Let x be a Ψ-bounded solution on R of (1.1). Let u be defined by (3.3). The
function u is a Ψ-bounded solution on R of (1.1).

Now, let the function y(t) = x(t)−u(t)−Y (t)P0(x(0)−u(0)), t ∈ R. Obviously,
y is a solution on R of (2.1). Because Ψ(t)Y (t)P0 is bounded on R, y is Ψ-bounded
on R. Thus, y(0) ∈ X0. On the other hand,

y(0) = x(0)− u(0)− Y (0)P0(x(0)− u(0))

= (P− + P+)(x(0)− u(0)) ∈ X− ⊕X+.

Therefore, y(0) ∈ X0 ∩ (X− ⊕X+) = {0} and then, y = 0. It follows that

x(t) = Y (t)P0(x(0)− u(0)) + u(t), t ∈ R.

Now, we prove that limt→±∞ ‖Ψ(t)u(t)‖ = 0. For t ≥ 0, we write again

Ψ(t)u(t) =
∫ 0

−∞
Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

+
∫ t

0

Ψ(t)Y (t)(P0 + P−)Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

−
∫ ∞

t

Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)Ψ(s)f(s)ds.

Let ε > 0. From the hypotheses: There exists t0 < 0 such that∫ t0

−∞
‖Ψ(s)f(s)‖ds <

ε

5K
;

there exists t1 > 0 such that, for all t ≥ t1,

|Ψ(t)Y (t)P−| <
ε

5
(1 +

∫ 0

t0

‖Y −1(s)f(s)‖ds)−1;

there exists t2 > t1 such that, for all t ≥ t2,∫ ∞

t

‖Ψ(s)f(s)‖ds <
ε

5K
;

there exists t3 > t2 such that, for all t ≥ t3,

|Ψ(t)Y (t)(P0 + P−)| < ε

5
(1 +

∫ t2

0

‖Y −1(s)f(s)‖ds)−1.

Then, for t ≥ t3, we have

‖Ψ(t)u(t)‖

≤
∫ t0

−∞
|Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ds

+
∫ 0

t0

|Ψ(t)Y (t)P−|‖Y −1(s)f(s)‖ds +
∫ t2

0

|Ψ(t)Y (t)(P0
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+ P−)|‖Y −1(s)f(s)‖ds +
∫ t

t2

|Ψ(t)Y (t)(P0 + P−)Y −1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ds

+
∫ ∞

t

|Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ds

< K

∫ t0

−∞
‖Ψ(s)f(s)‖ds +

ε

5(1 +
∫ 0

t0
‖Y −1(s)f(s)‖ds)

∫ 0

t0

‖Y −1(s)f(s)‖ds

+
ε

5(1 +
∫ t2
0
‖Y −1(s)f(s)‖ds)

∫ t2

0

‖Y −1(s)f(s)‖ds

+ K

∫ t

t2

‖Ψ(s)f(s)‖ds + K

∫ ∞

t

‖Ψ(s)f(s)‖ds

< K
ε

5K
+

ε

5
+

ε

5
+ K(

∫ t

t2

‖Ψ(s)f(s)‖ds +
∫ ∞

t

‖Ψ(s)f(s)‖ds)

<
3ε

5
+ K

ε

5K
< ε.

This shows that limt→+∞ ‖Ψ(t)u(t)‖ = 0.
For t < 0, we write again

Ψ(t)u(t) =
∫ t

−∞
Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

−
∫ 0

t

Ψ(t)Y (t)(P0 + P+)Y −1(s)Ψ−1(s)Ψ(s)f(s)ds

−
∫ ∞

0

Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)Ψ(s)f(s)ds.

Let ε > 0. From the hypotheses, we have: There exists t0 > 0 such that∫ +∞

t0
‖Ψ(s)f(s)‖ds <

ε

5K
;

there exists t4 < 0 such that, for all t < t4,

|Ψ(t)Y (t)P+| <
ε

5
(1 +

∫ t0

0

‖Y −1(s)f(s)‖ds)−1;

there exists t5 < t4 such that, for all t ≤ t5,∫ t

−∞
‖Ψ(s)f(s)‖ds <

ε

5K
;

there exists t6 < t5 such that, for all t ≤ t6,

|Ψ(t)Y (t)(P0 + P+)| < ε

5
(1 +

∫ 0

t5

‖Y −1(s)f(s)‖ds)−1.

Then, for t ≤ t6, we have

‖Ψ(t)u(t)‖

≤
∫ t

−∞
|Ψ(t)Y (t)P−Y −1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ds

+
∫ t5

t

|Ψ(t)Y (t)(P0 + P+)Y −1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ds
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+
∫ 0

t5

|Ψ(t)Y (t)(P0 + P+)|‖Y −1(s)f(s)‖ds +
∫ t0

0

|Ψ(t)Y (t)P+|‖Y −1(s)f(s)‖ds

+
∫ +∞

t0
|Ψ(t)Y (t)P+Y −1(s)Ψ−1(s)|‖Ψ(s)f(s)‖ds

< K

∫ t

−∞
‖Ψ(s)f(s)‖ds + K

∫ t5

t

‖Ψ(s)f(s)‖ds

+
ε

5(1 +
∫ 0

t5
‖Y −1(s)f(s)‖ds)

∫ 0

t5

‖Y −1(s)f(s)‖ds

+
ε

5(1 +
∫ t0

0
‖Y −1(s)f(s)‖ds)

∫ t0

0

‖Y −1(s)f(s)‖ds + K

∫ +∞

t0
‖Ψ(s)f(s)‖ds

< K(
∫ t

−∞
‖Ψ(s)f(s)‖ds +

∫ t5

t

‖Ψ(s)f(s)‖ds) +
ε

5
+

ε

5
+ K

ε

5K

< K
ε

5K
+

3ε

5
< ε.

This shows that limt→−∞ ‖Ψ(t)u(t)‖ = 0.
Now, it is easy to see that limt→±∞ ‖Ψ(t)x(t)‖ = 0. The proof is now complete.

�

The next result follows from Theorems 3.2 and 3.3.

Corollary 3.4. Suppose that

(1) the homogeneous equation (2.1) has no nontrivial Ψ-bounded solution on
R;

(2) the fundamental matrix Y (t) of (2.1) satisfies:
(i) the condition (3.4) for some K > 0.
(ii) limt→−∞ |Ψ(t)Y (t)P+| = 0;
(iii) limt→+∞ |Ψ(t)Y (t)P−| = 0;

(3) the function f : R → Rd is Lebesgue Ψ-integrable on R.

Then (1.1) has a unique solution x on R such that

lim
t→±∞

‖Ψ(t)x(t)‖ = 0.

Note that Theorem 3.3 is no longer true if we require that the function f be
Ψ-bounded on R (more, even limt→±∞ ‖Ψ(t)f(t)‖ = 0), instead of the condition
(2) in the above the Theorem. This is shown next.

Example. Consider (1.1) with A(t) = O2 and f(t) = (
√

1 + |t|, 1)T . Then, Y (t) =
I2 is a fundamental matrix for (2.1). Consider

Ψ(t) =

(
1

1+|t| 0
0 1

(1+|t|)2

)
.

The solutions of (2.1) are y(t) = (c1, c2)T , where c1, c2 ∈ R. Then

Ψ(t)y(t) = (
c1

1 + |t|
,

c2

(1 + |t|)2
)T .
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Therefore, P− = O2, P+ = O2 and P0 = I2. The conditions (3.1) are satisfied with
K = 1. In addition, the hypothesis (1b) of Theorem 3.3 is satisfied. Because

Ψ(t)f(t) =
( 1√

1 + |t|
,

1
(1 + |t|)2

)T

,

the function f is not Lebesgue Ψ-integrable on R, but it is Ψ-bounded on R, with
limt→±∞ ‖Ψ(t)f(t)‖ = 0. The solutions of the system (1.1) are x(t) = (F (t) +
c1, t + c2)T , where

F (t) =

{
− 2

3 (1− t)3/2 + 4
3 , t < 0

2
3 (1 + t)3/2, t ≥ 0 .

It is easy to see that limt→±∞ ‖Ψ(t)x(t)‖ = +∞, for all c1, c2 ∈ R. It follows that
the all solutions of the system (1.1) are Ψ-unbounded on R.

Remark. If in the above example, f(t) = ( 1
1+|t| , 0)T , then

∫ +∞
−∞ ‖Ψ(t)f(t)‖dt = 2.

On the other hand, the solutions of (1.1) are x(t) = (u(t) + c1, c2)T , where

u(t) =

{
− ln(1− t), t < 0
ln(1 + t), t ≥ 0 .

We observe that the asymptotic properties of the components of the solutions are
not the same: The first component is unbounded and the second is bounded on R.
However, all solutions of (1.1) are Ψ-bounded on R and limt→±∞ ‖Ψ(t)x(t)‖ = 0.
This shows that the asymptotic properties of the components of the solutions are
the same, via the matrix function Ψ. This is obtained by using a matrix function
Ψ rather than a scalar function.
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