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Y-BOUNDED SOLUTIONS FOR LINEAR DIFFERENTIAL
SYSTEMS WITH LEBESGUE U-INTEGRABLE FUNCTIONS ON
R AS RIGHT-HAND SIDES

AUREL DIAMANDESCU

ABSTRACT. In this paper we give a characterization for the existence of W-
bounded solutions on R for the system z’ = A(t)z + f(t), assuming that f
is a Lebesgue W-integrable function on R. In addition, we give a result in
connection with the asymptotic behavior of the W-bounded solutions of this
system.

1. INTRODUCTION

This work is concerned with linear differential system
' =At)z+ f(t) (1.1)

where x(t), f(t) are in R? and A is a continuous d x d matrix-valued function. The
basic problem under consideration is the determination of necessary and sufficient
conditions for the existence of a solution with some specified boundedness condition.
A clasic result in this type of problems is given by Coppel [4, Theorem 2, Chapter
VI.
The problem of ¥-boundedness of the solutions for systems of ordinary differen-
tial equations has been studied in many papers, [1}, 2, B, B 6} [7, 8 @O, 10, 11]. In
[Bl 6l [7], the author proposes the novel concept of W-boundedness of solutions, ¥
being a continuous matrix-valued function, allows a better identification of various
types of asymptotic behavior of the solutions on R .

Similarly, we can consider solutions of which are ¥-bounded not only R,
but on R. In this case, the conditions for the existence of at least one W-bounded
solution are rather complicated, as shown in [§] and below. In [8], it is given a
necessary and sufficient condition so that the system has at least one W-
bounded solution on R for every continuous and W-bounded function f on R.

The aim of present paper is to give a necessary and sufficient condition so that
the nonhomogeneous system of ordinary differential equations has at least
one Y-bounded solution on R for every Lebesgue W-integrable function f on R.
The introduction of the matrix function ¥ permits to obtain a mixed asymptotic
behavior of the components of the solutions. Here, ¥ is a continuous matrix-valued
function on R.
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2. DEFINITIONS, NOTATIONS AND HYPOTHESES

Let R? be the Euclidean d-space. For x = (z1,72,%3,...,24)7 € RY let ||z| =
max{|z1|,|z2|, |x3],...,|za|} be the norm of z. For a d x d real matrix A = (a;;),
we define the norm [A[ = sup,<; [[Az[|. It is well-known that

d
|A| = 112%1{21 |aij|}.
]:

Let ¥; : R — (0,00), ¢ =1,2,...d, be continuous functions and
U = diag[\lll, \Ifg, ‘e \I’d]

Definition. A function ¢ : R — R? is said to be ¥-bounded on R if ¥y is
bounded on R.

Definition. A function ¢ : R — R? is said to be Lebesgue W-integrable on R if
 is measurable and Uy is Lebesgue integrable on R.

By a solution of , we mean an absolutely continuous function satisfying
for almost all ¢t € R.

Let A be a continuous d x d real matrix and let the associated linear differential
system be

Y = A(t)y. (2.1)
Let Y be the fundamental matrix of for which Y (0) = I; (identity d x d
matrix).

Let the vector space R? be represented as a direct sum of three subspaces X_,
Xo, X4+ such that a solution y(t) of is ¥-bounded on R if and only if y(0) € X,
and ¥-bounded on R = [0, 00) if and only if y(0) € X_ & Xy. Also, let P_, Py, Py
denote the corresponding projection of R% onto X_, X, X, respectively.

3. MAIN RESULT

Theorem 3.1. If A is a continuous d X d real matriz on R, then (L.1) has at least
one U-bounded solution on R for every Lebesque U-integrable function f : R — R¢
on R if and only if there exists a positive constant K such that

(WY ()P_Y 1)U (s)| < K fort>0,5<0
W)Y ()(Po+P)Y Hs)U ™ (s)| < K fort>0,s>0,s<t
[U)Y (t)PLY 1)U (s)| < K fort>0,8>0, 5>t
W)Y ()P_Y 1)U Y(s)| < K fort<0,s<t
W)Y (t)(Po+ PL)Y 1)U (s)| < K fort<0,s>t s<0
[T()Y ()PLY 1)U (s)| < K fort <0, s>t s>0

(3.1)

Proof. First, we prove the “only if” part. Thus, suppose that the system has
at least one W-bounded solution on R for every Lebesgue W-integrable function f :
R — R% on R.

We shall denote by Cy the Banach space of all ¥-bounded and continuous func-
tions # : R — RY with the norm ||z|/c, = sup,cg |[[¥(t)z(t)| and by B the Ba-
nach space of all Lebesgue U-integrable functions z : R — R? with the norm
el = [ [w@a()]d.
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We shall denote by D the set of all functions x : R — R? which are absolutely
continuous on all intervals J C R, U-bounded on R, z(0) € X_® X and 2’ — Az €
B.

Obviously, D is a vector space and z — ||z||p = ||z|lcy + ||z’ — Az| 5 is a norm
on D.
Step 1. (D, | - ||p) is a Banach space. Let (z,)nen be a fundamental sequence

of elements of D. Then, it is a fundamental sequence in C'y. Therefore, there exists
a continuous and W¥-bounded function x : R — R? such that lim,, o ¥(t)z,(t) =
U(t)x(t), uniformly on R. From the inequality

lzn () — 2@l < LT O[Oz (t) — CB2 (D), tER,

it follows that lim, . x,(t) = x(t), uniformly on every compact of R. Thus,
On the other hand, the sequence (fy)nen, where f,,(t) = 2, (t) — A(t)x, (), is a
fundamental sequence in the Banach space B. Thus, there exists f € B such that

+oo

lim W) (fa(t) = f(£)lldt = 0.

n—oo
— 00

For a fixed, but arbitrary, ¢t € R, we have

z(t) — z(0) = nlgxgo (zn(t) — 2,(0))
= lim t 2 (s)ds

n—oo 0

t

= lim [ (U7 (s)(V(s)(fuls) = F(5)) + f(5) + A(s)an(s)]ds

n—oo 0

:/0 (f(s) + A(s)z(s))ds.

It follows that ' — Az = f € B and z is absolutely continuous on all intervals
J CR. Thus, x € D.

Now, from
lim ¥(t)x,(t) = ¥(t)x(t), uniformly on R
and
oo ! /
Jim ()7, (8) = A()zn(t)) — (' (8) — At)2(t))][|dE =0,
it follows that lim, . ||z, — ||p = 0. Thus, (D, | -||p) is a Banach space.

Step 2. There exists a positive constant K such that, for every f € B and for
corresponding solution = € D of (1.1]), we have

—+oo
sup [T (t)z(t)] < K / 1% (6) £ (1) e, (3.2)
teR oo

For this, define the mapping T': D — B, Tz = ' — Az. This mapping is obviously
linear and bounded, with ||T|| < 1.

Let Tz = 0. Then, '’ = Az, x € D. This shows that z is a ¥-bounded solution
on R of (2:1). Then, z(0) € Xo N (X_ & X) = {0}. Thus, 2 = 0, such that the
mapping T is “one-to-one” .
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Now, let f € B and let « be the ¥-bounded solution on R of the system (|1.1))
which exists by assumption. Let z be the solution of the Cauchy problem

o' =A{t)x+ f(t), =2(0)=(P-+ Py)z(0).

Then u = x — z is a solution of with w(0) = z(0) — (P- + P1)z(0) = Pyx(0).
From the Definition of Xy, it follows that u is W-bounded on R. Thus, z is ¥-
bounded on R. Therefore, z belongs to D and Tz = f. Consequently, the mapping
T is “onto”

From a fundamental result of Banach: “If T is a bounded one-to-one linear
operator of one Banach space onto another, then the inverse operator T~ is also
bounded” , we have ||[T~Lf||p < [|T7Y||f|5, for all f € B.

For a given f € B, let z = T~1f be the corresponding solution z € D of (L.I).
We have

lzllp = llzllcs +ll2’ = Axlls = llzllcy + £z < 1715
or
lzllcs < (177 = D)Ifls = Kl f]5-
This inequality is equivalent to (3.2)).
Step 3. The end of the proof. Let T} < 0 < T5 be a fixed points but arbitrarily,
and let f : R — RY a function in B which vanishes on (—oco,Ti] U [Ty, +00). It is
easy to see that the function z : R — R? defined by

~n Y > “s)f(s)ds — [ Y( )PLY "1(s)f(s)ds, t<Th
o(t) = I Y (OP- ( )(s)ds -+ L Y(0)PoY 1 (5) (5)ds
- fzm “L(s)f(s)ds T <t<T
Jz, Y (6)P- ( (s + [ V(O RY - (5)f(5)ds, 1> T
is the solution in D of the system (1.1 . Now, we put
Y(t)P-Y~!(s), s<0<t,
Y(t)(Po—i-P)Y Ls), 0<s<t,
_ Y(t> ~1(s), 0<t<s,
G =\ v P (5)7 s <t <0,
Y(t)(PO +POYl(s), t<s<0,
Y (t)PyY " !(s), t<0<s.

This function is continuous on R? except on the line t = s, where it has a jump
discontinuity. Then, we have that z(t) = qTf G(t,s)f(s)ds, t € R. Indeed,
e for t < T}, we have

T

G(t,s)f(s)ds

T:
0 T

==/ Y (t)(Po+ P+)Y ™ (s) f(s)ds — ; Y (t)P.Y " (s) f(s)ds
0 T

=— ; Y (t)PyY "1 (s)f(s)ds — ; Y (t)PLY "1 (s)f(s)ds

= z(t)
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o for t € [T1,0], we have

Ts t 0
G(t,8)f(s)ds= [ Y(t)P_Y ' (s)f(s)ds — / Y (t)(Py + Py)Y (s)f(s)ds
Ty T t
T>
-/ Y (t)PyY "1 (s)f(s)ds

= Y(t)P,Y—l(s)f(s)der/O Y () PyY ~1(s)f(s)ds

T>
-/ Y (t)PY (s)f(s)ds
= x(t),
e for ¢ € (0, 73], we have
Ty 0 t
G(t,s)f(s)ds = Y (t)P_Y 1 (s)f(s)ds + / Y (t)(Py + P_)Y Y (s)f(s)ds
T T: 0

T
f/t Y (#)P Y " 1(s)f(s)ds

-/ Y ()P, Y " (s)f(s)ds

= z(t),

e for t > T5, we have
Ts 0 T>
G(t,8)f(s)ds= [ Y(t)P_Y'(s)f(s)ds + / Y (t)(Py + P_)Y '(s)f(s)ds
Ty Ty 0
T2 T2

= / Y (t)P_Y 1(s)f(s)ds + / Y (t)PyY "1 (s) f(s)ds
T 0

= z(t).

Now, the inequality (3.2)) becomes
T2 T2
sup II\I’(t)/ G(t,s)f(s)ds| < K [ [[W(6)f(t)[de.
teR T T

For a fixed points s € R, § > 0 and ¢ € R? but arbitrarily, let f the function
defined by

f(t)—{qll(t)f’ fors <t <s+9

0, elsewhere.

Clearly, f € B, || fllz = d||€]]. The above inequality becomes
s+0
||/ W()G(t,u) U (w)edul| < KO|¢|, forallt €R.

Dividing by § and letting § — 0, we obtain for any t # s,
()Gt )P (s)¢]| < KIl¢]l, forall t € R, & € R
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Hence, [U(t)G(t,s)¥!(s)| < K, which is equivalent to (3.1)). By continuity, (3.1)
remains valid also in the excepted case t = s.

Now, we prove the “if” part. Suppose that the fundamental matrix Y of
satisfies the condition for some K > 0. Let f : R — R be a Lebesgue
U-integrable function on R. We consider the function u : R — R¢ defined by

t) = /_OO Y(t)P_Y~ (s)f(S)dSJr/0 Y(ORY ™ (s)f(s)ds (3.3)

- /too Y(#) Py Y~ (s) f(5)ds.

Step 4. The function u is well-defined on R. Indeed, for v < t < 0, we have
/M’PY' H%—/HW WY (O)P-Y " (s) 0 ()W (s) £ (5)]ds
< @] [ Y@ Py () ()10 £(5) s
< KIw (o) [ 1w(s)£(s) s

which shows that the integral f Y (t)P_Y ~1(s) f(s)ds is absolutely convergent.
For t > 0, we have the same rebult

Similarly, the integral [ Y (£)PyY ~!(s)f(s)ds is absolutely convergent. Thus,
the function u is well-defined and is an absolutely continuous function on all inter-
vals J C R.

Step 5. The function v is a solution of . Indeed, for almost all t € R, we
have

o (t) = / AY (O)P_Y~\(s)f(s)ds + Y () P_Y (1) £ (1)

— 00

-y/AUYO%Y—Mﬂ@w+Ywmy*@ﬂw

/'A “s)f(s)ds + Y ()P Y (1) (1)
0+ Y ()P + Py + PLY (1) £(t) = Atyu(t) + £(t).

This shows that the function u is a solution of .
Step 6. The solution u is ¥-bounded on R. Indeed, for ¢ < 0, we have

\I/(t)u(t):/ V()Y () P_Y H(s)U 1 (s)U(s)f(s)ds

— 00

+/ V(Y () PY ()W (s)T(s)f(s)ds
0

- /t TE)Y (1) P.Y ()0 (5)(s) f(5)ds
:/_ V()Y ()P_Y (s)U 1 (s)U(s)f(s)ds

0
—/t V()Y (t)(Py + PL)Y (s)U 1 (s)U(s) f(s)ds
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- /OOO T () PLY " (s)T " (5)(s) f()ds .
Then
1w () ||<K/ 19(s) £ (s) ds.

For t > 0, we have

Then
] <5 [ s s
Hence,
sup [9(0u(0)] < K [~ W76 s,
which shows that the solutlon u is U-bounded on R. The proof is now complete. [
In a particular case, we have the following result.

Theorem 3.2. If the homogeneous equation has no nontrivial V-bounded
solution on R, then the has a unique W-bounded solution on R for every
Lebesque VU-integrable function f : R — R% on R if and only if there exists a
positive constant K such that

[UOY()PY 1)U (s)| < K for —co<s<t< 400

1 1 (3.4)
[T@R)Y()PLY "(s)T7 (s)| K K for —oco<t<s< 400

In this case, Py = 0 and the proof is as above.

Next, we prove a theorem in which we will see that the asymptotic behavior
of solutions to is determined completely by the asymptotic behavior of the
fundamental matrix Y.

Theorem 3.3. Suppose that:
(1) the fundamental matriz Y (t) of (2.1) satisfies:

(a) condition is satisfied for some K > 0;
(b) the followz'ng conditions are satisfied:
(1) limitoo [T ()Y () Py| = 0;
(ii) limy oo [T(£)Y (£)Py| = O;
(iil) limy— 400 [T()Y (1) P-| = 0;
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(2) the function f : R — R? is Lebesgue W-integrable on R.

Then, every ¥-bounded solution x of (L.1)) is such that

i [w()(0)] = 0.

Proof. By Theorem for every Lebesgue W-integrable function f : R — R%, the
equation (|1.1)) has at least one ¥-bounded solution on R.

Let = be a ¥-bounded solution on R of (|1.1). Let u be defined by (3.3). The
function wu is a ¥-bounded solution on R of (L.1)).

Now, let the function y(¢) = z(t) —u(t) — Y () Po(x(0) —u(0)), t € R. Obviously,

y is a solution on R of (2.1)). Because ¥ (¢)Y (¢)Fy is bounded on R, y is ¥-bounded
on R. Thus, y(0) € Xy. On the other hand,

y(0) = 2(0) — u(0) = Y (0) Py (x(0) — u(0))
= (P_+ Py)(x(0) —u(0) e X_ & Xy.
Therefore, y(0) € Xo N (X_ @ X ;) = {0} and then, y = 0. It follows that
z(t) =Y () Po(xz(0) — u(0)) + u(t),t € R.
Now, we prove that lim;, 1o || U(t)u(t)|| = 0. For t > 0, we write again

0
W(tyu(t) = / WY () PY ()T~ (5)U(s) f(5)ds

— 00

+AW®HW%+RM”%W*®N@ﬂWB

- /too T()Y ()P Y 1 (s)T 1 (s)T(s) f(s)ds.

Let € > 0. From the hypotheses: There exists tg < 0 such that

to c
| sl <

there exists t; > 0 such that, for all £ > 1,

c 0
St [T ) £ )7

there exists to > t1 such that, for all ¢ > to,

[WW®ﬂM%<

there exists t3 > to such that, for all ¢ > t3,

[T@)Y(t)P-| <

L.
5K’

t

WOV OF+ P < S0+ [y 61

Then, for ¢t > t3, we have
[P ()u)]

< [ 1ROy OP-Y T U ()] W) £5) s

+ IW®YWP4M”W$ﬂ®M&+AQW@WﬁX%

to
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¢
POY " (s)f(s)llds + [ [@@)Y () (Po + P-)Y " (s)T ™ (s)|[[¥(5) f(5)|ds

to

/OO (W)Y ()PLY ™ ()T ()] W(s) f (s)]|ds

<K / 19 (s)(5)ds + : Y () f(9)lds
L+ [ Y =1(5) £ (5)lds) Jeo
—1
B(1+ [ ||Y s)||ds) / I e
+K/ 1% (s) ||ds+K/ 19(5)(5)]ds
S / 19 (s)(s)]ds + / 19 (s)£(s) | ds)
<%+K5—K<€

This shows that lim; 1 || (¢)u(t)| = 0.
For ¢ < 0, we write again

U (t)u(t) 2[ V()Y ()PY L (s)T ™ (s)W(s)f(s)ds
0
- [ ROV @R+ POy T () (5)ds

_/ WY (H)PLY " ()T (5)U(5) £ (5)ds.
0
Let € > 0. From the hypotheses, we have: There exists t° > 0 such that
o0 c
U d —;
[ el <
there exists t4 < 0 such that, for all t < t4,
t()
€ _ _
POY ) P] < (1 +/0 1Y~ (s) f(s)llds) ™
there exists t5 < t4 such that, for all t < t5,
t
| sl <
there exists tg < t5 such that, for all ¢ < tg,
0
€ _ _
WOY P+ Pl < S0+ [ Y 6)p()ds)
ts
Then, for t < tg, we have
W (@)u)]
t
< [ @yoPry U e)ue)ds

ts

+) (W)Y (£)(Po + Pr)Y ()™ (s) [0 (s) £ (5)l1ds
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0 0
t I\I/(t)Y(t)(Po+P+)|I\Y‘l(S)f(=-’»’)Ilds+/0 (W)Y () PLI[Y ™ () f(s)llds

+o0
[ Y OPY T )£ s
<K/ () ||ds+K/ 12 (s) £ (s)]|ds

/ 1Y (3)£(s)]|ds
1+ft ||Y s)||ds)

€ Hoo
o Y= (s)f(s)llds + K 1W(s)f(s)llds
5(1+ J |Y‘1(S)f(8)||d8)/0 /

<[ ol [ SR

3e
K-S L2
< 5K + 5 <e.
This shows that lim;—,_ o ||¥(¢)u(t)]| = 0.
Now, it is easy to see that lim;—, 1o ||¥(¢)2(t)|| = 0. The proof is now complete.
(I

The next result follows from Theorems [B.2] and 3.3

Corollary 3.4. Suppose that

(1) the homogeneous equation (2.1 has no nontrivial ¥-bounded solution on
R;
(2) the fundamental matrzx Y (t) of [2.1) satisfies:
(i) the condition (3.4) for some K > 0.
(4i) limy oo [P ()Y (¢) P-| = 0;
(3) the function f:R — R? is Lebesque U-integrable on R.
Then (1.1) has a unique solution x on R such that

i [ ¥(a(v)] = 0.
Note that Theorem [3.3] is no longer true if we require that the function f be

U-bounded on R (more, even lim¢_, 1o ||¥(¢) f(t)|| = 0), instead of the condition
(2) in the above the Theorem. This is shown next.

Example. Consider ) with A(t) = Oz and f(t) = (/1 + [t|,)T. Then, Y (t) =
I, is a fundamental matrlx for ( . Consider

_1 0
vy =" ]

(1+2])?

The solutions of (2.1)) are y(t) = (c1,ca)”, where ¢1,co € R. Then

V) = (S o)
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Therefore, P_ = Oz, P = Oy and Py = I5. The conditions (3.1)) are satisfied with
K = 1. In addition, the hypothesis (1b) of Theorem is satisfied. Because

1 1 T
Y010 = (e )

the function f is not Lebesgue W-integrable on R, but it is W-bounded on R, with
lims 100 [¥(¢) f(¢)]] = 0. The solutions of the system (1.1) are x(t) = (F(t) +
c1,t+ o)t where

—2(1-t)32+4, t<0

F(t) =
®) 2(1+1)%/2, t>0.

It is easy to see that lim; 1o || U(¢)2(t)|| = 400, for all ¢1,c2 € R. It follows that
the all solutions of the system (|1.1)) are ¥-unbounded on R.

Remark. If in the above example, f(t) = (ﬁ’ 0)7, then fjooj 1 () f(t)]|dt = 2.

On the other hand, the solutions of (1.1)) are (¢) = (u(t) + c1,c2)T, where

—In(1—1t), t<0

U= \ma 4y, tz0.

We observe that the asymptotic properties of the components of the solutions are
not the same: The first component is unbounded and the second is bounded on R.
However, all solutions of are U-bounded on R and lim; 4 [|¥(¢)z(¢)|| = 0.
This shows that the asymptotic properties of the components of the solutions are
the same, via the matrix function W. This is obtained by using a matrix function
W rather than a scalar function.
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