Electronic Journal of Differential Equations, Vol. 2009(2009), No. 09, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXPONENTIAL ATTRACTORS FOR A NONCLASSICAL DIFFUSION EQUATION

YONG-FENG LIU, QIAOZHEN MA

Abstract

In this article, we prove the existence of exponential attractors for a nonclassical diffusion equation in $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ when the space dimension is less than 4.

1. Introduction

Let Ω be an open bounded set of \mathbb{R}^{3} with smooth boundary $\partial \Omega$. We consider the equation

$$
\begin{gather*}
u_{t}-\Delta u_{t}-\Delta u+f(u)=g(x), \quad \text { in } \Omega \times \mathbb{R}_{+}, \tag{1.1}\\
u=0, \quad \text { on } \partial \Omega \tag{1.2}\\
u(x, 0)=u_{0}, \quad x \in \Omega \tag{1.3}
\end{gather*}
$$

This equation is a special form of the nonclassical diffusion equation used in fluid mechanics, solid mechanics and heat conduction theory [1, 4. Existence of the global attractors for problem (1.1)-(1.3) was studied originally by Kalantarov in [3] in the Hilbert space $H_{0}^{1}(\Omega)$. In recent years, many authors have proved the existence of global attractors under different assumptions, [3, 6, 7, 9] in the Hilbert space $H_{0}^{1}(\Omega)$, and [5, 8] in the Hilbert space $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. In this paper, we study the existence of exponential attractors in the Hilbert space $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.

In this article the nonlinear function satisfies the following conditions:
(G1) There exists $l>0$ such that $f^{\prime}(s) \geq-l$ for all $s \in \mathbb{R}$;
(G2) there exists $\kappa_{1}>0$ such that $f^{\prime}(s) \leq \kappa_{1}\left(1+|s|^{2}\right)$ for all $s \in \mathbb{R}$;
(G3) $\lim \inf _{|s| \rightarrow \infty} F(s) / s^{2} \geq 0$, where

$$
F(s)=\int_{0}^{s} f(r) d r
$$

(G4) there exists $\kappa_{2}>0$ such that

$$
\liminf _{|s| \rightarrow \infty} \frac{s f(s)-\kappa_{2} F(s)}{s^{2}} \geq 0
$$

[^0]The main results of this paper will be stated as Theorem 3.10 below.

2. Preliminaries

Let $H=L^{2}(\Omega), V_{1}=H_{0}^{1}(\Omega), V_{2}=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. We denote by (\cdot, \cdot) denote the scalar product, and $\|\cdot\|$ the norm of H. The scalar product in V_{1} and V_{2} are denoted by

$$
\begin{gathered}
((u, v))=\int_{\Omega} \nabla u \nabla v d x, \quad \forall u, v \in V_{1} \\
{[u, v]=\int_{\Omega} \Delta u \Delta v d x, \quad \forall u, v \in V_{2}}
\end{gathered}
$$

The corresponding norms are denoted by $\|\cdot\|_{1},\|\cdot\|_{2}$. It is well known that the norm $\|\cdot\|_{s}$ is equivalent to the usual norm of V_{s} for $s=1,2$. Let X be a separable Hilbert space and \mathscr{B} be a compact subset of $X,\{S(t)\}_{t \geq 0}$ be a nonlinear continuous semigroup that leaves the set \mathscr{B} invariant and $\mathscr{A}=\cap_{t>0} S(t) \mathscr{B}$, that is, \mathscr{A} is a global attractor for $\{S(t)\}_{t \geq 0}$ on \mathscr{B}.

Definition $2.1([2])$. A compact set $\mathscr{A} \subseteq \mathscr{M} \subseteq \mathscr{B}$ is called an exponential attractor for $(S(t), \mathscr{B})$ if:
(1) \mathscr{M} has finite fractal dimension;
(2) \mathscr{M} is a positive invariant set of $S(t): S(t) \mathscr{M} \subseteq \mathscr{M}$, for all $t>0$;
(3) \mathscr{M} is an exponentially attracting set for the semigroup $\{S(t)\}_{t \geq 0}$; i.e. there exist universal constants $\alpha, \beta>0$ such that

$$
\operatorname{dist}_{X}(S(t) u, \mathscr{M}) \leq \alpha e^{-\beta t}, \quad \forall u \in \mathscr{B}, t>0
$$

where dist denotes the nonsymmetric Hausdorff distance between sets.
A sufficient condition for the existence of an exponential attractor depends on a dichotomy principle called the squeezing property; we recall this property as follows.

Definition 2.2 ([2]). A continuous semigroup of operators $\{S(t)\}_{t \geq 0}$ is said to satisfy the squeezing property on \mathscr{B} if there exists $t_{*}>0$ such that $S_{*}=S\left(t_{*}\right)$ satisfies that there exists an orthogonal projection operator P of rank N_{0} such that, for every u and v in \mathscr{B}, either

$$
\begin{gathered}
\left\|(I-P)\left(S\left(t_{*}\right) u_{1}-S\left(t_{*}\right) u_{2}\right)\right\|_{X} \leq\left\|P\left(S\left(t_{*}\right) u_{1}-S\left(t_{*}\right) u_{2}\right)\right\|_{X}, \quad \text { or } \\
\left\|S\left(t_{*}\right) u_{1}-S\left(t_{*}\right) u_{2}\right\|_{X} \leq \frac{1}{8}\left\|u_{1}-u_{2}\right\|_{X}
\end{gathered}
$$

Definition 2.3 (2]). For every u, v in the compact set \mathscr{B}, if there exists a local bounded function $l(t)$ such that

$$
\|S(t) u-S(t) v\|_{X} \leq l(t) \mid u-v \|_{X}
$$

then $S(t)$ is Lipschitz continuous in \mathscr{B}. Here $l(t)$ does not depend on u or v.

3. Exponential Attractor in V_{2}

Lemma 3.1 (8$]$). Assume that $g \in V_{s}^{\prime}(s=1,2)$. Then for each $u_{0} \in V_{s}$ the problem (1.1)-1.3) has a unique solution $u=u(t)=u\left(t ; u_{0}\right)$ with $u \in C^{1}\left([0, \tau), V_{s}\right)$ on some interval $[0, \tau)$. Also for each t fixed, u is continuous in u_{0}.

Lemma 3.2 ([3). Assume that $g \in H$, then for any $R>0$, there exist positive constants $E_{1}(R), \rho_{1}$ and $t_{1}(R)$ such that for every solution u of problem (1.1)-(1.3),

$$
\begin{aligned}
& \|u\|_{1} \leq E_{1}(R), \quad t \geq 0 \\
& \|u\|_{1} \leq \rho_{1}, \quad t \geq t_{1}(R)
\end{aligned}
$$

provided $\left\|u_{0}\right\|_{1} \leq R$.
Lemma 3.3 ([8]). Assume $g \in V_{1}$, then for any $R>0$, there exist positive constants $E_{2}(R), \rho_{2}$ and $t_{2}(R)$ such that for every solution u of problem (1.1)-(1.3),

$$
\begin{aligned}
& \|u\|_{2} \leq E_{2}(R), \quad t \geq 0 \\
& \|u\|_{2} \leq \rho_{2}, \quad t \geq t_{2}(R)
\end{aligned}
$$

provided $\left\|u_{0}\right\|_{2} \leq R$.
Remark 3.4. From the proof of Lemma 3.3 [8, Theorem 3.2], we obtain

$$
\int_{t}^{t+1}\left(\left\|u_{t}\right\|_{1}^{2}+\left\|u_{t}\right\|_{2}^{2}\right) \leq m
$$

where m is a positive constant.
According to Lemmas 3.2 and 3.3 we have

$$
\begin{equation*}
\mathscr{B}_{0}=\left\{u \in V_{2}:\|\nabla u\| \leq \rho_{1},\|\Delta u\| \leq \rho_{2}\right\} \tag{3.1}
\end{equation*}
$$

is a compact absorbing set of a semigroup of operators $\{S(t)\}_{t \geq 0}$ generated by (1.1)-(1.3). Namely, for any given $u_{0} \in V_{2}$, there exists $T=T\left(u_{0}\right)>0$ such that $\left\|S(t) u_{0}\right\| \leq \rho$, for all $t \geq T$. Hence

$$
\mathscr{B}=\overline{\cup_{0 \leq t \leq T} S(t) \mathscr{B}_{0}}
$$

is a compact positive invariant set in V_{2} under $S(t)$.
Lemma 3.5 ((8). Assume that $f \in C^{2}(\mathbb{R} ; \mathbb{R})$ and satisfies $(\mathrm{G} 1)-(\mathrm{G} 4)$ with $f(0)=$ $0, g \in V_{1}$. Then the semigroup $S(t)$ generated by 1.1)-1.3 possesses a global attractor \mathscr{A} in V_{2}.

Lemma 3.6. Assume that f satisfies (G1)-(G4), $u(t), v(t)$ are two solutions of (1.1)-1.3) with initial values $u_{0}, v_{0} \in \mathscr{B}$, then

$$
\begin{equation*}
\|u(t)-v(t)\|_{2} \leq e^{c_{1} t}\|u(0)-v(0)\|_{2} \tag{3.2}
\end{equation*}
$$

Proof. Setting $w(t)=u(t)-v(t)$, we see that $w(t)$ satisfies

$$
\begin{equation*}
w_{t}-\Delta w_{t}-\Delta w+f(u)-f(v)=0 \tag{3.3}
\end{equation*}
$$

Taking the inner product with $-\Delta w$ of (3.3), we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\|\Delta w\|^{2}+\|\nabla w\|^{2}\right)+\|\Delta w\|^{2}+(f(u)-f(v),-\Delta w)=0 \tag{3.4}
\end{equation*}
$$

Using $H_{0}^{1}(\Omega) \subset L^{6}(\Omega)$ and (G2), it follows that

$$
\begin{align*}
& \left|\int_{\Omega}(f(u)-f(v)) \Delta w d x\right| \\
& \leq \int_{\Omega}\left|f^{\prime}(\theta u+(1-\theta) v) \| w\right||\Delta w| d x \quad(0<\theta<1) \\
& \leq c \int_{\Omega}\left(1+|u|^{2}+|v|^{2}\right)|w||\Delta w| d x \tag{3.5}\\
& \leq c \int_{\Omega}|w||\Delta w| d x+c \int_{\Omega}|u|^{2}|w||\Delta w| d x+c \int_{\Omega}|v|^{2}|w||\Delta w| d x \\
& \leq c\|w\|\|\Delta w\|+c\|u\|_{6}^{2}\|w\|_{6}\|\Delta w\|+c\|v\|_{6}^{2}\|w\|_{6}\|\Delta w\| .
\end{align*}
$$

Since \mathscr{B} is a bounded absorbing set given by (3.1), $u_{0}, v_{0} \in \mathscr{B}$, from (3.5) we get

$$
\begin{equation*}
\left|\int_{\Omega}(f(u)-f(v)) \Delta w d x\right| \leq c\|\nabla w\|\|\Delta w\| \leq \frac{\|\Delta w\|^{2}}{2}+\frac{c_{1}}{2}\|\nabla w\|^{2} \tag{3.6}
\end{equation*}
$$

where c_{1} is dependent on ρ_{1} and ρ_{2}. Combining (3.4) with 3.6) we deduce that

$$
\begin{equation*}
\frac{d}{d t}\left(\|\Delta w\|^{2}+\|\nabla w\|^{2}\right)+\|\Delta w\|^{2} \leq c_{1}\|\nabla w\|^{2} \tag{3.7}
\end{equation*}
$$

This yields

$$
\begin{equation*}
\frac{d}{d t}\left(\|\Delta w\|^{2}+\|\nabla w\|^{2}\right) \leq c_{1}\left(\|\nabla w\|^{2}+\|\Delta w\|^{2}\right) \tag{3.8}
\end{equation*}
$$

By the Gronwall Lemma, we get

$$
\|\Delta w(t)\|^{2}+\|\nabla w(t)\|^{2} \leq e^{c_{1} t}\left(\|\Delta w(0)\|^{2}+\|\nabla w(0)\|^{2}\right)
$$

Lemma 3.7. Under the assumptions of Lemma 3.5, there exists $L>0$ such that

$$
\sup _{u_{0} \in \mathscr{B}}\left\|u_{t}(t)\right\|_{2} \leq L, \quad \forall t \geq 0
$$

Proof. Differentiating (1.1) with respect to time and denoting $v=u_{t}$, we have

$$
\begin{equation*}
v_{t}-\Delta v_{t}-\Delta v=-f^{\prime}(u) v \tag{3.9}
\end{equation*}
$$

Multiplying the above equality by $-\Delta v$ and using (G1),

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\|\nabla v\|^{2}+\|\Delta v\|^{2}\right)+\|\Delta v\|^{2} \leq l\|\nabla v\|^{2} \tag{3.10}
\end{equation*}
$$

This inequality and Remark 3.4 by the uniform Gronwall lemma, complete the proof.

Lemma 3.8. Under the assumptions of lemma 3.5, for every $T>0$, the mapping $(t, u) \mapsto S(t) u$ is Lipschitz continuous on $[0, T] \times \mathscr{B}$.
Proof. For $u_{1}, u_{2} \in \mathscr{B}$ and $t_{1}, t_{2} \in[0, T]$ we have

$$
\begin{equation*}
\left\|S\left(t_{1}\right) u_{1}-S\left(t_{2}\right) u_{2}\right\|_{2} \leq\left\|S\left(t_{1}\right) u_{1}-S\left(t_{1}\right) u_{2}\right\|_{2}+\left\|S\left(t_{1}\right) u_{2}-S\left(t_{2}\right) u_{2}\right\|_{2} \tag{3.11}
\end{equation*}
$$

The fist term of the above inequality is handled by estimate 3.2 . For the second term, we have

$$
\begin{equation*}
\left\|u\left(t_{1}\right)-u\left(t_{2}\right)\right\|_{2} \leq\left|\int_{t_{1}}^{t_{2}}\left\|u_{t}(y)\right\|_{2} d y\right| \leq L\left|t_{1}-t_{2}\right| \tag{3.12}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\|S\left(t_{1}\right) u_{1}-S\left(t_{2}\right) u_{2}\right\|_{2} \leq L\left[\left|t_{1}-t_{2}\right|+\left\|u_{1}-u_{2}\right\|_{2}\right] \tag{3.13}
\end{equation*}
$$

for some $L=L(T) \geq 0$.
Lemma 3.9. Assume that f satisfies $(\mathrm{G} 1)-(\mathrm{G} 4), u(t), v(t)$ are two solutions of problem (1.1) -(1.3) with initial values $u_{0}, v_{0} \in \mathscr{B}$, then the semigroup $S(t)$ generated from (1.1)-1.3) satisfies the squeezing property; i.e., there exist t_{*} and $N=N_{0}=$ $N\left(t_{*}\right)$ such that

$$
\left\|(I-P)\left(S\left(t_{*}\right) u_{0}-S\left(t_{*}\right) v_{0}\right)\right\|_{2}>\left\|P\left(S\left(t_{*}\right) u_{0}-S\left(t_{*}\right) v_{0}\right)\right\|_{2}
$$

then

$$
\left\|S\left(t_{*}\right) u_{0}-S\left(t_{*}\right) v_{0}\right\|_{2} \leq \frac{1}{8}\left\|u_{0}-v_{0}\right\|_{2}
$$

Proof. We consider the operator $A=-\Delta$. Since A is self-adjoint, positive operator and has a compact inverse, there exists a complete set of eigenvectors $\left\{\omega_{i}\right\}_{i=1}^{\infty}$ in H, the corresponding eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ satisfy

$$
A \omega_{i}=\lambda_{i} \omega_{i}, \quad 0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{i} \leq \cdots \rightarrow+\infty, \quad i \rightarrow+\infty
$$

We set $H_{N}=\operatorname{span}\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right\} . P_{N}$ is the orthogonal projection onto H_{N}, and $Q_{N}=I-P_{N}$ is the orthogonal projection onto the orthogonal complement of H_{N}, $w=P_{N} w+Q_{N} w=p+q$. Assume that $\left\|P_{N} w(t)\right\| \leq\left\|Q_{N} w(t)\right\|$, taking the inner product of 3.3 with $-\Delta q$, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\|\Delta q\|^{2}+\|\nabla q\|^{2}\right)+\|\Delta q\|^{2}+(f(u)-f(v),-\Delta q)=0 \tag{3.14}
\end{equation*}
$$

Similar to (3.5), it leads to

$$
\begin{align*}
\left|\int_{\Omega}(f(u)-f(v)) \Delta q d x\right| \leq & c \int_{\Omega}|w||\Delta q| d x+c \int_{\Omega}|u|^{2}|w||\Delta q| d x \tag{3.15}\\
& +c \int_{\Omega}|v|^{2}|w||\Delta q| d x
\end{align*}
$$

Since

$$
\int_{\Omega}|u|^{2}|w||\Delta q| d x \leq\|u\|_{\infty}^{2}\|w\|\|\Delta q\|
$$

and by the Agmon inequality: $\|u\|_{\infty} \leq c\|\nabla u\|^{1 / 2}\|\Delta u\|^{1 / 2}$, and (3.1), from 3.15) we obtain

$$
\begin{equation*}
\left|\int_{\Omega}(f(u)-f(v)) \Delta q d x\right| \leq c\|w\|\|\Delta q\| \leq \frac{\|\Delta q\|^{2}}{2}+\frac{c_{2}}{2}\|w\|^{2} \tag{3.16}
\end{equation*}
$$

where c_{2} depends on ρ_{1} and ρ_{2}. Combining (3.14) and (3.16), we deduce that

$$
\begin{equation*}
\frac{d}{d t}\left(\|\Delta q\|^{2}+\|\nabla q\|^{2}\right)+\|\Delta q\|^{2} \leq c_{2}\|w\|^{2} \tag{3.17}
\end{equation*}
$$

Furthermore, by lemma 3.6 and the Poincaré inequality, we have

$$
\begin{align*}
\frac{d}{d t}\left(\|\Delta q\|^{2}+\|\nabla q\|^{2}\right)+\frac{\|\Delta q\|^{2}}{2}+\frac{\lambda_{N+1}}{2}\|\nabla q\|^{2} & \leq c_{2}\|w\|^{2} \leq c_{2}\|p+q\|^{2} \\
& \leq 2 c_{2}\|q\|^{2} \leq 2 c_{2} \lambda_{N+1}^{-1}\|\nabla q\|^{2} \tag{3.18}\\
& \leq c_{3} \lambda_{N+1}^{-2}\|\Delta w\|^{2} \\
& \leq c_{3} \lambda_{N+1}^{-2} e^{c_{1} t}\|\Delta w(0)\|^{2}
\end{align*}
$$

Since $\lambda_{1} \leq \lambda_{N+1}$,

$$
\begin{equation*}
\frac{d}{d t}\left(\|\Delta q\|^{2}+\|\nabla q\|^{2}\right)+\frac{\|\Delta q\|^{2}}{2}+\frac{\lambda_{1}}{2}\|\nabla q\|^{2} \leq c_{3} \lambda_{N+1}^{-2} e^{c_{1} t}\|\Delta w(0)\|^{2} \tag{3.19}
\end{equation*}
$$

Let $c_{4}=\min \left\{\frac{1}{2}, \frac{\lambda_{1}}{2}\right\}$. Then

$$
\begin{equation*}
\frac{d}{d t}\left(\|\Delta q\|^{2}+\|\nabla q\|^{2}\right)+c_{4}\left(\|\Delta q\|^{2}+\|\nabla q\|^{2}\right) \leq c_{3} \lambda_{N+1}^{-2} e^{c_{1} t}\|\Delta w(0)\|^{2} \tag{3.20}
\end{equation*}
$$

By the Gronwall Lemma, we conclude that

$$
\begin{aligned}
\|\Delta q(t)\|^{2}+\|\nabla q(t)\|^{2} & \leq e^{-c_{4} t}\left(\|\Delta q(0)\|^{2}+\|\nabla q(0)\|^{2}\right)+c_{5} \lambda_{N+1}^{-2} e^{c_{1} t}\|\Delta w(0)\|^{2} \\
& \leq c_{6}\left(e^{-c_{4} t}+c_{7} \lambda_{N+1}^{-2} e^{c_{1} t}\right)\|\Delta w(0)\|^{2}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\|\Delta w(t)\|^{2} \leq 2\|\Delta q(t)\|^{2} \leq c_{8}\left(e^{-c_{4} t}+c_{9} \lambda_{N+1}^{-2} e^{c_{1} t}\right)\|\Delta w(0)\|^{2} \tag{3.21}
\end{equation*}
$$

Choose $t_{*}>0$, such that $c_{8} e^{-c_{4} t_{*}} \leq 1 / 128$, and then let t_{*} be fixed, and N large enough , such that $c_{8} c_{9} \lambda_{N+1}^{-2} e^{c_{1} t_{*}} \leq 1 / 128$. We obtain

$$
\left\|\Delta w\left(t_{*}\right)\right\| \leq \frac{1}{8}\|\Delta w(0)\| .
$$

Theorem 3.10. Assume that $f \in C^{2}(\mathbb{R} ; \mathbb{R})$ and satisfies (G1)-(G4) with $f(0)=0$, $g \in V_{1}$. Then there exists an exponential attractor $\mathscr{M} \subset V_{2}$ for the semigroup of operators $\{S(t)\}_{t \geq 0}$ generated by (1.1)-(1.3).
Proof. From Lemma $3.9, S\left(t_{*}\right)$ satisfies the squeezing property for some $t_{*}>0$. According to [2, Theorem 2.1], there exists an exponential attractor \mathscr{M}_{*} for $\left(S\left(t_{*}\right), \mathscr{B}\right)$ and we set

$$
\mathscr{M}=\bigcup_{0 \leq t \leq t_{*}} S(t) \mathscr{M}_{*} .
$$

By Lemma 3.8, $(t, u) \mapsto S(t) u$ is Lipschitz continuous from $[0, T] \times \mathscr{B}$ to \mathscr{B}. Then as in the proof of [2, Theorem 3.1], \mathscr{M} is an exponential attractor for $\left(\{S(t)\}_{t \geq 0}, \mathscr{B}\right)$.

Acknowledgements. The authors would like to thank the anonymous referee for his or her many vital comments and suggestions.

References

[1] Aifantis. E. C; On the problem of diffusion in solids, Acta Mech, 37 (1980): 265-296.
[2] A. Eden, C. Foias, B. Nicolaenko, R. Temam; Exponential Attractors for Dissipative Evolution Equations, New York:Masson. Paris, Wiely, (1994).
[3] V. K. Kalantarov; On the attractors for some non-linear problems of mathematical physics, Zap. Nauch. Sem. LOMI 152 (1986): 50-54.
[4] J. L. Lions, E. Magenes; Non-homogeneous boundary value problems and applications, Springverlag,Berlin, (1972).
[5] Q. Z. Ma, C. K. Zhong; Global attractors of strong solutions to nonclassical diffusion equations, Journal of Lanzhou University. 40(2004): 7-9.
[6] C. Y. Sun, S. Y. Wang, C. K. Zhong; Global attractors for a nonclassical diffusion equation, Acta math sinica, English series. 23(2007): 1271-1280.
[7] R. Temam; Infinite-dimensional dynamical systems in mechanics and physic, Springer, New York, (1997).
[8] S. Y. Wang, D. S. Li, C. K. Zhong; On the dynamics of a class of nonclassical parabolic equations, J. Math. Anal. Appl. 317(2006): 565-582.
[9] Y. L. Xiao; Attractors for a nonclassical diffusion equation, Acta Math Appl Sinica. 18 (2002): 273-276.

Yong-Feng Liu
College of Mathematics and Information Science, Northwest Normal University, Lanzhou, Gansu 730070, China

E-mail address: liuyongfeng1982@126.com
Qiaozhen Ma
College of Mathematics and Information Science, Northwest Normal University, Lanzhou, Gansu 730070, China

E-mail address: maqzh@nwnu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 35B41, 35Q35.
 Key words and phrases. Nonclassical diffusion equation; exponential attractors. © 2009 Texas State University - San Marcos.
 Submitted October 22, 2008. Published January 9, 2009.
 Supported by grants: 3ZS061-A25-016 from the Natural Sciences Foundation of Gansu Province, 0801-02 from the Education Department Foundation of Gansu Province, and NWNU-KJCXGC-03-40.

