Electronic Journal of Differential Equations, Vol. 2009(2009), No. 09, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXPONENTIAL ATTRACTORS FOR A NONCLASSICAL DIFFUSION EQUATION

YONG-FENG LIU, QIAOZHEN MA

ABSTRACT. In this article, we prove the existence of exponential attractors for a nonclassical diffusion equation in $H^2(\Omega) \cap H^1_0(\Omega)$ when the space dimension is less than 4.

1. INTRODUCTION

Let Ω be an open bounded set of \mathbb{R}^3 with smooth boundary $\partial \Omega$. We consider the equation

$$u_t - \Delta u_t - \Delta u + f(u) = g(x), \quad \text{in } \Omega \times \mathbb{R}_+, \tag{1.1}$$

$$u = 0, \quad \text{on } \partial\Omega, \tag{1.2}$$

$$u(x,0) = u_0, \quad x \in \Omega. \tag{1.3}$$

This equation is a special form of the nonclassical diffusion equation used in fluid mechanics, solid mechanics and heat conduction theory [1, 4]. Existence of the global attractors for problem (1.1)-(1.3) was studied originally by Kalantarov in [3] in the Hilbert space $H_0^1(\Omega)$. In recent years, many authors have proved the existence of global attractors under different assumptions, [3, 6, 7, 9] in the Hilbert space $H_0^1(\Omega)$, and [5, 8] in the Hilbert space $H^2(\Omega) \cap H_0^1(\Omega)$. In this paper, we study the existence of exponential attractors in the Hilbert space $H^2(\Omega) \cap H_0^1(\Omega)$.

In this article the nonlinear function satisfies the following conditions:

- (G1) There exists l > 0 such that $f'(s) \ge -l$ for all $s \in \mathbb{R}$;
- (G2) there exists $\kappa_1 > 0$ such that $f'(s) \leq \kappa_1(1+|s|^2)$ for all $s \in \mathbb{R}$;
- (G3) $\liminf_{|s|\to\infty} F(s)/s^2 \ge 0$, where

$$F(s) = \int_0^s f(r) \, dr;$$

(G4) there exists $\kappa_2 > 0$ such that

$$\liminf_{|s| \to \infty} \frac{sf(s) - \kappa_2 F(s)}{s^2} \ge 0.$$

²⁰⁰⁰ Mathematics Subject Classification. 35B41, 35Q35.

Key words and phrases. Nonclassical diffusion equation; exponential attractors. ©2009 Texas State University - San Marcos.

Submitted October 22, 2008. Published January 9, 2009.

Supported by grants: 3ZS061-A25-016 from the Natural Sciences Foundation of Gansu Province, 0801-02 from the Education Department Foundation of Gansu Province, and NWNU-KJCXGC-03-40.

The main results of this paper will be stated as Theorem 3.10 below.

2. Preliminaries

Let $H = L^2(\Omega)$, $V_1 = H_0^1(\Omega)$, $V_2 = H^2(\Omega) \cap H_0^1(\Omega)$. We denote by (\cdot, \cdot) denote the scalar product, and $\|\cdot\|$ the norm of H. The scalar product in V_1 and V_2 are denoted by

$$((u,v)) = \int_{\Omega} \nabla u \nabla v \, dx, \quad \forall u, v \in V_1,$$
$$[u,v] = \int_{\Omega} \Delta u \Delta v \, dx, \quad \forall u, v \in V_2.$$

The corresponding norms are denoted by $\|\cdot\|_1$, $\|\cdot\|_2$. It is well known that the norm $\|\cdot\|_s$ is equivalent to the usual norm of V_s for s = 1, 2. Let X be a separable Hilbert space and \mathscr{B} be a compact subset of X, $\{S(t)\}_{t\geq 0}$ be a nonlinear continuous semigroup that leaves the set \mathscr{B} invariant and $\mathscr{A} = \bigcap_{t>0} S(t)\mathscr{B}$, that is, \mathscr{A} is a global attractor for $\{S(t)\}_{t\geq 0}$ on \mathscr{B} .

Definition 2.1 ([2]). A compact set $\mathscr{A} \subseteq \mathscr{M} \subseteq \mathscr{B}$ is called an exponential attractor for $(S(t), \mathscr{B})$ if:

- (1) \mathcal{M} has finite fractal dimension;
- (2) \mathscr{M} is a positive invariant set of $S(t) : S(t) \mathscr{M} \subseteq \mathscr{M}$, for all t > 0;
- (3) \mathscr{M} is an exponentially attracting set for the semigroup $\{S(t)\}_{t\geq 0}$; i.e. there exist universal constants $\alpha, \beta > 0$ such that

dist
$$_X(S(t)u, \mathscr{M}) \le \alpha e^{-\beta t}, \quad \forall u \in \mathscr{B}, \ t > 0,$$

where dist denotes the nonsymmetric Hausdorff distance between sets.

A sufficient condition for the existence of an exponential attractor depends on a dichotomy principle called the squeezing property; we recall this property as follows.

Definition 2.2 ([2]). A continuous semigroup of operators $\{S(t)\}_{t\geq 0}$ is said to satisfy the squeezing property on \mathscr{B} if there exists $t_* > 0$ such that $S_* = S(t_*)$ satisfies that there exists an orthogonal projection operator P of rank N_0 such that, for every u and v in \mathscr{B} , either

$$\|(I-P)(S(t_*)u_1 - S(t_*)u_2)\|_X \le \|P(S(t_*)u_1 - S(t_*)u_2)\|_X, \quad \text{or} \\ \|S(t_*)u_1 - S(t_*)u_2\|_X \le \frac{1}{8}\|u_1 - u_2\|_X.$$

Definition 2.3 ([2]). For every u, v in the compact set \mathscr{B} , if there exists a local bounded function l(t) such that

$$||S(t)u - S(t)v||_X \le l(t)|u - v||_X,$$

then S(t) is Lipschitz continuous in \mathscr{B} . Here l(t) does not depend on u or v.

3. EXPONENTIAL ATTRACTOR IN V_2

Lemma 3.1 ([8]). Assume that $g \in V'_s$ (s = 1, 2). Then for each $u_0 \in V_s$ the problem (1.1)-(1.3) has a unique solution $u = u(t) = u(t; u_0)$ with $u \in C^1([0, \tau), V_s)$ on some interval $[0, \tau)$. Also for each t fixed, u is continuous in u_0 .

EJDE-2009/09

Lemma 3.2 ([3]). Assume that $g \in H$, then for any R > 0, there exist positive constants $E_1(R)$, ρ_1 and $t_1(R)$ such that for every solution u of problem (1.1)-(1.3),

$$||u||_1 \le E_1(R), \quad t \ge 0,$$

 $||u||_1 \le \rho_1, \quad t \ge t_1(R),$

provided $||u_0||_1 \leq R$.

Lemma 3.3 ([8]). Assume $g \in V_1$, then for any R > 0, there exist positive constants $E_2(R)$, ρ_2 and $t_2(R)$ such that for every solution u of problem (1.1)-(1.3),

$$||u||_2 \le E_2(R), \quad t \ge 0,$$

 $||u||_2 \le \rho_2, \quad t \ge t_2(R),$

provided $||u_0||_2 \leq R$.

Remark 3.4. From the proof of Lemma 3.3 [8, Theorem 3.2], we obtain

$$\int_{t}^{t+1} (\|u_t\|_1^2 + \|u_t\|_2^2) \le m,$$

where m is a positive constant.

According to Lemmas 3.2 and 3.3, we have

$$\mathscr{B}_{0} = \{ u \in V_{2} : \|\nabla u\| \le \rho_{1}, \|\Delta u\| \le \rho_{2} \}$$
(3.1)

is a compact absorbing set of a semigroup of operators $\{S(t)\}_{t\geq 0}$ generated by (1.1)-(1.3). Namely, for any given $u_0 \in V_2$, there exists $T = T(u_0) > 0$ such that $||S(t)u_0|| \leq \rho$, for all $t \geq T$. Hence

$$\mathscr{B} = \overline{\bigcup_{0 \le t \le T} S(t) \mathscr{B}_0}$$

is a compact positive invariant set in V_2 under S(t).

Lemma 3.5 ([8]). Assume that $f \in C^2(\mathbb{R};\mathbb{R})$ and satisfies (G1)–(G4) with f(0) = 0, $g \in V_1$. Then the semigroup S(t) generated by (1.1)–(1.3) possesses a global attractor \mathscr{A} in V_2 .

Lemma 3.6. Assume that f satisfies (G1)–(G4), u(t), v(t) are two solutions of (1.1)–(1.3) with initial values $u_0, v_0 \in \mathcal{B}$, then

$$\|u(t) - v(t)\|_{2} \le e^{c_{1}t} \|u(0) - v(0)\|_{2}$$
(3.2)

Proof. Setting w(t) = u(t) - v(t), we see that w(t) satisfies

$$w_t - \Delta w_t - \Delta w + f(u) - f(v) = 0.$$
(3.3)

Taking the inner product with $-\Delta w$ of (3.3), we obtain

$$\frac{1}{2}\frac{d}{dt}(\|\Delta w\|^2 + \|\nabla w\|^2) + \|\Delta w\|^2 + (f(u) - f(v), -\Delta w) = 0.$$
(3.4)

Using $H_0^1(\Omega) \subset L^6(\Omega)$ and (G2), it follows that

$$\begin{aligned} \left| \int_{\Omega} (f(u) - f(v)) \Delta w \, dx \right| \\ &\leq \int_{\Omega} \left| f'(\theta u + (1 - \theta) v) ||w|| \Delta w | \, dx \quad (0 < \theta < 1) \\ &\leq c \int_{\Omega} (1 + |u|^2 + |v|^2) |w|| \Delta w | \, dx \quad (3.5) \\ &\leq c \int_{\Omega} |w|| \Delta w |dx + c \int_{\Omega} |u|^2 |w|| \Delta w |dx + c \int_{\Omega} |v|^2 |w|| \Delta w | \, dx \\ &\leq c ||w|| ||\Delta w|| + c ||u||_6^2 ||w||_6 ||\Delta w|| + c ||v||_6^2 ||w||_6 ||\Delta w||. \end{aligned}$$

Since \mathscr{B} is a bounded absorbing set given by (3.1), $u_0, v_0 \in \mathscr{B}$, from (3.5) we get

$$\left|\int_{\Omega} (f(u) - f(v))\Delta w \, dx\right| \le c \|\nabla w\| \|\Delta w\| \le \frac{\|\Delta w\|^2}{2} + \frac{c_1}{2} \|\nabla w\|^2, \qquad (3.6)$$

where c_1 is dependent on ρ_1 and ρ_2 . Combining (3.4) with (3.6), we deduce that

$$\frac{d}{dt}(\|\Delta w\|^2 + \|\nabla w\|^2) + \|\Delta w\|^2 \le c_1 \|\nabla w\|^2.$$
(3.7)

This yields

$$\frac{d}{dt}(\|\Delta w\|^2 + \|\nabla w\|^2) \le c_1(\|\nabla w\|^2 + \|\Delta w\|^2).$$
(3.8)

By the Gronwall Lemma, we get

$$\|\Delta w(t)\|^2 + \|\nabla w(t)\|^2 \le e^{c_1 t} (\|\Delta w(0)\|^2 + \|\nabla w(0)\|^2).$$

Lemma 3.7. Under the assumptions of Lemma 3.5, there exists L > 0 such that

$$\sup_{u_0 \in \mathscr{B}} \|u_t(t)\|_2 \le L, \quad \forall t \ge 0.$$

Proof. Differentiating (1.1) with respect to time and denoting $v = u_t$, we have

$$v_t - \Delta v_t - \Delta v = -f'(u)v \tag{3.9}$$

Multiplying the above equality by $-\Delta v$ and using (G1),

$$\frac{1}{2}\frac{d}{dt}(\|\nabla v\|^2 + \|\Delta v\|^2) + \|\Delta v\|^2 \le l\|\nabla v\|^2.$$
(3.10)

This inequality and Remark 3.4, by the uniform Gronwall lemma, complete the proof. $\hfill \Box$

Lemma 3.8. Under the assumptions of lemma 3.5, for every T > 0, the mapping $(t, u) \mapsto S(t)u$ is Lipschitz continuous on $[0, T] \times \mathscr{B}$.

Proof. For $u_1, u_2 \in \mathscr{B}$ and $t_1, t_2 \in [0, T]$ we have

$$||S(t_1)u_1 - S(t_2)u_2||_2 \le ||S(t_1)u_1 - S(t_1)u_2||_2 + ||S(t_1)u_2 - S(t_2)u_2||_2$$
(3.11)

The fist term of the above inequality is handled by estimate (3.2). For the second term, we have

$$\|u(t_1) - u(t_2)\|_2 \le |\int_{t_1}^{t_2} \|u_t(y)\|_2 dy| \le L|t_1 - t_2|.$$
(3.12)

EJDE-2009/09

Hence

$$||S(t_1)u_1 - S(t_2)u_2||_2 \le L[|t_1 - t_2| + ||u_1 - u_2||_2].$$
(3.13)

for some $L = L(T) \ge 0$.

Lemma 3.9. Assume that f satisfies (G1)–(G4), u(t), v(t) are two solutions of problem (1.1)–(1.3) with initial values $u_0, v_0 \in \mathcal{B}$, then the semigroup S(t) generated from (1.1)–(1.3) satisfies the squeezing property; i.e., there exist t_* and $N = N_0 = N(t_*)$ such that

$$||(I-P)(S(t_*)u_0 - S(t_*)v_0)||_2 > ||P(S(t_*)u_0 - S(t_*)v_0)||_2$$

then

$$||S(t_*)u_0 - S(t_*)v_0||_2 \le \frac{1}{8}||u_0 - v_0||_2.$$

Proof. We consider the operator $A = -\Delta$. Since A is self-adjoint, positive operator and has a compact inverse, there exists a complete set of eigenvectors $\{\omega_i\}_{i=1}^{\infty}$ in H, the corresponding eigenvalues $\{\lambda_i\}_{i=1}^{\infty}$ satisfy

$$A\omega_i = \lambda_i \omega_i, \quad 0 < \lambda_1 \le \lambda_2 \le \dots \le \lambda_i \le \dots \to +\infty, \quad i \to +\infty.$$

We set $H_N = \operatorname{span}\{\omega_1, \omega_2, \ldots, \omega_N\}$. P_N is the orthogonal projection onto H_N , and $Q_N = I - P_N$ is the orthogonal projection onto the orthogonal complement of H_N , $w = P_N w + Q_N w = p + q$. Assume that $\|P_N w(t)\| \leq \|Q_N w(t)\|$, taking the inner product of (3.3) with $-\Delta q$, we obtain

$$\frac{1}{2}\frac{d}{dt}(\|\Delta q\|^2 + \|\nabla q\|^2) + \|\Delta q\|^2 + (f(u) - f(v), -\Delta q) = 0.$$
(3.14)

Similar to (3.5), it leads to

$$\left|\int_{\Omega} (f(u) - f(v))\Delta q \, dx\right| \le c \int_{\Omega} |w| |\Delta q| \, dx + c \int_{\Omega} |u|^2 |w| |\Delta q| \, dx + c \int_{\Omega} |v|^2 |w| |\Delta q| \, dx.$$

$$(3.15)$$

Since

$$\int_{\Omega} |u|^2 |w| |\Delta q| \, dx \le \|u\|_{\infty}^2 \|w\| \|\Delta q\|$$

and by the Agmon inequality: $||u||_{\infty} \leq c ||\nabla u||^{1/2} ||\Delta u||^{1/2}$, and (3.1), from (3.15) we obtain

$$\left|\int_{\Omega} (f(u) - f(v))\Delta q \, dx\right| \le c \|w\| \|\Delta q\| \le \frac{\|\Delta q\|^2}{2} + \frac{c_2}{2} \|w\|^2, \tag{3.16}$$

where c_2 depends on ρ_1 and ρ_2 . Combining (3.14) and (3.16), we deduce that

$$\frac{d}{dt}(\|\Delta q\|^2 + \|\nabla q\|^2) + \|\Delta q\|^2 \le c_2 \|w\|^2.$$
(3.17)

Furthermore, by lemma 3.6 and the Poincaré inequality, we have

$$\frac{d}{dt}(\|\Delta q\|^{2} + \|\nabla q\|^{2}) + \frac{\|\Delta q\|^{2}}{2} + \frac{\lambda_{N+1}}{2}\|\nabla q\|^{2} \le c_{2}\|w\|^{2} \le c_{2}\|p+q\|^{2} \le 2c_{2}\lambda_{N+1}^{-1}\|\nabla q\|^{2} \le c_{3}\lambda_{N+1}^{-2}\|\Delta w\|^{2} \le c_{3}\lambda_{N+1}^{-2}e^{c_{1}t}\|\Delta w(0)\|^{2}.$$
(3.18)

Since $\lambda_1 \leq \lambda_{N+1}$,

$$\frac{d}{dt}(\|\Delta q\|^2 + \|\nabla q\|^2) + \frac{\|\Delta q\|^2}{2} + \frac{\lambda_1}{2}\|\nabla q\|^2 \le c_3 \lambda_{N+1}^{-2} e^{c_1 t} \|\Delta w(0)\|^2.$$
(3.19)

Let $c_4 = \min\{\frac{1}{2}, \frac{\lambda_1}{2}\}$. Then

$$\frac{d}{dt}(\|\Delta q\|^2 + \|\nabla q\|^2) + c_4(\|\Delta q\|^2 + \|\nabla q\|^2) \le c_3 \lambda_{N+1}^{-2} e^{c_1 t} \|\Delta w(0)\|^2.$$
(3.20)

By the Gronwall Lemma, we conclude that

$$\begin{aligned} |\Delta q(t)|^2 + ||\nabla q(t)||^2 &\leq e^{-c_4 t} (||\Delta q(0)||^2 + ||\nabla q(0)||^2) + c_5 \lambda_{N+1}^{-2} e^{c_1 t} ||\Delta w(0)||^2 \\ &\leq c_6 (e^{-c_4 t} + c_7 \lambda_{N+1}^{-2} e^{c_1 t}) ||\Delta w(0)||^2. \end{aligned}$$

Hence

$$\|\Delta w(t)\|^{2} \leq 2\|\Delta q(t)\|^{2} \leq c_{8}(e^{-c_{4}t} + c_{9}\lambda_{N+1}^{-2}e^{c_{1}t})\|\Delta w(0)\|^{2}.$$
(3.21)

Choose $t_* > 0$, such that $c_8 e^{-c_4 t_*} \leq 1/128$, and then let t_* be fixed, and N large enough, such that $c_8 c_9 \lambda_{N+1}^{-2} e^{c_1 t_*} \leq 1/128$. We obtain

$$\|\Delta w(t_*)\| \le \frac{1}{8} \|\Delta w(0)\|.$$

-	_	_	
L			
L			
_			

Theorem 3.10. Assume that $f \in C^2(\mathbb{R};\mathbb{R})$ and satisfies (G1)–(G4) with f(0) = 0, $g \in V_1$. Then there exists an exponential attractor $\mathscr{M} \subset V_2$ for the semigroup of operators $\{S(t)\}_{t\geq 0}$ generated by (1.1)–(1.3).

Proof. From Lemma 3.9, $S(t_*)$ satisfies the squeezing property for some $t_* > 0$. According to [2, Theorem 2.1], there exists an exponential attractor \mathscr{M}_* for $(S(t_*), \mathscr{B})$ and we set

$$\mathscr{M} = \bigcup_{0 \le t \le t_*} S(t) \mathscr{M}_*.$$

By Lemma 3.8, $(t, u) \mapsto S(t)u$ is Lipschitz continuous from $[0, T] \times \mathscr{B}$ to \mathscr{B} . Then as in the proof of [2, Theorem 3.1], \mathscr{M} is an exponential attractor for $(\{S(t)\}_{t\geq 0}, \mathscr{B})$.

Acknowledgements. The authors would like to thank the anonymous referee for his or her many vital comments and suggestions.

References

- [1] Aifantis. E. C; On the problem of diffusion in solids, Acta Mech, 37 (1980): 265-296.
- [2] A. Eden, C. Foias, B. Nicolaenko, R. Temam; Exponential Attractors for Dissipative Evolution Equations, New York:Masson. Paris, Wiely, (1994).
- [3] V. K. Kalantarov; On the attractors for some non-linear problems of mathematical physics, Zap. Nauch. Sem. LOMI 152 (1986): 50-54.
- [4] J. L. Lions, E. Magenes; Non-homogeneous boundary value problems and applications, Springverlag, Berlin, (1972).
- [5] Q. Z. Ma, C. K. Zhong; Global attractors of strong solutions to nonclassical diffusion equations, Journal of Lanzhou University. 40(2004): 7-9.
- [6] C. Y. Sun, S. Y. Wang, C. K. Zhong; Global attractors for a nonclassical diffusion equation, Acta math sinica, English series. 23(2007): 1271-1280.
- [7] R. Temam; Infinite-dimensional dynamical systems in mechanics and physic, Springer, New York, (1997).
- [8] S. Y. Wang, D. S. Li, C. K. Zhong; On the dynamics of a class of nonclassical parabolic equations, J. Math. Anal. Appl. 317(2006): 565-582.

EJDE-2009/09

[9] Y. L. Xiao; Attractors for a nonclassical diffusion equation, Acta Math Appl Sinica. 18 (2002): 273-276.

Yong-Feng Liu

College of Mathematics and Information Science, Northwest Normal University, Lanzhou, Gansu 730070, China

E-mail address: liuyongfeng1982@126.com

Qiaozhen Ma

College of Mathematics and Information Science, Northwest Normal University, Lanzhou, Gansu 730070, China

 $E\text{-}mail \ address: maqzh@nwnu.edu.cn$