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POSITIVE ALMOST PERIODIC SOLUTIONS OF
NON-AUTONOMOUS DELAY COMPETITIVE SYSTEMS WITH

WEAK ALLEE EFFECT

YONGKUN LI, KAIHONG ZHAO

Abstract. By using Mawhin’s continuation theorem of coincidence degree

theory, we obtain sufficient conditions for the existence of positive almost pe-

riodic solutions for a non-autonomous delay competitive system with weak
Allee effect.

1. Introduction

The Lotka-Volterra type systems have been studied in various fields of epidemi-
ology, chemistry, economics and biological science. In the past few years, there
has been increasing interest in studying dynamical characteristics such as stabil-
ity, persistence and periodicity of Lotka-Volterra type systems. There have been
considerable works on the qualitative analysis of Lotka-Volterra type systems with
delays; see [5, 6, 7, 8, 10, 18, 17]. Naturally, the study of almost periodic solutions
for Lotka-Volterra type systems is important and of great interest.

There are two main approaches to obtain sufficient conditions for the existence
and stability of the almost periodic solutions of biological models: One is using
the fixed point theorem, Lyapunov functional method and differential inequality
techniques [1, 9, 19]; the other is using functional hull theory and Lyapunov func-
tional method [11, 12, 13]. However, to the best of our knowledge, there are very
few published papers considering the almost periodic solutions for non-autonomous
Lotka-Volterra type systems by applying the method of coincidence degree theory.
Motivated by this, in this paper, we apply the coincidence theory to study the exis-
tence of positive almost periodic solutions for the following non-autonomous delay
competitive systems with weak Allee effect

u̇i(t) = ui(t)
[
Fi(t, ui(t− τii(t)))−

n∑
j=1

bij(t)uj(t)

−
n∑

j=1,j 6=i

cij(t)uj(t− τij(t))−
n∑

j=1

∫ 0

−σij

µij(t, s)uj(t+ s) ds
]
,

(1.1)
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where i = 1, 2, . . . , n, ui(t) stands for the ith species population density at time
t ∈ R, bij(t) ≥ 0, cij(t) ≥ 0, τij(t) are continuous almost periodic functions on R,
µij(t, s) are positive almost periodic functions on R × [−σij , 0], continuous with
respect to t ∈ R and integrable with respect to s ∈ [−σij , 0], where σij are nonneg-
ative constants, moreover

∫ 0

−σij
µij(t, s) ds = 1, i, j = 1, 2, . . . , n. The per capita

growth rate Fi ∈ C(R2,R) is defined by the form for each i = 1, 2, . . . , n,

Fi(t, x) = ri(t)− fi(t, x)x. (1.2)

In this definition, ri is the natural reproduction rate and fi represents the inner-
specific competition, cij in (1.1) represents the interspecific competition. In addi-
tion, fi satisfies the following condition for each i = 1, 2, . . . , n,

∂fi(t, x)
∂x

> 0 and fi(t, x) are almost periodic in t, (1.3)

for each t ∈ R, there exists a constant αi > 0 such that

fi(t, αi) = 0. (1.4)

The situations formulated by ∂fi

∂x > 0 and ∂fi

∂x < 0 are called the weak Allee effect
and the strong Allee effect respectively. Details about the Allee effect can be found
in [14, 15, 16]. The initial condition for (1.1) is

ui(s) = φi(s), i = 1, 2, . . . , n, (1.5)

where φi(s) are positive bounded continuous function on [−τ, 0], i = 1, 2, . . . , n and
τ = max1≤i,j≤n{maxt∈R |τij(t)|, σij}.

The organization of the rest of this paper is as follows. In Section 2, we intro-
duce some preliminary results which are needed in later sections. In Section 3, we
establish our main results for the existence of almost periodic solutions of (1.1).
Finally, we make the conclusion in Section 4.

2. Preliminaries

To obtain the existence of an almost periodic solution of (1.1), we firstly make
the following preparations.

Definition 2.1 ([3]). Let u(t) : R → R be continuous in t. u(t) is said to be
almost periodic on R, if, for any ε > 0, the set K(u, ε) = {δ : |u(t + δ) − u(t)| <
ε, for any t ∈ R} is relatively dense, that is for any ε > 0, it is possible to find a real
number l(ε) > 0, for any interval with length l(ε), there exists a number δ = δ(ε)
in this interval such that |u(t+ δ)− u(t)| < ε, for any t ∈ R.

Definition 2.2. A solution u(t) = (u1(t), u2(t), . . . , un(t))T of (1.1) is called an
almost periodic solution if and only if for each i = 1, 2, . . . , n, ui(t) is almost peri-
odic.

For convenience, we denote AP (R) is the set of all real valued, almost periodic
functions on R and let

∧(fj) =
{
λ̃ ∈ R : lim

T→∞

1
T

∫ T

0

fj(s)e−ieλs ds 6= 0
}
, j = 1, 2, . . . , n,

mod(fj) =
{ N∑

i=1

niλ̃i : ni ∈ Z,N ∈ N+, λ̃i ∈ ∧(fj)
}
, j = 1, 2, . . . , n
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be the set of Fourier exponents and the module of fj , respectively, where fj(·) is
almost periodic. Suppose fj(t, φj) is almost periodic in t, uniformly with respect to
φj ∈ C([−τ, 0],R). Kj(fj , ε, φj(s)) = {δ : |fj(t+δ, φj(s))−fj(t, φj(s))| < ε, ∀t ∈ R}
denote the set of ε-almost periods uniformly with respect to Φj(s) ∈ C([−τ, 0],R).
lj(ε) denote the length of inclusion interval. m(fj) = 1

T

∫ T

0
fj(s) ds be the mean

value of fj on interval [0, T ], where T > 0 is a constant. Clearly, m(fj) depends on
T . m[fj ] = limT→∞

1
T

∫ T

0
fj(s) ds.

Lemma 2.3 ([3]). Suppose that f and g are almost periodic. Then the following
statements are equivalent

(i) mod(f) ⊃ mod(g),
(ii) for any sequence {t∗n}, if limn→∞ f(t + t∗n) = f(t) for each t ∈ R, then

there exists a subsequence {tn} ⊆ {t∗n} such that limn→∞ g(t + tn) = f(t)
for each t ∈ R.

Lemma 2.4 ([2]). Let u ∈ AP (R). Then
∫ t

t−τ
u(s) ds is almost periodic.

Let X and Z be Banach spaces. A linear mapping L : dom(L) ⊂ X → Z is called
Fredholm mapping if its kernel, denoted by ker(L) = {X ∈ dom(L) : Lx = 0},
has finite dimension and its range, denoted by Im(L) = {Lx : x ∈ dom(L)},
is closed and has finite codimension. The index of L is defined by the integer
dimK(L) − codimdom(L). If L is a Fredholm mapping with index 0, then there
exists continuous projections P : X → X and Q : Z → Z such that Im(P ) = ker(L)
and ker(Q) = Im(L). Then L|dom(L)∩ker(P ) : Im(L) ∩ ker(P ) → Im(L) is bijective,
and its inverse mapping is denoted by KP : Im(L) → dom(L)∩ker(P ). Since ker(L)
is isomorphic to Im(Q), there exists a bijection J : ker(L) → Im(Q). Let Ω be a
bounded open subset of X and let N : X → Z be a continuous mapping. If QN(Ω)
is bounded and KP (I −Q)N : Ω → X is compact, then N is called L-compact on
Ω, where I is the identity.

Let L be a Fredholm linear mapping with index 0 and let N be a L-compact
mapping on Ω. Define mapping F : dom(L) ∩ Ω → Z by F = L−N . If Lx 6= Nx
for all x ∈ dom(L) ∩ ∂Ω, then by using P,Q,KP , J defined above, the coincidence
degree of F in Ω with respect to L is defined by

degL(F,Ω) = deg(I − P − (J−1Q+KP (I −Q))N,Ω, 0),

where deg(g,Γ, p) is the Leray-Schauder degree of g at p relative to Γ.
Then The Mawhin’s continuous theorem is given as follows:

Lemma 2.5 ([4]). Let Ω ⊂ X be an open bounded set and let N : X → Z be a
continuous operator which is L-compact on Ω. Assume

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ dom(L), Lx 6= λNx;
(b) for each x ∈ ∂Ω ∩ L,QNx 6= 0;
(c) deg(JNQ,Ω ∩ ker(L), 0) 6= 0.

Then Lx = Nx has at least one solution in Ω ∩ dom(L).
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3. Main Result

In this section, we state and prove the main results of this paper. By making
the substitution ui(t) = exp{yi(t)}, i = 1, 2, . . . , n, (1.1) can be reformulated as

ẏi(t) = ri(t)− fi

(
t, exp{yi(t− τii(t))}

)
exp

{
yi(t− τii(t))

}
−

n∑
j=1

bij(t) exp
{
yj(t)

}
−

n∑
j=1,i 6=j

cij(t) exp
{
yj(t− τij(t))

}
−

n∑
j=1

∫ 0

−σij

exp
{
yj(t+ s)

}
ds, i = 1, 2, . . . , n.

(3.1)

The initial condition (1.5) can be rewritten as

yi(s) = lnφi(s) =: ψi(s), i = 1, 2, . . . , n (3.2)

Set X = Z = V1 ⊕ V2, where

V1 =
{
y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ C(R,Rn) : yi(t) ∈ AP (R),

mod(yi(t)) ⊂ mod(Hi(t)),∀λ̃i ∈ ∧(yi(t)) satisfies |λ̃i| > β, i = 1, 2, . . . , n
}
,

V2 = {y(t) ≡ (h1, h2, . . . , hn)T ∈ Rn},
Hi(t) = ri(t)− fi

(
t, exp{ψi(−τii(t))}

)
exp

{
ψi(−τii(t))

}
−

n∑
j=1

bij(t) exp
{
ψj(0)

}
−

n∑
j=1,i 6=j

cij(t) exp
{
ψj(−τij(0))

}
−

n∑
j=1

∫ 0

−σij

µij(t, s) exp
{
ψj(s)

}
ds

and ψi(·) is defined as (3.2), i = 1, 2, . . . , n. β is a given constant. For y =
(y1, y2, . . . , yn)T ∈ Z, define ‖y‖ = max1≤i≤n supt∈R |yi(t)|.

Lemma 3.1. Z is a Banach space equipped with the norm ‖ · ‖.

Proof. If y{k} ⊂ V1 and y{k} = (y{k}1 , y
{k}
2 , . . . , y

{k}
n )T converges to

y = (y1, y2, . . . , yn)T , that is y{k}j → yj , as k →∞, j = 1, 2, . . . , n. Then it is easy
to show that yj ∈ AP (R) and mod(yj) ∈ mod(Hj). For any λ̃j ≤ β, we have

lim
T→∞

1
T

∫ T

0

y
{k}
j (t)e−ieλjtdt = 0, j = 1, 2, . . . , n;

therefore,

lim
T→∞

1
T

∫ T

0

yj(t)e
−ieλjtdt = 0, j = 1, 2, . . . , n,

which implies y ∈ V1. Then it is not difficult to see that V1 is a Banach space
equipped with the norm ‖ · ‖. Thus, we can easily verify that x and Z are Banach
spaces equipped with the norm ‖ · ‖. The proof is complete. �

Lemma 3.2. Let L : X → Z, Ly = ẏ, then L is a Fredholm mapping of index 0.
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Proof. Clearly, L is a linear operator and ker(L) = V2. We claim that Im(L) = V1.
Firstly, we suppose that z(t) = (z1(t), z2(t), . . . , zn(t))T ∈ Im(L) ⊂ Z. Then there
exist z{1}(t) = (z{1}1 (t), z{1}2 (t), . . . , z{1}n (t))T ∈ V1 and constant vector z{2} =
(z{2}1 , z

{2}
2 , . . . , z

{2}
n )T ∈ V2 such that

z(t) = z{1}(t) + z{2};

that is,

zi(t) = z
{1}
i (t) + z

{2}
i , i = 1, 2, . . . , n.

From the definition of zi(t) and z
{1}
i (t), we can easily see that

∫ t

t−τ
zi(s) ds and∫ t

t−τ
z
{1}
i (s) ds are almost periodic function. So we have z{2}i ≡ 0, i = 1, 2, . . . , n,

then z{2} ≡ (0, 0, . . . , 0)T , which implies z(t) ∈ V1, that is Im(L) ⊂ V1.
On the other hand, if u(t) = (u1(t), u2(t), . . . , un(t))T ∈ V1\{0}, then we have∫ t

0
uj(s) ds ∈ AP (R), j = 1, 2, . . . , n. If λ̃j 6= 0, then we obtain

lim
T→∞

1
T

∫ T

0

( ∫ t

0

uj(s)ds
)
e−ieλjt dt =

1

iλ̃j

lim
T→∞

1
T

∫ T

0

uj(t)e−ieλjt dt,

j = 1, 2, . . . , n. It follows that

∧
[ ∫ t

0

uj(s) ds−m
( ∫ t

0

uj(s) ds
)]

= ∧(uj(t)), j = 1, 2, . . . , n,

hence ∫ t

0

u(s) ds−m
( ∫ t

0

u(s) ds
)
∈ V1 ⊂ X

Note that
∫ t

0
u(s) ds −m(

∫ t

0
u(s) ds) is the primitive of u(t) in X, we have u(t) ∈

Im(L), that is V1 ⊂ Im(L). Therefore, Im(L) = V1.
Furthermore, one can easily show that Im(L) is closed in Z and

dim ker(L) = n = codim Im(L);

therefore, L is a Fredholm mapping of index 0. The proof is complete. �

Lemma 3.3. Let N : X → Z, Ny = (Gy
1, G

y
2, . . . , G

y
n)T , where

Gy
i = ri(t)− fi

(
t, exp{yi(t− τii(t))}

)
exp

{
yi(t− τii(t))

}
−

n∑
j=1

bij(t) exp
{
yj(t)

}
−

n∑
j=1,i 6=j

cij(t) exp
{
yj(t− τij(t))

}
−

n∑
j=1

∫ 0

−σij

exp
{
yj(t+ s)

}
ds, i = 1, 2, . . . , n.

Set

P : X → Z, Py =
(
m(y1),m(y2), . . . ,m(yn)

)T
,

Q : Z → Z, Qz =
(
m[z1],m[z2], . . . ,m[zn]

)T
.

Then N is L-compact on Ω, where Ω is an open bounded subset of X.
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Proof. Obviously, P and Q are continuous projectors such that

ImP = ker(L), Im(L) = ker(Q).

It is clear that (I −Q)V2 = {0}, (I −Q)V1 = V1. Hence

Im(I −Q) = V1 = Im(L).

Then in view of

Im(P ) = ker(L), Im(L) = ker(Q) = Im(I −Q),

we obtain that the inverse KP : Im(L) → ker(P )∩dom(L) of LP exists and is given
by

KP (z) =
∫ t

0

z(s) ds−m
[ ∫ t

0

z(s) ds
]
.

Thus,

QNy =
(
m[Gy

1],m[Gy
2], . . . ,m[Gy

n]
)T
,

KP (I −Q)Ny =
(
f(y1)−Q(f(y1)), f(y2)−Q(f(y2)), . . . , f(yn)−Q(f(yn))

)T
,

where

f(yi) =
∫ t

0

(
Gy

i −m[Gy
i ]

)
ds, i = 1, 2, . . . , n.

Clearly, QN and (I−Q)N are continuous. Now we will show that KP is also con-
tinuous. By assumptions, for any 0 < ε < 1 and any compact set φi ⊂ C

(
[−τ, 0],R

)
,

let li(εi) be the length of the inclusion interval of Ki(Hi, εi, φi), i = 1, 2, . . . , n. Sup-
pose that {zk(t)} ⊂ Im(L) = V1 and zk(t) = (zk

1 (t), zk
2 (t), . . . , zk

n(t))T uniformly
converges to z(t) = (z1(t), z2(t), . . . , zn(t))T , that is zk

i → zi, as k → ∞, i =
1, 2, . . . , n. Because of

∫ t

0
zk(s) ds ∈ Z, k = 1, 2, . . . , n, there exists σi(0 < σi < εi)

such that Ki(Hi, σi, φi) ⊂ Ki(
∫ t

0
zk
i (s)ds, σi, φi), i = 1, 2, . . . , n. Let li(σi) be the

length of the inclusion interval of Ki(Hi, σi, φi) and

li = max
{
li(εi), li(σi)

}
, i = 1, 2, . . . , n.

It is easy to see that li is the length of the inclusion interval of Ki(Hi, σi, φi)
and Ki(Hi, εi, φi), i = 1, 2, . . . , n. Hence, for any t /∈ [0, li], there exists ξt ∈
Ki(Hi, σi, φi) ⊂ Ki(

∫ t

0
zk
i (s) ds, σi, φi) such that t + ξt ∈ [0, li], i = 1, 2, . . . , n.
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Hence, by the definition of almost periodic function we have∥∥∫ t

0

zk(s) ds
∥∥

= max
1≤i≤n

sup
t∈R

∣∣∣ ∫ t

0

zk
i (s) ds

∣∣∣
≤ max

1≤i≤n
sup

t∈[0,li]

∣∣∣ ∫ t

0

zk
i (s) ds

∣∣∣ + max
1≤i≤n

sup
t/∈[0,li]

∣∣∣ ∫ t

0

zk
i (s) ds−

∫ t+ξt

0

zk
i (s) ds

+
∫ t+ξt

0

zk
i (s) ds

∣∣∣
≤ 2 max

1≤i≤n
sup

t∈[0,li]

∣∣∣ ∫ t

0

zk
i (s) ds

∣∣∣ + max
1≤i≤n

sup
t/∈[0,li]

∣∣∣ ∫ t

0

zk
i (s) ds−

∫ t+ξt

0

zk
i (s) ds

∣∣∣
≤ 2 max

1≤i≤n

∣∣∣ ∫ li

0

zk
i (s) ds

∣∣∣ + max
1≤i≤n

εi.

(3.3)
From this inequality, we can conclude that

∫ t

0
z(s)ds is continuous, where z(t) =

(z1(t), z2(t), . . . , zn(t))T ∈ Im(L). Consequently, KP and KP (I − Q)Ny are con-
tinuous.

From (3.3), we also have
∫ t

0
z(s) ds and KP (I−Q)Ny also are uniformly bounded

in Ω. Further, it is not difficult to verify that QN(Ω) is bounded and KP (I−Q)Ny
is equicontinuous in Ω. By the Arzela-Ascoli theorm, we have immediately conclude
that KP (I − Q)N(Ω) is compact. Thus N is L-compact on Ω. The proof is
complete. �

By (1.3), fi(t, x) can be represented as a power-series at αi of x, in form of

fi(t, x) = fi(t, αi) +
∂fi

∂x

∣∣∣
(t,αi)

x+ o(x), i = 1, 2, . . . , n,

where o(x) is a higher-order infinitely small quantity of x. By (1.4), we conclude
that fi(t, αi) = 0, i = 1, 2, . . . , n. For convenience, we denote ∂fi

∂x

∣∣
(t,αi)

:= cii(t),
i = 1, 2, . . . , n. By (1.3), cii(t) > 0.

Theorem 3.4. Assume that

m[ri(t)] = lim
T→∞

1
T

∫ T

0

ri(t) dt > 0,

m
[ n∑

j=1

(bij(t) + cij(t))
]

= lim
T→∞

1
T

∫ T

0

n∑
j=1

(bij(t) + cij(t)) dt > 0 .

Then (1.1) has at least one positive almost periodic solution.

Proof. To use the continuation theorem of coincidence degree theorem to establish
the existence of a solution of (3.1), we set Banach space X and Z the same as those
in Lemma 3.1 and set mappings L,N, P,Q the same as those in Lemma 3.2 and
Lemma 3.3, respectively. Then we can obtain that L is a Fredholm mapping of
index 0 and N is a continuous operator which is L-compact on Ω.

Now, we are in the position of searching for an appropriate open, bounded subset
Ω for the application of the continuation theorem. Corresponding to the operator
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equation

Ly = λNy, λ ∈ (0, 1),

we obtain

ẏi(t) = λ
[
ri(t)− cii(t) exp{yi(t− τii(t))} − o(exp{2yi(t− τii(t))})

−
n∑

j=1

bij(t) exp{yj(t)} −
n∑

j=1,i 6=j

cij(t) exp{yj(t− τij(t))}

−
n∑

j=1

∫ 0

−σij

µij(t, s) exp{yj(t+ s)}ds
]
, i = 1, 2, . . . , n.

(3.4)

Assume that y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ X is a solution of (3.4) for some
λ ∈ (0, 1). Denote

M1 = max
1≤i≤n

sup
t∈R

{yi(t)}, M2 = min
1≤i≤n

inf
t∈R

{yi(t)},

by (3.4), we derive

m[ri(t)] = m
[
cii(t) exp{yi(t− τii(t))}+ o(exp{2yi(t− τii(t))})

+
n∑

j=1

bij(t) exp{yj(t)}+
n∑

j=1,i 6=j

cij(t) exp{yj(t− τij(t))}

+
n∑

j=1

∫ 0

−σij

µij(t, s) exp{yj(t+ s)}ds
]
, i = 1, 2, . . . , n

and consequently

m[ri(t)] ≤ exp{M1}
{
m

[ n∑
j=1

(bij(t) + cij(t))
]

+ n+ 1
}
, i = 1, 2, . . . , n;

that is,

M1 ≥ ln
m[ri(t)]

m[
∑n

j=1(bij(t) + cij(t))] + n+ 1
, i = 1, 2, . . . , n. (3.5)

Similarly, we can get

M2 ≤ ln
m[ri(t)]

m[
∑n

j=1(bij(t) + cij(t))] + n− 1
, i = 1, 2, . . . , n. (3.6)

By (3.5) and (3.6), we find that there exist ti1 ∈ R, i = 1, 2, . . . , n such that
yi(ti1) ≤ R1, where

R1 = max
1≤i≤n

∣∣∣ ln
m[ri(t)]

m[
∑n

j=1(bij(t) + cij(t))] + n− 1

∣∣∣ + 1.
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Furthermore, we have∥∥y∥∥ ≤ max
1≤i≤n

|yi(ti1)|+ max
1≤i≤n

sup
t∈R

∣∣∣ ∫ t

ti
1

ẏi(s) ds
∣∣∣

≤ R1 + 2 max
1≤i≤n

sup
t∈[ti

1,ti
1+li]

∣∣∣ ∫ t

ti
1

ẏi(s) ds
∣∣∣ + max

1≤i≤n
εi

≤ R1 + 2 max
1≤i≤n

∣∣∣ ∫ ti
1+li

ti
1

ẏi(s) ds
∣∣∣ + 1.

(3.7)

Choose a point τ̃i such that τ̃i − ti1 ∈ [li, 2li]∩Ki(Hi, σi, φi), where σi(0 < σi < εi)
satisfies Ki(Hi, σi, φi) ⊂ Ki(yi, εi, φi), i = 1, 2, . . . , n. Integrating (3.4) from ti1 to
τ̃i, we get

λ

∫ eτi

ti
1

[
cii(t) exp{yi(t− τii(t))}+ o(exp{2yi(t− τii(t))}) +

n∑
j=1

bij(t) exp{yj(t)}

+
n∑

j=1,i 6=j

cij(t) exp{yj(t− τij(t))}+
n∑

j=1

∫ 0

−σij

µij(t, s) exp{yj(t+ s)}ds
]
dt

= λ

∫ eτi

ti
1

ri(t) dt−
∫ eτi

ti
1

ẏi(t) dt

≤ λ

∫ eτi

ti
1

|ri(t)|dt+ εi, i = 1, 2, . . . , n.

From the above inequality and (3.4), we obtain∫ eτi

ti
1

|ẏi(t)|dt

≤ λ

∫ eτi

ti
1

|ri(t)|dt+ λ

∫ eτi

ti
1

[
cii(t) exp{yi(t− τii(t))}+ o(exp{2yi(t− τii(t))})

+
n∑

j=1

bij(t) exp{yj(t)}+
n∑

j=1,i 6=j

cij(t) exp{yj(t− τij(t))}

+
n∑

j=1

∫ 0

−σij

µij(t, s) exp{yj(t+ s)}ds
]
dt

≤ 2
∫ eτi

ti
1

|ri(t)|dt+ εi

≤ 2
∫ eτi

ti
1

|ri(t)|dt+ 1, i = 1, 2, . . . , n,

which together with (3.7) and τ̃ ≥ ti1 + li, i = 1, 2, . . . , n, we have ‖y‖ ≤ R, where

R = R1 + 4 max
1≤i≤n

∫ eτ
0

|ri(t)|dt+ 3.

Clearly, R is independent of λ. Take

Ω = {y = (y1, y2, . . . , yn)T ∈ X : ‖y‖ < R+ 1}.
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It is clear that Ω satisfies the requirement (a) in Lemma 2.5. when y ∈ ∂Ω∩ker(L),
y = (y1, y2, . . . , yn)T is a constant vector in Rn with ‖y‖ = R+ 1. Then

QNy =
(
m[G1],m[G2], . . . ,m[Gn]

)T
, y ∈ X

where

Gi = ri(t)− fi(t, exp{yi}) exp{yi}

−
n∑

j=1

bij(t) exp{yj} −
n∑

j=1,i 6=j

cij(t) exp{yj}

−
n∑

j=1

∫ 0

−σij

µij(t, s) exp{yj}ds, i = 1, 2, . . . , n,

thus QNy 6= 0, which implies that the requirement (b) in Lemma 2.5 is satisfied.
Furthermore, take the isomorphism J : Im(Q) → ker(L), Jz ≡ z and let Φ(γ; y) =
−γy + (1− γ)JQNy, then for any y ∈ ∂Ω ∩ ker(L), yT Φ(γ; y) < 0, we have

deg{JQN,Ω ∩ ker(L), 0} = deg{−y,Ω ∩ ker(L), 0} 6= 0.

So, the requirement (c) in Lemma 2.5 is satisfied. Hence, (3.1) has at least one
almost periodic solution in Ω, that is (1.1) has at least one positive almost periodic
solution. The proof is complete. �

We remark that when n = 1 in (1.1), if F1(t, x) is a linear function and µ11(t) ≡ 0,
then Theorem 3.4 is the same as [13, Theorem 3.1].
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