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BLOW-UP OF SOLUTIONS FOR A SYSTEM OF NONLINEAR
WAVE EQUATIONS WITH NONLINEAR DAMPING

SHUN-TANG WU

Abstract. We study the initial-boundary value problem for a system of non-
linear wave equations, involving nonlinear damping terms, in a bounded do-

main Ω with the initial and Dirichlet boundary conditions. The nonexistence
of global solutions is discussed under some conditions on the given parameters.

Estimates on the lifespan of solutions are also given.

1. Introduction

In this article we shall consider the following initial-boundary value problem for
a system of nonlinear wave equations:

�u + |ut|p−1ut + m2
1u = 4λ(u + αv)3 + 2βuv2 in Ω× [0, T ), (1.1)

�v + |vt|q−1vt + m2
2v = 4αλ(u + αv)3 + 2βvu2 in Ω× [0, T ), (1.2)

with initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.3)

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω, (1.4)

and boundary conditions

u(x, t) = 0, x ∈ ∂Ω, t > 0, (1.5)

v(x, t) = 0, x ∈ ∂Ω, t > 0, (1.6)

where � = ∂2

∂t2 −∆, ∆ =
∑3

j=1
∂2

∂x2
j

and Ω ⊂ R3 is a bounded domain with a smooth
boundary ∂Ω so that Divergence theorem can be applied and λ, β and α are real
numbers, and p, q ≥ 1, T > 0.

The initial-boundary value problem for a single wave equation:

utt −∆u(t) + a|ut(t)|p−1ut(t) = f(u), (1.7)

where a > 0, p ≥ 1, was considered by many authors. For f(u) = |u|m−1u, m > 1,
this model was first studied by Levine [7, 8] in the linear case (p = 1). He showed
that solutions with negative initial energy blow up in finite time. When p = 1,
Ikehata [5] proved that for sufficiently small initial data, the trajectory (u(t), v(t))
goes to (0, 0) in H1

0 (Ω) × L2(Ω) as t → ∞. Georgiev and Todorova [2] extended
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Levine’s result to nonlinear case (p > 1). They showed that solutions continue to
exist globally if p ≥ m and blow up in finite time if p < m with sufficiently negative
initial energy, that is, in the L∞−norm for suitable large initial data. Later, Ikehata
[4] showed that (1.7) admits a global solution for sufficiently small initial data for
p > 1. In unbounded domain, for f(u) = −λ(x)2u + |u|m−1u, m > 1, here λ(x)
satisfies some decay conditions, there are some results about global existence and
asymptotic behavior in [14]. Aassila [1] treated (1.7) for f(u) = −u + |u|m−1u,
m > 1, and gave the global existence and energy decay property. Reed [15] proposed
this interesting problem of (1.1)-(1.6) without damping terms in (1.1) and (1.2). As
a model it describes the interaction of scalar fields u, v of mass m1,m2 respectively.
This system defines the motion of charged mesons in an electromagnetic field which
was first introduced by Segal [16]. Later, Jörgens [6], Makhankov [11], and Medeiros
and Menzala [12] studied such systems to find the existence of weak solutions of
the mixed problem in a bounded domain. Further generalizations are also given
in [12,13] by Galerkin method. Recently, the existence of global and nonglobal
solutions of a system of semilinear wave equations without dissipative terms were
discussed in [9, 10].

In this paper we are interested in the blow-up behavior of solutions for a system
(1.1)-(1.6) in a bounded domain Ω in R3. This work improves an earlier work [10],
in which similar results have been established for (1.1)-(1.6) in the absence of the
damping terms. The paper is organized as follows. In section 2, we give some
lemmas which will be used later, and we mention the local existence Theorem 2.4.
In section 3, we first define an energy function E(t) by (3.1) and show that it is a
nonincreasing function of t. Then, we discuss the blow-up properties of (1.1)-(1.6)
in two cases. In first case, p = q = 1, the main result is given in Theorem 3.4, which
contains the estimates of upper bound of the blow-up time. In second case, 1 < p,
q < 3, the nonexistence of global solutions is given in Theorem 3.6. Moreover,
estimates for the blow-up time T are also given.

2. Preliminary results

In this section, we will give some lemmas and the local existence result in The-
orem 2.4.

Lemma 2.1 (Sobolev-Poincaré inequality). If 2 ≤ p ≤ 6, then

‖u‖p ≤ C(Ω, p)‖∇u‖2,

for u ∈ H1
0 (Ω), where

C(Ω, p) = sup
{ ‖u‖p

‖∇u‖2
: u ∈ H1

0 (Ω), u 6= 0
}
,

and ‖ · ‖p denotes the norm of Lp(Ω).

Lemma 2.2 ([9]). Let δ > 0 and B(t) ∈ C2(0,∞) be a nonnegative function
satisfying

B′′(t)− 4(δ + 1)B′(t) + 4(δ + 1)B(t) ≥ 0. (2.1)

If
B′(0) > r2B(0) + K0, (2.2)

with r2 = 2(δ+1)−2
√

(δ + 1)δ, then B′(t) > K0 for t > 0, where K0 is a constant.
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Lemma 2.3 ([9]). If J(t) is a nonincreasing function on [t0,∞) and satisfies the
differential inequality

J ′(t)2 ≥ a + bJ(t)2+
1
δ , for t ≥ t0, (2.3)

where a > 0, b ∈ R, then there exists a finite time T ∗ such that

lim
t→T∗−

J(t) = 0 .

Upper bounds for T ∗ are estimated as follows:
(i) If b < 0, then

T ∗ ≤ t0 +
1√
−b

ln

√
−a/b√

−a/b− J(t0)
.

(ii) If b = 0, then

T ∗ ≤ t0 +
J(t0)
J ′(t0)

.

(iii) If b > 0, then

T ∗ ≤ J(t0)√
a

or T ∗ ≤ t0 + 2(3δ+1)/(2δ) δc√
a
{1− [1 + cJ(t0)]−1/(2δ)},

where c = (a
b )2+

1
δ .

Now, we state the local existence result which is proved in [19].

Theorem 2.4 (Local solution). Let p, q ≥ 1, and u0, v0 ∈ H1
0 (Ω), u1, v1 ∈ L2(Ω),

then there exists a unique local solution (u, v) of (1.1)-(1.6) satisfying (u, v) ∈ YT ,
where

YT =
{
w = (u, v) : w ∈ C([0, T ];H1

0 (Ω)×H1
0 (Ω)), wt ∈ C([0, T ];L2(Ω)× L2(Ω)),

ut ∈ Lp+1(Ω× (0, T )), vt ∈ Lq+1(Ω× (0, T ))
}
.

3. Blow-up property

In this section, we will discuss the blow up phenomena of two problems, where
p = q = 1 in subsection 3.1 and 1 < p, q < 3 in subsection 3.2. Let (u, v) be a
solution of (1.1)-(1.6), we define the energy functional

E(t) =
1
2

∫
Ω

[|∇u|2 + |∇v|2 + u2
t + v2

t + m2
1u

2 + m2
2v

2

− 2λ(u + αv)4 − 2βu2v2] dx, for t ≥ 0.

(3.1)

Lemma 3.1. E(t) is a nonincreasing function for t ≥ 0 and

d

dt
E(t) = −‖ut‖p+1

p+1 − ‖vt‖q+1
q+1. (3.2)

Proof. Multiplying (1.1) by ut and (1.2) by vt, and integrating them over Ω. Then,
adding them together, and integrating by parts, we obtain

E(t)− E(0) = −
∫ t

0

(‖ut‖p+1
p+1 + ‖vt‖q+1

q+1)dt for t ≥ 0.

Being the primitive of an integrable function, E(t) is absolutely continuous and
equality (3.2) is satisfied. �
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3.1. Case p = q = 1. In this subsection we consider (1.1),(1.2) with p = q = 1:

�u + ut + m2
1u = 4λ(u + αv)3 + 2βuv2 in Ω× [0, T ), (3.3)

�v + vt + m2
2v = 4αλ(u + αv)3 + 2βvu2 in Ω× [0, T ). (3.4)

Assumption:
(A1) m2

1ξ
2 + m2

2η
2 − 2λ(ξ + αη)4 − 2βξ2η2 < 0, for all ξ, η ∈ R.

Definition: A solution w(t) = (u(t), v(t)) of (3.3), (3.4), and (1.3)-(1.6) is called
blow-up if there exists a finite time T ∗ such that

lim
t→T∗−

{ ∫
Ω

(u2 + v2) dx +
∫ t

0

(‖u‖22 + ‖v‖22)dt
}

= ∞.

Let

a(t) =
∫

Ω

(u2 + v2) dx +
∫ t

0

∫
Ω

(u2 + v2) dxds, for t ≥ 0. (3.5)

Lemma 3.2. Assume (A1), and that 0 < δ ≤ 1/2, then we have

a′′(t)− 4(δ + 1)
∫

Ω

(u2
t + v2

t ) dx

≥ (−4− 8δ)E(0) + (4 + 8δ)
∫ t

0

(‖ut‖22 + ‖vt‖22)dt.

(3.6)

Proof. Form (3.5), we have

a′(t) = 2
∫

Ω

(uut + vvt) dx + ‖u‖22 + ‖v‖22. (3.7)

By (3.3), (3.4) and Divergence theorem, we get

a′′(t) = 2
∫

Ω

(u2
t + v2

t ) dx− 2(‖∇u‖22 + ‖∇v‖22 + ‖m1u‖22 + ‖m2v‖22)

+ 8λ‖u + αv‖44 + 8β‖uv‖22.
(3.8)

By (3.2), we have from (3.8)

a′′(t)− 4(δ + 1)
∫

Ω

(u2
t + v2

t ) dx

= (−4− 8δ)E(0) + (4 + 8δ)
∫ t

0

(‖ut‖22 + ‖vt‖22)ds

+ [4δ(‖∇u‖22 + ‖∇v‖22) + 2(‖m1u‖22 + ‖m2v‖22)]
+ (4δ − 2)[‖m1u‖22 + ‖m2v‖22 − 2λ‖u + αv‖44 − 2β‖uv‖22].

Therefore, from (A1), we obtain (3.6). �

We remark that (A1) is automatically true if E(0) ≤ 0. Now, we consider three
different cases on the sign of the initial energy E(0).
(1) If E(0) < 0, then from (3.6), we have

a′(t) ≥ a′(0)− 4(1 + 2δ)E(0)t, t ≥ 0.

Thus we get a′(t) > ‖u0‖22 + ‖v0‖22 for t > t∗, where

t∗ = max
{a′(0)− (‖u0‖22 + ‖v0‖22)

4(1 + 2δ)E(0)
, 0

}
. (3.9)
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(2) If E(0) = 0, then a′′(t) ≥ 0 for t ≥ 0. If a′(0) > ‖u0‖22 + ‖v0‖22, then we have
a′(t) > ‖u0‖22 + ‖v0‖22, t ≥ 0.
(3) For the case that E(0) > 0, we first note that

2
∫ t

0

∫
Ω

uut dx dt = ‖u‖22 − ‖u0‖22. (3.10)

By Hölder inequality and Young’s inequality, we have from (3.10),

‖u‖22 ≤ ‖u0‖22 +
∫ t

0

‖u‖22dt +
∫ t

0

‖ut‖22dt. (3.11)

Similarly,

‖v‖22 ≤ ‖v0‖22 +
∫ t

0

‖v‖22dt +
∫ t

0

‖vt‖22dt. (3.12)

By Hölder inequality, Young′s inequality and then using (3.11) and (3.12), we have
from (3.7),

a′(t) ≤ a(t) + ‖u0‖22 + ‖v0‖22 +
∫

Ω

(u2
t + v2

t ) dx +
∫ t

0

(‖ut‖22 + ‖vt‖22)dt. (3.13)

Hence by (3.6) and (3.12), we obtain

a′′(t)− 4(δ + 1)a′(t) + 4(δ + 1)a(t) + K1 ≥ 0,

where
K1 = (4 + 8δ)E(0) + 4(δ + 1)(‖u0‖22 + ‖v0‖22) .

Let

b(t) = a(t) +
K1

4(1 + δ)
, t > 0.

Then b(t) satisfies (2.1). By Lemma 2.3 we see that if

a′(0) > r2

[
a(0) +

K1

4(1 + δ)
]
+ (‖u0‖22 + ‖v0‖22), (3.14)

then a′(t) > (‖u0‖22 + ‖v0‖22), t > 0, where r2 is given in Lemma 2.2. Consequently,
we have the following result.

Lemma 3.3. Assume (A1) and that either one of the following statements is sat-
isfied:

(i) E(0) < 0,
(ii) E(0) = 0 and a′(0) > ‖u0‖22 + ‖v0‖22,
(iii) E(0) > 0 and (3.14) holds .

Then, a′(t) > ‖u0‖22 + ‖v0‖22 for t > t0, where t0 = t∗ is given by (3.9) in case (i)
and t0 = 0 in cases (ii) and (iii).

Now, we find an estimate for the life span of a(t). Let

J(t) =
[
a(t) + (T1 − t)(‖u0‖22 + ‖v0‖22)

]−δ
, for t ∈ [0, T1], (3.15)

where T1 > 0 is a certain constant which will be specified later. Then we have

J ′(t) = −δJ(t)1+
1
δ (a′(t)− ‖u0‖22 − ‖v0‖22),

J ′′(t) = −δJ(t)1+
2
δ V (t),

(3.16)
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where
V (t) = a′′(t)

[
a(t) + (T1 − t)(‖u0‖22 + ‖v0‖22)

]
− (1 + δ)(a′(t)− ‖u0‖22 − ‖v0‖22)2.

(3.17)

For simplicity of calculation, we denote

Pu =
∫

Ω

u2 dx, Pv =
∫

Ω

v2 dx,

Qu =
∫ t

0

‖u‖22dt, Qv =
∫ t

0

‖v‖22dt,

Ru =
∫

Ω

u2
t dx, Rv =

∫
Ω

v2
t dx,

Su =
∫ t

0

‖ut‖22dt, Sv =
∫ t

0

‖vt‖22dt.

From (3.7), (3.10), and Hölder inequality, we get

a′(t) = 2
∫

Ω

(uut + vvt) dx + ‖u0‖22 + ‖v0‖22 + 2
∫ t

0

∫
Ω

(uut + vvt) dx dt

≤ 2(
√

RuPu +
√

QuSu +
√

RvPv +
√

QvSv) + ‖u0‖22 + ‖v0‖22.
(3.18)

By (3.6), we have

a′′(t) ≥ (−4− 8δ)E(0) + 4(1 + δ)(Ru + Su + Rv + Sv). (3.19)

Thus, from (3.18), (3.19), (3.17) and (3.15), we obtain

V (t) ≥ [(−4− 8δ)E(0) + 4(1 + δ)(Ru + Su + Rv + Sv)] J(t)−1/δ

− 4(1 + δ)(
√

RuPu +
√

QuSu +
√

RvPv +
√

QvSv)2.

And by (3.15) and (3.5), we have

V (t) ≥ (−4− 8δ)E(0)J(t)−1/δ

+ 4(1 + δ)[(Ru + Su + Rv + Sv)(T1 − t)(‖u0‖22 + ‖v0‖22) + Θ(t)],

where

Θ(t) = (Ru + Su + Rv + Sv)(Pu + Qu + Pv + Qv)

− (
√

RuPu +
√

QuSu +
√

RvPv +
√

QvSv)2.

By Schwarz inequality, Θ(t) is nonnegative. Hence, we have

V (t) ≥ (−4− 8δ)E(0)J(t)−1/δ, t ≥ t0. (3.20)

Therefore, by (3.16) and (3.20), we get

J ′′1+
1
δ , t ≥ t0. (3.21)

Note that by Lemma 3.3, J ′(t) < 0 for t > t0. Multiplying (3.21) by J ′(t) and
integrating it from t0 to t, we get

J ′2 ≥ α + βJ(t)2+
1
δ for t ≥ t0,

where

α = δ2J(t0)2+
2
δ

[
(a′(t0)− ‖u0‖22 − ‖v0‖22)2 − 8E(0)J(t0)

−1
δ

]
, (3.22)

β = 8δ2E(0). (3.23)
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We observe that

α > 0 if and only if E(0) <
(a′(t0)− ‖u0‖22 − ‖v0‖22)2

8
[
a(t0) + (T1 − t0)(‖u0‖22 + ‖v0‖22)

] .

Then by Lemma 2.3, there exists a finite time T ∗ such that limt→T∗− J(t) = 0 and
the upper bound of T ∗ is estimated respectively according to the sign of E(0). This
means that

lim
t→T∗−

{ ∫
Ω

(u2 + v2) dx +
∫ t

0

(‖u‖22 + ‖v‖22)dt
}

= ∞. (3.24)

Theorem 3.4. Assume that (A1) and that either one of the following statements
is satisfied:

(1) E(0) < 0,
(ii) E(0) = 0 and a′(0) > (‖u0‖22 + ‖v0‖22)
(iii) 0 < E(0) <

(a′(t0)−‖u0‖22−‖v0‖22)
2

8
[
a(t0)+(T1−t0)(‖u0‖22+‖v0‖22)

] and (3.14) holds.

Then the solution (u(t), v(t)) blows up at finite time T ∗ in the sense of (3.24). In
case (i),

T ∗ ≤ t0 −
J(t0)
J ′(t0)

.

Furthermore, if J(t0) < min{1,
√
−α/β}, we have

T ∗ ≤ t0 +
1√
−β

ln

√
−α/β√

−α/β − J(t0)
.

In case (ii),

T ∗ ≤ t0 −
J(t0)
J ′(t0)

or T ∗ ≤ t0 +
J(t0)√

α
.

In case (iii),

T ∗ ≤ J(t0)√
α

or T ∗ ≤ t0 + 2
3δ+1
2δ

δc√
α

{
1− [1 + cJ(t0)]

−1
2δ

}
,

where c = (α/β)2+
1
δ , here α and β are given in (3.22), (3.23). Note that in case

(i), t0 = t∗ is given in (3.9) and t0 = 0 in case (ii) and (iii).

We remark that the choice of T1 in (3.15) is possible under some conditions as
in [17, 18].

3.2. Case 1 < p, q < 3. In this subsection we consider (1.1), (1.2) with 1 < p,
q < 3:

�u + |ut|p−1ut + m2
1u = 4λ(u + αv)3 + 2βuv2 in Ω× [0, T ),

�v + |vt|q−1vt + m2
2v = 4αλ(u + αv)3 + 2βvu2 in Ω× [0, T ).

Definition: A solution (u, v) of (1.1)-(1.6) is called blow-up if there exists a finite
time T > 0 such that

lim
t→T−

[ ∫
Ω

(|∇u|2 + |∇v|2) dx
]

= ∞.

Lemma 3.5. For all λ > 1, α 6= 0, there exists β > 0 such that

ξ4 + α4η4 ≤ λ(ξ + αη)4 + βξ2η2, for all ξ, η ∈ R. (3.25)
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Proof. If η = 0, then (3.25) is true for λ > 1, ξ ∈ R. Now, let x = ξ
η , where ξ, η ∈ R,

and η 6= 0. Then to show (3.25) is equivalent to claim that for all λ > 1, α 6= 0, there
exists β > 0 such that h(x) ≤ βx2, here h(x) = x4+α4−λ(x+α)4, x ∈ R. Since h(x)
is a continuous function, h(0) = α4 − λα4 < 0, and h(±∞) = −∞, there exists a
finite number M such that M = supx∈R h(x). If M ≤ 0, we could choose any β > 0.
If M > 0, since h(0) < 0, there exists δ > 0 such that h(x) < 0 for |x| < δ. Thus,
we could choose β = M in this interval. For |x| ≥ δ, h(x) ≤ M = M

δ2 δ2 ≤ M
δ2 x2.

Therefore, from above discussion, we can take β = max{M
δ2 ,M}, and we have

h(x) ≤ βx2, for x ∈ R. �

Theorem 3.6 (Nonexistence of global solutions). If 1 < p, q < 3, E(0) < 0 and
(3.25) holds, then the solutions of (1.1)-(1.6) blow up at a finite time T , 0 < T ≤
z(0)1−r

c7(1−r) , where z(0) = k1(−E(0))1−α1 +
∫
Ω
(u1u0 + v1v0) dx, here k1, α1, and r are

certain positive constants given in the proof, and c7 is given in (3.43).

Proof. Let

a(t) =
1
2

∫
Ω

(u2 + v2) dx, for t ≥ 0. (3.26)

By differentiating, we obtain

a′(t) =
∫

Ω

(utu + vtv) dx,

a′′(t) =
∫

Ω

(u2
t + uttu + v2

t + vttv) dx, for t ≥ 0.

By using (1.1), (1.2) and (3.2), we obtain

a′′(t) = 2
∫

Ω

(u2
t + v2

t ) dx− 2E(t) + 2B(t)

−
∫

Ω

|ut|p−1utu dx−
∫

Ω

|vt|q−1vtv dx,

(3.27)

where
B(t) = λ‖u + αv‖44 + β‖uv‖22. (3.28)

By Hölder inequality, we observe that

|
∫

Ω

|ut|p−1utu dx| ≤ |Ω|
3−p

4(p+1) ‖ut‖p
p+1‖u‖4.

Then from (3.25),

|
∫

Ω

|ut|p−1utu dx| ≤ |Ω|
3−p

4(p+1) ‖ut‖p
p+1B(t)

1
4 . (3.29)

Noting that from (3.2) and (3.1), we have

B(t) ≥ −E(t) ≥ −E(0) > 0. (3.30)

Thus, from (3.29), (3.30), and 1 < p < 3, we obtain∣∣ ∫
Ω

|ut|p−1utu dx
∣∣ ≤ ‖ut‖p

p+1|Ω|
3−p

4(p+1) B(t)
1

p+1 (−E(t))
1
4−

1
p+1 . (3.31)

Then, by Young’s inequality,∣∣ ∫
Ω

|ut|p−1utu dx
∣∣ ≤ [

εp+1
1 B(t) + c(ε1)−

p+1
p |Ω|

3−p
4p ‖ut‖p+1

p+1

]
(−E(t))

1
4−

1
p+1 , (3.32)
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here ε1 is a positive constant to be specified later. Letting 0 < α1 < min{ 1
p+1 −

1
4 , 1

q+1 −
1
4}, and by (3.32) and (3.30), we have

|
∫

Ω

|ut|p−1utu dx| ≤ c(ε1)−
p+1

p |Ω|
3−p
4p (−E(0))α1+

1
4−

1
p+1 (−E(t))−α1(−E′(t))

+ εp+1
1 B(t)(−E(0))

1
4−

1
p+1 .

(3.33)
In the same way, we have∣∣ ∫

Ω

|vt|q−1vtv dx
∣∣ ≤ c(ε2)−

q+1
q |Ω|

3−q
4q (−E(0))α1+

1
4−

1
q+1 (−E(t))−α1(−E′(t))

+ εq+1
2 B(t)(−E(0))

1
4−

1
q+1 ,

(3.34)
here ε2 is a positive constant. Now, we define

Z(t) = k1(−E(t))1−α1 + a′(t), t ≥ 0, (3.35)

where k1 > −a′′1−α1 is a positive number to be chosen later. From (3.35), we see

Z ′(t) = k6(1− α1)(−E(t))−α1(−E′(t)) + a′′(t), t ≥ 0.

By (3.27), (3.33) and (3.34), we get

Z ′(t) ≥ µ(−E(t))−α1(−E′(t)) + (−2E(t)) + 2
∫

Ω

(u2
t + v2

t ) dx

+
[
2− εp+1

1 (−E(0))
1
4−

1
p+1 − εq+1

2 (−E(0))
1
4−

1
q+1

]
B(t),

(3.36)

where

µ = k1(1− α1)− c(ε1)−
p+1

p |Ω|
3−p
4p (−E(0))α1+

1
4−

1
p+1

− c(ε2)−
q+1

q |Ω|
3−q
4q (−E(0))α1+

1
4−

1
q+1 .

We choose

εp+1
1 =

1
2
(−E(0))

1
p+1−

1
4 , εq+1

2 =
1
2
(−E(0))

1
q+1−

1
4 ,

and k1 is sufficiently large such that µ > 0 and Z(0) > 0. Then (3.36) becomes

Z ′(t) ≥
[
− 2E(t) + ‖ut‖22 + ‖vt‖22 + B(t)

]
. (3.37)

Hence Z(t) > 0 for t ≥ 0. Note that r = 1/(1 − α1) > 1, from (3.35), and by
Young’s inequality and Hölder inequality, it follows that

Z(t)r ≤ 22(r−1)
[
kr
1(−E(t)) +

∣∣ ∫
Ω

utu dx
∣∣r +

∣∣ ∫
Ω

vtv dx
∣∣r]

≤ 22(r−1)[kr
1(−E(t)) + ‖ut‖r

2‖u‖r
2 + ‖vt‖r

2‖v‖r
2].

(3.38)

On the other hand, using Hölder inequality, we have

‖ut‖r
2‖u‖r

2 ≤ c1‖ut‖r
2‖u‖r

4,

here c1 = |Ω|r/4. And by Young’s inequality, we obtain

‖ut‖r
2‖u‖r

2 ≤ c2(‖ut‖rβ1
2 + ‖u‖rβ2

4 ), (3.39)
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where 1
β1

+ 1
β2

= 1, c2 = c2(c1, β1, β2) > 0. In particular, we take rβ1 = 2; that is,
β1 = 2(1 − α1). Therefore, for α1 small enough, the numbers β1 and β2 are close
to 2. For 0 < α1 < min{ 1

p+1 −
1
4 , 1

q+1 −
1
4}, by (3.25) and (3.30), we have

‖u‖rβ2
4

(
‖u‖44

)rβ2/4 ≤ B(t)rβ2/4

= (
1

−E(0)
B(t))rβ2/4(−E(0))rβ2/4

≤ c3B(t)

because

rβ2 =
2

1− 2α1
< 4,

where c3 = (−E(0))
rβ2
4 −1. Then, by (3.25), we obtain

‖ut‖r
2‖u‖r

2 ≤ c4

(
‖ut‖22 + B(t)

)
. (3.40)

Similarly, we also get

‖vt‖r
2‖v‖r

2 ≤ c5

(
‖vt‖22 + B(t)

)
, (3.41)

here c4 = c2 max(1, c3), and c5 is some positive constant. Then, from (3.38), (3.40)
and (3.41), we deduce that

Z(t)r ≤ 22(r−1)c6[−2E(t) + ‖ut‖22 + ‖vt‖22 + B(t)], (3.42)

where c6 = max{kr
1
2 , c4 + c5}. Therefore, by (3.37) and (3.42), we have

Z ′(t) ≥ c7Z(t)r, (3.43)

c7 = 1
22(r−1)c6

. A simple integration of (3.43) over (0, t) yields

Z(t) ≥
(
Z(0)1−r − c7(r − 1)t

)− 1
α1−1 . (3.44)

Since Z(0) > 0, (3.44) shows that Z becomes infinite in a finite time T ≤ Z(0)1−r

c7(r−1) .
From (3.1), we have

−2E(t) + ‖ut‖22 + ‖vt‖22 ≤ 2B(t). (3.45)

Thus, by (3.37) and (3.45), we get

Z(t)r ≤ 3B(t). (3.46)

By Poincaré inequality and Hölder inequality, we have

B(t) ≤ c8(‖∇u‖2 + ‖∇v‖2)4, (3.47)

c8 = c8(α, β, Ω) > 0. Hence, from (3.46) and (3.47), we obtain

Z(t)r ≤ 3c8(‖∇u‖2 + ‖∇v‖2)4.

Therefore, the proof is complete. �



EJDE-2009/105 BLOW-UP OF SOLUTIONS 11

References

[1] M. Aassila; Global existence and global nonexistence of solutions to a wave equation with
nonlinear damping and source terms, Asymptotic Analysis, 30(2002), 301-311.

[2] V. Georgiev and D. Todorova; Existence of solutions of the wave equations with nonlinear

damping and source terms, J. Diff. Eqns. 109(1994), 295-308.
[3] M. Hosoya and Y. Yamada; On some nonlinear wave equations II : global existence and

energy decay of solutions, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 38(1991), 239-250.

[4] R. Ikehata; Some remarks on the wave equations with nonlinear damping and source terms,
Nonlinear Anal., Theory, Methods and Applications, 10(1996), 1165-1175.

[5] R. Ikheata and T. Suzuki; Stable and unstable sets for evolution equations of parabolic and
hyperbolic type, Hiroshima Math. J., 26(1996), 475-491.

[6] K. Jörgens; Nonlinear Wave Equations, University of Colordo, Department of Mathematics,

1970.
[7] H. A. Levine; Instability and nonexistence of global solutions of nonlinear wave equation of

the form Dutt = Au + F (u), Trans. Amer. Math. Soc., 192(1974), 1-21.

[8] H. A. Levine; Some additional remarks on the nonexistence of global solutions to nonlinear
wave equations, SIAM J. Math. Anal., 5(1974), 138-146.

[9] M. r. Li and L. Y. Tsai; Existence and nonexistence of global solutions of some systems

of semilinear wave equations, Nonlinear Anal., Theory, Methods & Applications, 54(2003),
1397-1415.

[10] M. R. Li and L Y. Tsai; On a system of nonlinear wave equations, Taiwanese J. Math.,

7(2003), 557-573.
[11] V. G. Makhankov; Dynamics of classical solutions in integrable systems, Physics Reports

(Section C of Physics Letters ), 35(1978), 1-128.
[12] L. A. Medeiros, G. P. and Menzala; On a mixed problem for a class of nonlinear Klein-Gordon

equations, Acta Mathematica Hungarica, 52(1988), 61-69.

[13] M. M. Miranda and L. A. Medeiros; On the existence of global solutions of a coupled nonlinear
Klein-Gordon equations, Funkcialaj Ekvacioj, 30(1987), 147-161.

[14] M. Nakao and K. Ono; Global existence to the Cauchy problem of the semilinear wave

equation with a nonlinear dissipation, Funkcialaj Ekvacioj, 38(1995), 417-431.
[15] M. Reed; Abstract Nonlinear Wave Equations, Springer-verlag, 1976.

[16] I. Segal; Nonlinear partial differential equations in quantum field theory, Proc. Symp. Appl.

Math. A. M. S., 17(1965), 210-226.
[17] Shun-Tang Wu and Long-Yi Tsai; Blow-up of solutions for some nonlinear wave equations

of Kirchhoff type with some dissipation, Nonlinear Anal. Theory, Methods and Applications,

65(2006), 243-264.
[18] Shun-Tang Wu and Long-Yi Tsai; On global existence and blow-up of solutions for an integro-

differential equation with strong damping, Taiwanese J. Math., 10(2006), 979-1014.
[19] Shun-Tang Wu and Long-Yi Tsai; Global existence and asymptotic behavior for a coupled

nonlinear wave equations, To appear in Taiwanese J. Math.

Shun-Tang Wu, General Education Center, National Taipei University of Technol-

ogy, Taipei, 106, Taiwan
E-mail address: stwu@ntut.edu.tw


	1. Introduction
	2. Preliminary results
	3. Blow-up property
	3.1. Case p=q=1
	3.2. Case 1<p, q<3

	References

