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INVERSE EIGENVALUE PROBLEMS FOR SEMILINEAR
ELLIPTIC EQUATIONS

TETSUTARO SHIBATA

Abstract. We consider the inverse nonlinear eigenvalue problem for the equa-
tion

−∆u + f(u) = λu, u > 0 in Ω,

u = 0 on ∂Ω,

where f(u) is an unknown nonlinear term, Ω ⊂ RN is a bounded domain

with an appropriate smooth boundary ∂Ω and λ > 0 is a parameter. Under
basic conditions on f , for any given α > 0, there exists a unique solution

(λ, u) = (λ(α), uα) ∈ R+ × C2(Ω̄) with ‖uα‖2 = α. The curve λ(α) is called

the L2-bifurcation branch. Using a variational approach, we show that the
nonlinear term f(u) is determined uniquely by λ(α).

1. Introduction

We consider the nonlinear eigenvalue problem

−∆u + f(u) = λu in Ω, (1.1)

u > 0 in Ω, (1.2)

u = 0 on ∂Ω, (1.3)

where Ω ⊂ RN (N ≥ 1) is a bounded domain with an appropriate smooth boundary
∂Ω, λ > 0 is a parameter and f(u) is unknown nonlinear term which is assumed to
satisfy the following conditions:

(A1) f(u) is a function of C1 for u ≥ 0 satisfying f(0) = f ′(0) = 0,
(A2) f(u)/u is strictly increasing for u ≥ 0,
(A3) f(u)/u →∞ as u →∞.
(A4) There exists a constant C > 0 such that F (u + v) ≤ C(F (u) + F (v)) for

u, v ≥ 0, where F (u) :=
∫ u

0
f(s) ds.

Typical examples of functions satisfying (A1)–(A4) are f(u) = up (p > 1, u ≥ 0)
and f(u) = up log(1 + u) (p > 1, u ≥ 0). From [1, 2, 9, 10] we know that solutions
to (1.1)–(1.3) have the following fundamental properties:
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(P1) If f(u) satisfies (A1)–(A3), then for any given α > 0, there exists a unique
solution (λ, u) = (λ(α), uα) ∈ R+ × C2(Ω̄) of (1.1)–(1.3) with ‖uα‖2 = α,
where ‖ · ‖2 denotes usual L2-norm. Furthermore, if we assume (A4), then
this solution is obtained by a variational method.

(P2) λ(α) (α > 0) is an unbounded increasing curve of class C1 and λ(α) →∞
(resp. λ(α) → λ1) as α → ∞ (resp. α → 0), where λ1 > 0 is the first
eigenvalue of −∆ in Ω with Dirichlet zero boundary condition. λ(α) is
called the L2-bifurcation branch of positive solutions to (1.1)–(1.3).

The purpose of this paper is to show that unknown term f(u) is determined
uniquely from the L2-bifurcation branch λ = λ(α). To explain our motivation and
intention more precisely, we recall some famous problems in linear and nonlinear
eigenvalue problems.

Linear eigenvalue problems have a long history and have been investigated in-
tensively by many authors; among other, we have (i) Weyl formula (asymptotic
distribution of eigenvalues [5]) and (ii) inverse eigenvalue problems (determination
of the potential term by using the information of eigenvalues [8]).

As for the nonlinear problems, one of the most popular problem is the bifurcation
problem; that is, to investigate the structure of the solution set of (1.1)–(1.3). Since
(1.1)–(1.3) is regarded as the nonlinear eigenvalue problems, it is reasonable to treat
it in L2-framework like the linear eigenvalue problems.

Based on the properties (P1) and (P2), asymptotic behavior of λ(α) as α →∞
is one of the main interest of this field, and several asymptotic formulas for λ(α) as
α →∞ have been obtained for the case, for instance, f(u) = up, f(u) = up log(1+u)
(p > 1, u ≥ 0). We refer the reader to [11, 12] and the references therein. We also
refer to [2, 3, 4, 6, 7] for the works from a viewpoint of bifurcation problems. The
Weyl formula and bifurcation problems share certain similarities in that both deal
with asymptotic properties of eigenvalues.

For the inverse problem, however, there are a few works in nonlinear problems.
One of the setting of the inverse problem in nonlinear case is as follows. Assume that
the unknown nonlinear term f(u) satisfies (A1)–(A3). If we know the asymptotic
expansion formula for λ(α) as α → ∞, which has the same leading and second
terms as those for the case f(u) = up, then we conclude that f(u) = up + g(u),
where g(u) is determined from the second term of λ(α) with suitable remainder
term [13]. This sort of approach to the nonlinear inverse spectral problems seems
to be new. However, as far as the author knows, the basic and important problem
as we consider it here has not been treated yet.

To state our results, we introduce the following assumptions on the functions f1

and f2. Let F1(u) =
∫ u

0
f1(s) ds and F2(u) =

∫ u

0
f2(s) ds.

(B1) f1(u) ≤ f2(u) for all u ≥ 0.
(B2) F1(u) ≤ F2(u) for all u ≥ 0.
(B3) The connected components of the set V := {u ≥ 0 : f1(u) = f2(u)} are

locally finite.
(B4) The connected components of the set W := {u ≥ 0 : F1(u) = F2(u)} are

locally finite.

It is clear that (B1) implies (B2). However, there exist f1 and f2 which satisfy
(B1) and do not satisfy (B3) (cf. Remark 1.3 below). Therefore, (B1) is listed for
completeness. (B3) and (B4) imply that V and W consist of the intervals and the
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points {un}∞n=1 whose accumulation point is only ∞. It is clear that (B3) and (B4)
are satisfied if f1(u) and f2(u) are analytic in u.

Now we state our main results.

Theorem 1.1. Assume that f1(u) and f2(u) satisfy (A1)–(A4) if N ≥ 2, and (A1)–
(A3) if N = 1. Let λ1(α) and λ2(α) be the L2-bifurcation branches of (1.1)–(1.3)
associated with the nonlinear term f(u) = f1(u) and f(u) = f2(u), respectively.
Assume that λ1(α) = λ2(α) for any α > 0. Then f1(u) ≡ f2(u) provided one of the
conditions (B1)–(B4) is satisfied.

For the case N = 1, we obtain the desired conclusion under the following condi-
tion.

(A5) There exists a constant 0 < δ � 1 such that f(u)u ≥ (2+δ)F (u) for u � 1.

Theorem 1.2. Let N = 1. Assume that f1(u) and f2(u) satisfy (A1)–(A3), (A5).
Let λ1(α) and λ2(α) be the L2-bifurcation branches of (1.1)–(1.3) associated with
the nonlinear term f(u) = f1(u) and f(u) = f2(u), respectively. Assume that
λ1(α) = λ2(α) for any α > 0. Furthermore, assume that there exists a constant
u0 > 0 such that f1(u) = f2(u) for any u ≥ u0. Then f1(u) ≡ f2(u).

Remark 1.3. (1) Let f1(u) = up and f2(u) = up + uq(1 + sin(1/u)) for 0 <
u < δ � 1 (f2(0) := 0) with q > p + 1 > 3. For u > δ, it is possible for
us to define f1 and f2 to satisfy (A1)–(A4) and f1(u) ≤ f2(u), that is, f1 and
f2 satisfy (A1)–(A4) and (B1) (cf. Appendix). Therefore, by Theorem 1.1, we
conclude that λ1(α) 6≡ λ2(α). However, it is clear that (B3) is not satisfied. Indeed,
f1(un) = f2(un) for un = ((3 + 4n)π/2)−1 (n ∈ N), namely, un ∈ V and un → 0
as n → ∞. So u = 0 is the accumulation point of {un}∞n=1. Similarly, we also see
that (B2) and (B4) are irrelevant each other.

(2) It should be mentioned that (B3) implies (B4). The proof will be given in
Appendix. We also introduce an example of f1 and f2 which does not satisfy (B3)
but satisfies (B4) in Appendix.

The rest of this paper is organized as follows. In Section 2, we prove Theorem
1.1. Theorem 1.2 will be proved in Section 3. Section 4 is an appendix.

2. Proof of Theorem 1.1

We prove Theorem 1.1 under the conditions (B2) and (B4). We first note that
f(u) which satisfies (A1)–(A3) is extended naturally to the odd C1 function on R
by f(u) = −f(−u) for u < 0. Therefore, F (u) is regarded as the even function on
R.

In the following subsections 2.1 and 2.2, we show that, for a given α > 0, the
unique solution pair (λj(α), uj,α) of (1.1)–(1.3), which satisfies ‖uj,α‖2 = α, is
obtained by variational method.

2.1. Critical value of (1.1)–(1.3). We first define the critical values C1(α) and
C2(α) corresponding to f1 and f2, respectively. Let H1

0 (Ω) be the usual real Sobolev
space. For j = 1, 2, let Xj := {u ∈ H1

0 (Ω) :
∫
Ω

Fj(u(x)) dx < ∞}. We put
Yj := H1

0 (Ω)
⋂

Xj . Then by (A4), Yj is a subspace of H1
0 (Ω). For j = 1, 2 and

v ∈ Yj , let

Φj(v) :=
1
2
‖∇v‖22 +

∫
Ω

Fj(v(x)) dx. (2.1)
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For j = 1, 2 and α > 0, we put

Cj(α) := inf{Φj(v) : v ∈ Mj,α}, (2.2)

where Mj,α := {v ∈ Yj : ‖v‖2 = α}. Let φ ∈ Mj,1. Since αφ ∈ Mj,α for α > 0, by
(2.1), as α → 0,

0 ≤ Cj(α) ≤ Φj(αφ) =
1
2
α2‖∇φ‖22 +

∫
Ω

Fj(αφ(x)) dx → 0.

Therefore, we put Cj(0) = 0.

2.2. Existence of unique minimizer. Secondly, we show the existence of unique
minimizer for Cj(α) (j = 1, 2). By choosing a minimizing sequence {vj,α,k}∞k=1 ⊂
Mj,α, which is non-negative (since we can choose |vj,α,k|), and choosing a subse-
quence of {vj,α,k}∞k=1 again if necessary, there exists vj,α,∞ ∈ H1

0 (Ω) such that as
k →∞,

Φ(vj,α,k) → Cj(α), (2.3)

vj,α,k → vj,α,∞ weakly in H1
0 (Ω), (2.4)

vj,α,k → vj,α,∞ in L2(Ω), (2.5)

vj,α,k → vj,α,∞ a.e. in Ω. (2.6)

Then by (2.1), (2.3), (2.6) and Fatou’s Lemma, we obtain

Φj(vj,α,∞) =
1
2
‖∇vj,α,∞‖22 +

∫
Ω

Fj(vj,α,∞(x)) dx

≤ lim inf
k→∞

1
2
‖∇vj,α,k‖22 + lim inf

k→∞

∫
Ω

Fj(vj,α,k(x)) dx

≤ lim inf
k→∞

(1
2
‖∇vj,α,k‖22 +

∫
Ω

Fj(vj,α,k(x)) dx
)

= lim
k→∞

Φj(vj,α,k) = Cj(α).

(2.7)

By the above inequality, ∫
Ω

Fj(vj,α,∞(x)) dx < ∞.

This implies that vj,α,∞ ∈ Yj . By this, (2.2), (2.5) and (2.7), we obtain that
vj,α,∞ ∈ Mj,α (j = 1, 2) and Cj(α) = Φj(vj,α,∞). Then by Lagrange multiplier
theorem, we see that vj,α,∞ is a non-negative weak solution (consequently, a positive
classical solution by a standard regularity theorem and strong maximum principle)
of (1.1)–(1.3) with f = fj . Namely, there exists a Lagrange multiplier λj,α such
that vj,α,∞ ∈ Mj,α satisfies (1.1)–(1.3) with f = fj and λ = λj,α. Then by (P1), we
see that (λj,α, vj,α,∞) = (λj(α), uα). This implies the uniqueness of the minimizer.
We write (λ1(α), u1,α) and (λ2(α), u2,α) for the solutions pair associated with f1

and f2, respectively.

Remark. If N = 1, then let Yj = H1
0 (Ω). Since H1

0 (Ω) ⊂ C(Ω̄), we obtain the
same conclusion as above without (A4).
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2.3. The relationship between Cj(α) and λj(α). In section 2.2, we see that
Cj(α) = Φ(uj,α). By this, (1.1), (2.1) and integration by parts, we have [11]

dCj(α)
dα

=
∫

Ω

∇uj,α
d

dα
∇uj,α +

∫
Ω

f(uj,α)
d

dα
uj,α dx

=
∫

Ω

{−∆uj,α + f(uj,α)} d

dα
uj,α dx

=
∫

Ω

λj(α)uj,α
d

dα
uj,α dx

=
1
2
λj(α)

d

dα

∫
Ω

u2
j,α dx = λj(α)α.

(2.8)

Lemma 2.1. C1(α) = C2(α) for α ≥ 0.

Proof. Since C1(0) = C2(0) = 0, by (2.8),

C1(α) =
∫ α

0

d

ds
C1(s) ds =

∫ α

0

λ1(s)s ds

=
∫ α

0

λ2(s)s ds

=
∫ α

0

d

ds
C2(s) ds = C2(α).

(2.9)

Thus, the proof is complete. �

Lemma 2.2. Assume (B2). Then f1(u) ≡ f2(u) for u ≥ 0.

Proof. If F1(u) = F2(u) for all u ≥ 0, then it is clear that f1(u) ≡ f2(u) for u ≥ 0.
Assume that there exists 0 < u0 < ∞ such that F1(u0) < F2(u0). Then there exists
α > 0 such that ‖u2,α‖∞ = u0. Then by (B2),

C1(α) ≤ Φ1(u2,α)

=
1
2
‖∇u2,α‖22 +

∫
Ω

F1(u2,α(x)) dx

<
1
2
‖∇u2,α‖22 +

∫
Ω

F2(u2,α(x)) dx = C2(α).

(2.10)

This contradicts Lemma 2.1. Therefore, we obtain that F1(u) = F2(u) for all u ≥ 0,
which implies our conclusion. Thus the proof is complete. �

Lemma 2.3. Assume (B4). Then f1(u) ≡ f2(u) for u ≥ 0.

Proof. By using the fact that 0 ∈ W , we show that W = [0,∞), namely, F1(u) ≡
F2(u) for u ≥ 0, which implies our conclusion. There are two cases to consider.

(a) Assume that u = 0 is contained in the interval [0, ε] ⊂ W for some constant
0 < ε � 1. This implies that F1(u) = F2(u) for 0 ≤ u ≤ ε. We consider the
connected component K of W such that [0, ε] ⊂ K. We show that K = [0,∞).
If there exists u1 > 0 such that K = [0, u1], then without loss of generality, there
exists a constant 0 < ε1 � 1 such that F1(u) < F2(u) for u1 < u < u1 + ε1 by (B4).
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We choose α > 0 satisfying ‖u2,α‖∞ = u1 + ε1. Then

C1(α) ≤ Φ1(u2,α) =
1
2
‖∇u2,α‖22 +

∫
Ω

F1(u2,α(x)) dx

<
1
2
‖∇u2,α‖22 +

∫
Ω

F2(u2,α(x)) dx = C2(α).
(2.11)

This contradicts Lemma 2.1. Therefore, we see that u1 = ∞ and K = [0,∞). This
implies that F1(u) = F2(u) for all u ≥ 0 and obtain our conclusion. This proves
case (a).

(b) Assume that u = 0 is an isolated point in W . Then by (B4), without loss of
generality, there exists a constant 0 < ε � 1 such that F1(u) < F2(u) for 0 < u < ε.
Then by the same argument as that in (a) just above, we can derive a contradiction.
Therefore, the case (b) does not occur.

Combining (a) and (b), we obtain our conclusion. Thus the proof is complete. �

3. Proof of Theorem 1.2

In this section, let Ω = I = (0, 1), λα = λ1(α) = λ2(α) and Mα = M1,α = M2,α

for simplicity. Further, C denotes various positive constants independent of α � 1.

Lemma 3.1. Assume that there exists α > 0 such that∫
I

F1(u1,α(x)) dx ≥
∫

I

F2(u1,α(x)) dx. (3.1)

Then f1(u) = f2(u) for 0 ≤ u ≤ ‖u1,α‖∞.

Proof. Since u1,α ∈ Mα, by (2.2), Lemma 2.1 and (3.1),

C1(α) =
1
2
‖u′1,α‖22 +

∫
I

F1(u1,α(x)) dx

≥ 1
2
‖u′1,α‖22 +

∫
I

F2(u1,α(x)) dx ≥ C2(α).
(3.2)

This along with Lemma 2.1 implies that C2(α) = Φ2(u1,α). Then by section 2.2,
we obtain u1,α ≡ u2,α. By this and (1.1), f1(u1,α(x)) = f2(u1,α(x)) for x ∈ I. Thus
the proof is complete. �

corollary 3.2. Assume that there exists {αk}∞k=1 such that αk → ∞ as k → ∞,
and satisfies ∫

I

F1(u1,αk
(x)) dx ≥

∫
I

F2(u1,αk
(x)) dx (3.3)

or ∫
I

F2(u2,αk
(x)) dx ≥

∫
I

F1(u2,αk
(x)) dx. (3.4)

Then f1(u) ≡ f2(u).

Finally, we consider the case where neither (3.3) nor (3.4) holds.

Lemma 3.3. Assume that there exists α0 > 0 such that for any α > α0,∫
I

F1(u1,α(x)) dx <

∫
I

F2(u1,α(x)) dx, (3.5)∫
I

F2(u2,α(x)) dx <

∫
I

F1(u2,α(x)) dx. (3.6)

Then f1(u) ≡ f2(u).
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Proof. For u > u0, ∫ u

u0

f1(s) ds = F1(u)−
∫ u0

0

f1(s) ds, (3.7)∫ u

u0

f2(s) ds = F2(u)−
∫ u0

0

f2(s) ds. (3.8)

Since f1(u) = f2(u) for u ≥ u0, by (3.7) and (3.8), for u ≥ u0,

F1(u) = F2(u) + C0, (3.9)

where C0 :=
∫ u0

0
(f1(s) − f2(s))ds. We consider the cases where C0 = 0, C0 > 0

and C0 < 0. To this end, we need some useful tools. It is well known [2] that for
j = 1, 2,

uj,α(x) = uj,α(1− x), x ∈ Ī , (3.10)

u′j,α(x) > 0, x ∈ (0, 1/2), (3.11)

‖uj,α‖∞ = uj,α(1/2), (3.12)

fj(‖uj,α‖∞)
‖uj,α‖∞

≤ λα ≤
fj(‖uj,α‖∞)
‖uj,α‖∞

+ π2. (3.13)

Multiply (1.1) by u′1,α(x). Then for x ∈ Ī, we obtain

[u′′1,α(x) + λαu1,α(x)− f1(u1,α(x))]u′1,α(x) = 0.

This implies that for x ∈ Ī,
1
2
u′1,α(x)2 +

1
2
λαu1,α(x)2 − F1(u1,α(x)) ≡ constant

=
1
2
λα‖u1,α‖2∞ − F1(‖u1,α‖∞) (put x = 1/2).

By this and (3.11), for 0 ≤ x ≤ 1/2,

u′1,α(x) =
√

λα(‖u1,α‖22 − u1,α(x)2)− 2(F1(‖u1,α‖∞)− F (u1,α(x))). (3.14)

Case 1. Assume that C0 = 0 in (3.9). By (3.5), (3.9), (3.10), (3.12) and (3.14),
for α � 1,

0 <

∫
I

(F2(u1,α(x))− F1(u1,α(x))) dx

= 2
∫ 1/2

0

(F2(u1,α(x))− F1(u1,α(x))) dx

= 2
∫ 1/2

0

(F2(u1,α(x))− F1(u1,α(x)))u′1,α(x)√
λα(‖u1,α‖2∞ − u1,α(x)2)− 2(F1(‖u1,α‖∞)− F (u1,α(x)))

dx

= 2
∫ ‖u1,α‖∞

0

F2(θ)− F1(θ)√
λα(‖u1,α‖2∞ − θ2)− 2(F1(‖u1,α‖∞)− F1(θ))

dθ

=
2√

λα‖u1,α‖∞

∫ u0

0

F2(θ)− F1(θ)√
Lα(θ)

dθ,

(3.15)

where

Lα(θ) := 1− θ2

‖u1,α‖2∞
− 2

λα‖u1,α‖2∞
(F1(‖u1,α‖∞)− F1(θ)).
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By this, (A5) and (3.13), there exists a constant 0 < ε � 1 such that for α � 1
and 0 ≤ θ ≤ u0,

1 ≥ Lα(θ)

≥ 1− θ2

‖u1,α‖2∞
− 2f1(‖u1,α‖∞)

(2 + δ)λα‖u1,α‖∞

≥
(
1− 2

2 + δ

)
(1− ε) := 1− ε0.

(3.16)

By this and (3.15), for α � 1,∫ u0

0

(F2(θ)− F1(θ)) dθ > 0. (3.17)

On the other hand, by (3.6) and the same arguments as just above, we obtain∫ u0

0

(F2(θ)− F1(θ)) dθ < 0. (3.18)

This contradicts (3.17). Therefore, we obtain that either (3.3) or (3.4) must hold.
This implies that f1(u) ≡ f2(u) by Corollary 3.2.

Case 2. Assume that C0 > 0. Then by (3.5), (3.9) and (3.15),

0 <

∫
I

(F2(u1,α(x))− F1(u1,α(x))) dx

= 2
∫ 1/2

0

(F2(u1,α(x))− F1(u1,α(x))) dx

= 2
∫ 1/2

0

(F2(u1,α(x))− F1(u1,α(x)))u′1,α(x) dx√
λ1(α)(‖u1,α‖2∞ − u1,α(x)2)− 2(F1(‖u1,α‖∞)− F (u1,α(x)))

= 2
∫ ‖u1,α‖∞

0

F2(θ)− F1(θ)√
λα(‖u1,α‖2∞ − θ2)− 2(F1(‖u1,α‖∞)− F1(θ))

dθ

=
2√

λα‖u1,α‖∞

( ∫ ‖u1,α‖∞

u0

−C0√
Lα(θ)

dθ +
∫ u0

0

F2(θ)− F1(θ)√
Lα(θ)

dθ
)
.

(3.19)

By this, we obtain

0 < A + B :=
∫ ‖u1,α‖∞

u0

−C0√
Lα(θ)

dθ +
∫ u0

0

F2(θ)− F1(θ)√
Lα(θ)

dθ. (3.20)

It is clear by (3.16) that |B| ≤ C2 for α � 1. Let C3 be a constant sufficiently
large. If α � 1, then (3.16) is also valid for 0 ≤ θ ≤ u0 + C3, we obtain

A <

∫ u0+C3

u0

−C0√
Lα(θ)

dθ < −C0C3 < −C2. (3.21)

This contradicts (3.20). Thus we obtain the same conclusion as that in Case 1. The
case C0 < 0 can be treated by using (3.6) instead of (3.5), and the same argument
as that in Case 2. Thus the proof is complete. �



EJDE-2009/107 INVERSE EIGENVALUE PROBLEMS 9

4. Appendix

(B3) implies (B4). Let u0 ∈ W , that is, F1(u0) = F2(u0). Without loss of general-
ity, we may assume that u0 > 0, since the case u0 = 0 can be treated similarly to
the case u0 > 0.

Case 1. Assume that f1(u0) < f2(u0). Then there exists δ > 0 such that
f1(u) < f2(u) for u0 − δ ≤ u ≤ u0 + δ. This implies that F1(u) < F2(u) for
u0 < u ≤ u0 + δ and F1(u) > F2(u) for u0 − δ ≤ u < u0. Therefore, u0 is not an
accumulation point of W .

Case 2. Assume that f1(u0) > f2(u0). Then by the same argument as that in
Case 1, we conclude that F1(u) > F2(u) for u0 < u ≤ u0 + δ and F1(u) < F2(u) for
u0 − δ ≤ u < u0. Therefore, u0 is not an accumulation point of W .

Case 3. Assume that f1(u0) = f2(u0). If f1(u) < f2(u) (resp. f1(u) > f2(u))
for u0 < u ≤ u0 + δ, then as in the Case1 and Case 2 above, we obtain that
F1(u) < F2(u) (resp. F1(u) > F2(u)) for u0 < u ≤ u0 + δ.

If f1(u) > f2(u) (resp. f1(u) < f2(u)) for u0−δ ≤ u < u0, then as just above, we
obtain that F1(u) < F2(u) (resp. F1(u) > F2(u)) for u0 − δ ≤ u < u0. Therefore,
u0 is not an accumulation point of W .

Assume that there exists a constant ε > 0 such that f1(u) = f2(u) for u0 ≤ u ≤
u0+ε. Then we obtain that F1(u) ≡ F2(u) for u0 ≤ u ≤ u0+ε. Now, there are three
cases to consider: there exists a constant 0 < δ � 1 such that for u ∈ [u0 − δ, u0),
(i) f1(u) < f2(u), (ii) f1(u) > f2(u), (iii) f1(u) = f2(u). These three cases can be
treated by the same arguments as those in Cases 1 and 2 above, and we obtain that
u0 is either included in the interval in W or not an accumulation point of W . Thus
the proof is complete. �

Example of f1 and f2 which satisfies (B4) but does not satisfy (B1) and
(B3). For n ∈ N sufficiently large, let δn := 2/(π(1 + 2n)). We put

f1(u) = up, u ≥ 0, (4.1)

f2(u) =

{
up + uq

(
1
2 + sin 1

u

)
, 0 < u < δn,

up + 3
2uq, u ≥ δn,

(4.2)

where q > p + 1 > 3. We define f2(0) = 0. Then f2 is C1 and for 0 ≤ u < δn,

(f2(u)
u

)′ = up−2
(
p− 1 + (q − 1)uq−p(sin

1
u

+
1
2
)− uq−p−1 cos

1
u

)
> 0.

This implies that f2(u) satisfies (A1)–(A3) for 0 ≤ u < δn, and consequently, for
u ≥ 0. Clearly, the pair f1(u) and f2(u) does not satisfy (B1) near u = 0 and (B3)
at u = 0.

We show that f2(u) satisfies (A4). Indeed, we have

F2(u) =
1

p + 1
up+1 +

∫ u

0

xq
(1
2

+ sin
1
x

)
dx

=
1

p + 1
up+1 +

1
2(q + 1)

uq+1 +
1

q + 1
uq+1 sin

1
u

+
1

q + 1

∫ u

0

xq−1 cos
1
x

dx.

(4.3)
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Note that (u + v)p ≤ 2p(up + vp) for u, v ≥ 0. Then by (4.3), for 0 < u + v < δn,

F2(u + v)

≤ C1(up+1 + vp+1) + C2(uq+1 + vq+1) + C3(uq + vq)

≤ C4(up+1 + vp+1)

≤ C5

( 1
p + 1

up+1 − 1
2(q + 1)

uq+1 − 1
q(q + 1)

uq
)

+ C5

( 1
p + 1

vp+1 − 1
2(q + 1)

vq+1 − 1
q(q + 1)

vq
)

≤ C6

( 1
p + 1

up+1 +
1

2(q + 1)
uq+1 +

1
q + 1

uq+1 sin
1
u

+
1

q + 1

∫ u

0

xq−1 cos
1
x

dx
)

+ C6

( 1
p + 1

vp+1 +
1

2(q + 1)
vq+1 +

1
q + 1

vq+1 sin
1
v

+
1

q + 1

∫ v

0

xq−1 cos
1
x

dx
)

≤ C6(F2(u) + F2(v)).
(4.4)

By (4.1) and (4.2), we easily see that (4.4) holds for u + v ≥ u1 � 1 if we choose
C6 > 0 and u1 sufficiently large. Moreover, it is clear that (4.4) holds for δn ≤
u + v ≤ u1 if we choose C6 > 0 suitably. Consequently, we obtain that f2(u)
satisfies (A4). Note that F1(u) = up+1/(p + 1). We show that F1(u) < F2(u) for
u > 0. Namely, (B2) (and consequently, (B4)) holds. To this end, we show that for
0 < u < δn, ∫ u

0

xq
(1

2
+ sin

1
x

)
dx ≥ Cuq+1. (4.5)

By the above inequality,∫ u

0

xq
(1

2
+ sin

1
x

)
dx =

1
2(q + 1)

uq+1 +
∫ u

0

xq sin
1
x

dx := G + H. (4.6)

By putting θ = 1/x, we have

H =
∫ ∞

1/u

θ−(q+2) sin θ dθ = uq+2 cos(1/u)− (q + 2)
∫ ∞

1/u

θ−(q+3) cos θ dθ. (4.7)

Then clearly, ∣∣ ∫ ∞

1/u

θ−(q+3) cos θ dθ
∣∣ ≤ Cuq+2. (4.8)

By this and (4.7), for 0 < u < δn, we have |H| ≤ Cuq+2. This along with (4.6)
implies (4.5). By (4.3) and (4.5), we obtain that F1(u) < F2(u) for 0 < u < δn.
Since f1(u) < f2(u) for u ≥ δn, by the result above, we find that F1(u) < F2(u) for
u > 0. Thus the proof is complete.
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[7] M. Holzmann and H. Kielhöfer, Uniqueness of global positive solution branches of nonlinear

elliptic problems, Mathematische. Annalen, 300 (1994), 221–241.
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