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EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS
FOR A BVP WITH A P-LAPLACIAN ON THE HALF-LINE

YU TIAN, WEIGAO GE

Abstract. In this work, we consider the second order multi-point boundary-

value problem with a p-Laplacian

(ρ(t)Φp(x′(t)))′ + f(t, x(t), x′(t)) = 0, t ∈ [0, +∞),

x(0) =

mX
i=1

αix(ξi), lim
t→∞

x(t) = 0 .

By applying a nonlinear alternative theorem, we establish existence and unique-

ness of solutions on the half-line. Also a uniqueness result for positive solutions

is discussed when f depends on the first-order derivative. The emphasis here
is on the one dimensional p-Laplacian operator.

1. Introduction

In recent years, a great deal of work has been done in the study of multi-point
boundary-value problems which arise in different areas of applied mathematics and
physics. The study of multi-point boundary-value problems for linear second order
differential equations was initiated by Il’in and Moiseev [6]. Since then, more general
nonlinear multi-point boundary-value problems were studied by several authors, see
[4, 5, 7, 8, 10] and the references cited therein.

For a finite interval, He and Ge [5] used the Leggett-Williams fixed point theorem
to the following second-order three-point boundary-value problem

u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u(1) = ξu(η),
(1.1)

where ξ > 0, 0 < η < 1 and ξη < 1. Du, Xue and Ge [4] applied Leray-Schauder
degree theory and lower and upper solutions method to (1.1) when f does not
depend on the first-order derivative explicitly, and obtained the existence of at
least three solutions. Nonlinear differential equation on finite interval

(Φp(u′))′ + f(t, u, u′) = 0, t ∈ (0, 1) (1.2)
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with different boundary conditions has been studied extensively. Ma, Du and Ge [7]
obtained some criteria for the existence of monotone positive solutions to the equa-
tion (1.2) with boundary condition u′(0) =

∑n
i=1 αiu

′(ξi), u(1) =
∑n

i=1 βiu(ξi).
For a infinite interval, in a monograph [1] Agarwal and O’Regan studied two-

point boundary-value problems on the half-line and obtained a series of interesting
results. Inspired by [1], many authors devoted the study of two-point and multi-
point boundary-value problems on the half-line, see [2, 10, 11, 12, 13]. Tian and Ge
[10] established the existence of at least three positive solutions for the problem

(ρ(t)x′(t))′ + f(t, x(t), x′(t)) = 0, t ∈ I = [0,+∞),

x(0) = αx(ξ), lim
t→∞

x(t) = 0,
(1.3)

where ρ ∈ C[0,+∞) ∩ C1(0,+∞), ρ(t) > 0 for t ∈ [0,+∞),
∫∞
0

1
ρ(t)dt < ∞, α ≥ 0,

0 ≤ ξ < ∞, f : I × I ×R → I.
However, in [4, 5, 8, 10], the one dimensional p-Laplacian operator is not involved.

Ma, Du and Ge [7] studied only boundary-value problem on finite interval and the
nonlinear term does not depend on the first order derivative explicitly. Moreover,
only existence results were established in the above literature. By so far, very few
existence and uniqueness results were established for multi-point boundary-value
problem with a p-Laplacian on the half-line.

Motivated by the above results, we consider the existence of positive solutions
for multi-point boundary-value problem

(ρ(t)Φp(x′(t)))′ + f(t, x(t), x′(t)) = 0, t ∈ I = [0,+∞),

x(0) =
m∑

i=1

αix(ξi), lim
t→∞

x(t) = 0.
(1.4)

where Φp(s) = |s|p−2s, p > 1, ξi ∈ (0,∞), i = 1, 2, . . . ,m, and αi, ρ, f satisfy
(H1) 0 ≤ αi < 1, (i = 1, 2, . . . ,m) satisfies 0 ≤

∑m
i=1 αi < 1,

(H2) ρ ∈ C[0,+∞) ∩ C1(0,+∞), ρ(t) > 0 for t ∈ [0,+∞), and non-decreasing
on [0,+∞),

∫∞
0

Φ−1
p (1/ρ(t))dt < ∞,

(H3) f : [0,+∞)× [0,+∞)× R → [0,+∞) is an L1-Carathédory function, that
is
(i) t → f(t, x, y) is measurable for any (x, y) ∈ [0,+∞)×R,
(ii) (x, y) → f(t, x, y) is continuous for a.e. t ∈ I,
(iii) for each r1, r2 > 0 there exists lr1,r2 ∈ L1[0,∞) such that |x| ≤ r1, |y| ≤
r2 imply |f(t, x, y)| ≤ lr1,r2(t) for almost all t ∈ I.

Furthermore, when f does not depend on the first-order derivative explicitly, we
establish the uniqueness result of positive solutions. We note that when p = 2,
ξ1 = ξ2 = · · · = ξm, problem (1.4) reduces to (1.3).

Definition 1.1. A function x is said to be a positive solution of boundary-value
problem (1.4), if x ∈ C1(I, I), (Φp(x′(t)))′ ∈ L1(I), x(t) ≥ 0, and x satisfies (1.4)
for t ∈ I.

By using fixed point theorem on cone, we establish the existence of positive so-
lutions for problem (1.4). In order to apply fixed point theory, it is very important
to transform BVP into an equivalent integral equation. For p = 2, the process is
easy to be realized since the Green’s function exists, however, for p 6= 2, it is im-
possible since the differential operator (Φp(x′))′ is nonlinear. Besides, nonlinearity
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f depends on the first-order derivative, which brings about much trouble, such as,
the verification of the compactness and continuity of the operator.

In this paper, we will need the following lemmas.

Lemma 1.2 (Nonlinear alternative [9]). Let C be a convex subset of a normed
linear space E, and U be an open subset of C, with p∗ ∈ U . Then every compact,
continuous map N : U → C has at least one of the following two properties:

(a) N has a fixed point;
(b) there is an x ∈ ∂U , with x = (1− λ)p∗ + λNx for some 0 < λ < 1.

Lemma 1.3 ([3, 9]). Let Cl([0,∞), R) = {x ∈ C([0,∞)) : limt→∞ x(t) exists},
then subset M of CL is precompact if the following conditions hold:

(a) M is bounded in Cl;
(b) the functions belonging to M are locally equicontinuous on any interval of

[0,∞);
(c) the functions from M are equiconvergent, that is, given ε > 0, there corre-

sponds T (ε) > 0 such that |x(t)− x(∞)| < ε for any t ≥ T (ε) and x ∈ M .

2. Related Lemmas

We consider the Banach space E = {x ∈ C1(I) : limt→∞ x(t) = 0} equipped
with the norm

‖x‖ = max{‖x‖0, ‖x′‖0}, ‖x‖0 = sup
t∈I

|x(t)|.

Let P = {x ∈ E : x(t) ≥ 0, t ∈ I}.
Let x ∈ P . Suppose that x is a solution of BVP

(ρ(t)Φp(x′(t)))′ + f(t, x(t), x′(t)) = 0, t ∈ I = [0,+∞),

x(0) =
m∑

i=1

αix(ξi), lim
t→∞

x(t) = 0.
(2.1)

Then

Φp(x′(t)) =
1

ρ(t)

(
ρ(0)Ax −

∫ t

0

f(r, x(r), x′(r))dr
)
,

x(t) = x(0) +
∫ t

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds.

Since x satisfies x(0) =
∑m

i=1 αix(ξi), by computing, one has

x(0) =
1

1−
∑m

i=1 αi

m∑
i=1

αi

∫ ξi

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds.

Thus

x(t) =
1

1−
∑m

i=1 αi

m∑
i=1

αi

∫ ξi

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds

+
∫ t

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds.
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The second boundary condition limt→∞ x(t) = 0 means that Ax satisfies

1
1−

∑m
i=1 αi

m∑
i=1

αi

∫ ξi

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds

+
∫ ∞

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds = 0.

(2.2)

Lemma 2.1. For x ∈ P , there exists a unique Ax ∈
(
0, 1

ρ(0)

∫∞
0

f(r, x(r), x′(r))dr
)

satisfying (2.2).

Proof. Let x ∈ P . Define

Hx(c) =
1

1−
∑m

i=1 αi

m∑
i=1

αi

∫ ξi

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)c−

∫ s

0

f(r, x(r), x′(r))dr
)]

ds

+
∫ ∞

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)c−

∫ s

0

f(r, x(r), x′(r))dr
)]

ds.

Then Hx ∈ C(R,R) is increasing and Hx(0) < 0. Let

c =
1

ρ(0)

∫ ∞

0

f(r, x(r), x′(r))dr,

then Hx(c) > 0. By mean value theorem, there exists Ax ∈ (0, c) satisfying
Hx(Ax) = 0. Since Hx(c) is increasing about c, there exists a unique Ax satis-
fying Hx(Ax) = 0. �

Lemma 2.2. The function Ax : P → [0,+∞) is continuous on x.

Proof. Let {xn} ∈ P with xn → x0 ∈ P as n →∞ in P . Let {Axn
}(n = 1, 2, . . . ,m)

be constants decided by equation (2.2) corresponding to xn(n = 1, 2, . . . ,m). Since
xn → x0 in P as n → ∞, there exists an M > 0 such that ‖xn‖ ≤ M. The fact f
is an L1−Carathédory function means∫ ∞

0

|f(r, xn(r), x′n(r))− f(r, x0(r), x′0(r))|dr ≤ 2
∫ ∞

0

lM,M (r)dr < ∞;

that is,∫ ∞

0

f(r, xn(r), x′n(r))dr ≤
∫ ∞

0

f(r, x0(r), x′0(r))dr + 2
∫ ∞

0

lM,M (r)dr < ∞.

So

Axn ∈
(
0,

1
ρ(0)

∫ ∞

0

f(r, xn(r), x′n(r))dr
)

⊆
(
0,

1
ρ(0)

( ∫ ∞

0

f(r, x0(r), x′0(r))dr + 2
∫ ∞

0

lM,M (r)dr
))

,

which means that {Axn
} is bounded.

Suppose that {Axn
} does not converge to Ax0 . Then there exist two subsequences

{A(1)
xnk

} and {A(2)
xnk

} of {Axnk
} with A

(1)
xnk

→ c1 and A
(2)
xnk

→ c2 since {Axn
} is
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bounded, but c1 6= c2. By the construction of Axn
, (n = 1, 2, . . . ), we have

1
1−

∑m
i=1 αi

m∑
i=1

αi

∫ ξi

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)A(1)

xnk
−

∫ s

0

f(r, x(1)
nk

(r), x(1)′

nk
(r))dr

)]
ds

+
∫ ∞

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)A(1)

xnk
−

∫ s

0

f(r, x(1)
nk

(r), x(1)′

nk
(r))dr

)]
ds = 0.

Let nk →∞, using Lebesgue’s dominated convergence theorem, the above equality
implies

1
1−

∑m
i=1 αi

m∑
i=1

αi

∫ ξi

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)c1 −

∫ s

0

f(r, x0(r), x′0(r))dr
)]

ds

+
∫ ∞

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)c1 −

∫ s

0

f(r, x0(r), x′0(r))dr
)]

ds = 0.

Since {Axn} (n = 1, 2, . . . ) is unique with respect to xn, we get c1 = Ax0 . Similarly,
c2 = Ax0 . Thus c1 = c2, a contradiction. So, for any xn → x0, one has Axn → Ax0 ,
which means Ax : P → R is continuous. �

Define the operator T on P as

Tx(t)

=
1

1−
∑m

i=1 αi

m∑
i=1

αi

∫ ξi

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds

+
∫ t

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds,

(2.3)

where Ax is defined in (2.2) corresponding to x. By Lemma 2.2, we know that T
is well defined. The fixed point x ∈ P of the operator T is just a positive solution
of (1.4).

Lemma 2.3. The operator T : P → P is completely continuous.

Proof. (1) First we show that the operator T maps P to P . By the construction of
T , there exists τ ∈ (0,∞) such that

Tx(t) is increasing for t ∈ [0, τ ] and decreasing for t ∈ [τ,∞). (2.4)

If we show Tx(0) ≥ 0, then Tx(t) ≥ 0, t ∈ I since (2.4) and limt→∞ Tx(t) = 0
hold. For this, we assume that Tx(0) < 0. Since limt→∞ Tx(t) = 0 and (2.4) holds,
there exists t0 > 0 such that Tx(t) ≥ 0, t ∈ [t0,∞). Without loss of generality,
we assume there exists i0 ∈ {1, 2, . . . ,m} such that Tx(ξi) < 0, i = 1, . . . , i0 and
Tx(ξi) ≥ 0, i = i0 + 1, . . . ,m. Then

Tx(0) =
m∑

i=1

αiTx(ξi) ≥
i0∑

i=1

αiTx(ξi) ≥
i0∑

i=1

αiTx(0).

So
∑i0

i=1 αi ≥ 1, a contradiction. Thus, Tx(0) ≥ 0 and so Tx(t) ≥ 0, t ∈ I.
(2) Next we show that T is continuous on P . From the continuity of f and Ax,

the result follows.
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(3) Next we show that T is relatively compact. Given a bounded set D ⊆ P .
Then, there exists M > 0 such that D ⊆ {x ∈ P : ‖x‖ ≤ M}. For any x ∈ D, we
have

∫ ∞

0

f(t, x(t), x′(t))dt ≤
∫ ∞

0

lM,M (t)dt := L.

Thus |Ax| ≤ L
ρ(0) . Therefore,

‖Tx‖0 ≤ Φ−1
p (2L)

∑m
i=1 αi

∫ ξi

0
Φ−1

p

(
1

ρ(s)

)
ds

1−
∑m

i=1 αi
+ Φ−1

p (2L)
∫ ∞

0

Φ−1
p

( 1
ρ(s)

)
ds < ∞.

‖(Tx)′‖0 ≤ Φ−1
p (2L) sup

t∈I
Φ−1

p

( 1
ρ(t)

)
.

Since the condition (H2) holds, one has supt∈I Φ−1
p

(
1

ρ(t)

)
< ∞, which means that

‖(Tx)′‖0 < ∞. So, {TD(t)}, {(TD)′(t)} are bounded. Besides, {TD(t)} is equi-
continuous. Now we shall show that {(TD)′(t)} is local equi-continuous on I. For
any K > 0, t1, t2 ∈ [0,K] and x ∈ D, then

|Φp((Tx)′(t1))− Φp((Tx)′(t2))|

=
∣∣ 1
ρ(t1)

(
ρ(0)Ax −

∫ t1

0

f(r, x(r), x′(r))dr
)

− 1
ρ(t2)

(
ρ(0)Ax −

∫ t2

0

f(r, x(r), x′(r))dr
)∣∣

≤ | 1
ρ(t1)

− 1
ρ(t2)

| × |ρ(0)Ax −
∫ t1

0

f(s, x(s), x′(s))ds|

+
1

ρ(t2)
|
∫ t2

t1

f(r, x(r), x′(r))dr|

≤ | 1
ρ(t1)

− 1
ρ(t2)

| × 2L +
1

ρ(t2)
|
∫ t2

t1

lM,M (r)dr|.

Since
∫∞
0

1
ρ(s)ds < ∞,

∫∞
0

lM,M (r)dr < ∞, for any ε > 0, there exists δ > 0,
such that |Φp(Tx)′(t1) − Φp(Tx)′(t2)| < ε for any |t1 − t2| < δ. Noticing Φp(x)
is continuous about x, |(Tx)′(t1) − (Tx)′(t2)| < ε′. Therefore, {(TD)′(t)} is equi-
continuous.
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(4) At last we will show that T is equiconvergent at ∞. Since limt→∞ Tx(t) = 0,
one has

lim
t→∞

|(Tx)(t)− (Tx)(∞)|

= lim
t→∞

|(Tx)(t)|

= lim
t→∞

∣∣∣ 1
1−

∑m
i=1 αi

m∑
i=1

αi

∫ ξi

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds

+
∫ t

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds
∣∣∣

=
∣∣∣ 1
1−

∑m
i=1 αi

m∑
i=1

αi

∫ ξi

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds

+
∫ ∞

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds
∣∣∣.

Since Ax satisfies (2.2), one has

lim
t→∞

|(Tx)(t)− (Tx)(∞)| = 0.

Therefore, T : P → P is equiconvergent at ∞.
By Lemma 1.3, the operator T : P → P is completely continuous. �

3. Existence of positive solutions

For convenience, we denote

∆1 = max
{ 1

1−
∑m

i=1 αi

m∑
i=1

αi

∫ ξi

0

Φ−1
p

( 1
ρ(s)

)
ds,

∫ ∞

0

Φ−1
p

( 1
ρ(s)

)
ds

}
(3.1)

∆2 = sup
t∈I

Φ−1
p

( 1
ρ(t)

)
. (3.2)

Theorem 3.1. Suppose that (H1)–(H3) hold and f(t, 0, 0) 6≡ 0 for t ∈ I. Also
assume there exist functions a, b, c ∈ L1([0,∞), [0,∞)) satisfying

Φ−1
p (‖b‖L1) + Φ−1

p (‖c‖L1) < min
{ 1

3q−1∆1
,

1
3q−1∆2

}
,

where 1
p + 1

q = 1, ‖b‖L1 =
∫∞
0
|b(t)|dt, such that

f(t, x, y) ≤ a(t) + b(t)Φp(x) + c(t)Φp(|y|).

Then problem (1.4) has at least one nontrivial positive solution.

Proof. We will apply Lemma 1.2 to show this theorem. From Lemma 2.3, T : P →
P is a completely continuous operator. Let

M > max
{ 3q−1∆1Φ−1

p (‖a‖L1)

1− 3q−1∆1(Φ−1
p (‖b‖L1) + Φ−1

p (‖c‖L1))
,

3q−1∆2Φ−1
p (‖a‖L1)

1− 3q−1∆2(Φ−1
p (‖b‖L1) + Φ−1

p (‖c‖L1))

}
,
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where 1
p + 1

q = 1. Now we define Ω = {x ∈ P : ‖x‖ < M}. For any x ∈ ∂Ω,
‖x‖ = M , so ‖x‖0 ≤ M, ‖x′‖0 ≤ M , by assumption of theorem and Lemma 2.1,

|Tx(t)| = 1
1−

∑m
i=1 αi

m∑
i=1

αi

∫ ξi

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds

+
∫ t

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds

≤ 1
1−

∑m
i=1 αi

m∑
i=1

αi

∫ ξi

0

Φ−1
p

[ 1
ρ(s)

∫ ∞

0

f(r, x(r), x′(r))dr
]
ds

+
∫ ∞

0

Φ−1
p

[ 1
ρ(s)

∫ ∞

0

f(r, x(r), x′(r))dr
]
ds

≤ 1
1−

∑m
i=1 αi

m∑
i=1

αi

∫ ξi

0

Φ−1
p

( 1
ρ(s)

)
dsΦ−1

p

( ∫ ∞

0

f(r, x(r), x′(r))dr
)

+
∫ ∞

0

Φ−1
p

( 1
ρ(s)

)
dsΦ−1

p

( ∫ ∞

0

f(r, x(r), x′(r))dr
)

≤ ∆1Φ−1
p (‖a‖L1 + ‖b‖L1Φp(‖x‖0) + ‖c‖L1Φp(‖x′‖0)).

|(Tx)′(t)| =
∣∣∣Φ−1

p

[ 1
ρ(t)

(
ρ(0)Ax −

∫ t

0

f(r, x(r), x′(r))dr
)]∣∣∣

≤ sup
t∈I

Φ−1
p

( 1
ρ(t)

)
Φ−1

p

( ∫ ∞

0

f(r, x(r), x′(r))dr
)

≤ ∆2Φ−1
p (‖a‖L1 + ‖b‖L1Φp(‖x‖0) + ‖c‖L1Φp(‖x′‖0)).

By primary inequality

|a1 + a2 + · · ·+ an|r ≤ Cr(|a1|r + · · ·+ |an|r), Cr =

{
1, 0 < r ≤ 1,

nr−1, r > 1,

we have

‖Tx‖0 ≤ 3q−1∆1

[
Φ−1

p (‖a‖L1) + Φ−1
p (‖b‖L1)‖x‖0 + Φ−1

p (‖c‖L1)‖x′‖0
]

≤ 3q−1∆1

[
Φ−1

p (‖a‖L1) + (Φ−1
p (‖b‖L1) + Φ−1

p (‖c‖L1))M
]

< M = ‖x‖,

and

‖(Tx)′‖0 ≤ 3q−1∆2

[
Φ−1

p (‖a‖L1) + Φ−1
p (‖b‖L1)‖x‖0 + Φ−1

p (‖c‖L1)‖x′‖0
]

≤ 3q−1∆2

[
Φ−1

p (‖a‖L1) + (Φ−1
p (‖b‖L1) + Φ−1

p (‖c‖L1))M
]

< M = ‖x‖.

So ‖Tx‖ < ‖x‖, i.e. taking p∗ = 0 in Lemma 1.2, for any x ∈ ∂Ω, x = λTx
(0 < λ < 1) does not hold. Thus Lemma 1.2 implies that the operator T has at
least one fixed point. So problem (1.4) has at least one positive solution. Besides,
by f(t, 0, 0) 6= 0 for t ∈ [0,∞), problem (1.4) has at least one nontrivial positive
solution. �
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Corollary 3.2. If f(t, 0, 0) 6≡ 0 and there exists r > 0 such that∫ ∞

0

f(t, x, y)dt < min
{
Φp

( r

∆1

)
,Φp

( r

∆2

)}
, (3.3)

where x ∈ [0, r], y ∈ [−r, r]. Then (1.4) has at least one nontrivial positive solution.

Proof. From Lemma 2.3, T : P → P is a completely continuous operator. Now we
define Ω = {x ∈ P : ‖x‖ < r}. For any x ∈ ∂Ω, ‖x‖ = r. So ‖x‖0 ≤ r, ‖x′‖0 ≤ r.
By assumption of theorem and Lemma 2.1,

|Tx(t)| = 1
1−

∑m
i=1 αi

m∑
i=1

αi

∫ ξi

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds

+
∫ ∞

0

Φ−1
p

[ 1
ρ(s)

(
ρ(0)Ax −

∫ s

0

f(r, x(r), x′(r))dr
)]

ds

≤ ∆1Φ−1
p

( ∫ ∞

0

f(r, x(r), x′(r))dr
)

< ∆1Φ−1
p

(
min

{
Φp

( r

∆1

)
,Φp

( r

∆2

)})
≤ r = ‖x‖.

|(Tx)′(t)| =
∣∣∣Φ−1

p

[ 1
ρ(t)

(
ρ(0)Ax −

∫ t

0

f(r, x(r), x′(r))dr
)]∣∣∣

≤ ∆2Φ−1
p

( ∫ ∞

0

f(r, x(r), x′(r))dr
)

< ∆2Φ−1
p

(
min

{
Φp

( r

∆1

)
,Φp

( r

∆2

)})
≤ r = ‖x‖.

So ‖Tx‖ < ‖x‖. Similar to the process in Theorem 3.1, the result follows. �

Corollary 3.3. If f(t, 0, 0) 6≡ 0 and

lim
d→0

maxx∈[0,d],y∈[−d,d]

∫∞
0

f(t, x, y)dt

dp−1
= 0, (3.4)

then (1.4) has at least one nontrivial positive solution.

Proof. Let ε∗ = min{Φp( 1
∆1

),Φp( 1
∆2

)}. By (3.4), there exists r > 0, such that

max
x∈[0,d],y∈[−d,d]

∫ ∞

0

f(t, x, y)dt ≤ ε∗dp−1 = min
{
Φp

( d

∆1

)
,Φp

( d

∆2

)}
, ∀ d ≤ r,

which implies (3.3). By Corollary 3.2, BVP (1.4) has at least one nontrivial positive
solution. �

4. Uniqueness of positive solutions

In this section, we establish the uniqueness of positive solutions for the problem

(ρ(t)Φp(x′(t)))′ + f(t, x(t)) = 0, t ∈ I,

x(0) =
m∑

i=1

αix(ξi), lim
t→∞

x(t) = 0.
(4.1)
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Lemma 4.1. Suppose that f(t, x) is non-increasing in x for all t ∈ I. Then (4.1)
has at most one positive solution.

Proof. Assume to the contrary, that (4.1) has two positive solutions x1, x2. Let
y = x2 − x1. Since x1, x2 are two positive solutions of (4.1),

(ρ(t)Φp(x′2(t)))
′ − (ρ(t)Φp(x′1(t)))

′ = f(t, x1(t))− f(t, x2(t)), t ∈ I,

y(0) =
m∑

i=1

αiy(ξi), lim
t→∞

y(t) = 0.

Let z(t) = ρ(t)
(
Φp(x′2(t)) − Φp(x′1(t))

)
. Now we will complete the proof in three

cases.
Case 1. If y(t) ≥ 0, y(t) 6≡ 0, t ∈ I. Since f(t, x) is non-increasing in x, z′(t) ≥ 0,
t ∈ I. We claim that there exists a unique η ∈ I satisfying z(η) = 0. If not, we get
a contradiction by the following two cases.

(i) z(t) > 0, t ∈ I. Thus Φp(x′2(t)) > Φp(x′1(t)), t ∈ I; i.e., y′(t) = (x2 −
x1)′(t) > 0, t ∈ I. So limt→+∞ y(t) > 0, a contradiction.

(ii) z(t) < 0, t ∈ I. Thus Φp(x′2(t)) < Φp(x′1(t)), t ∈ I; i.e., y′(t) = (x2 −
x1)′(t) < 0, t ∈ I. So

y(0) =
m∑

i=1

αiy(ξi) ≤
m∑

i=1

αiy(0) < y(0), if
m∑

i=1

αi ∈ (0, 1),

lim
t→∞

y(t) < y(0) = 0, if
m∑

i=1

αi = 0,

a contradiction. Our claim is proved.

So z(t) < 0 for t ∈ [0, η) and z(t) > 0 for t ∈ (η,∞). Thus

y′(t) < 0 for t ∈ [0, η) and y′(t) > 0 for t ∈ (η,∞). (4.2)

If
∑m

i=1 αi ∈ (0, 1), we have by the first boundary condition,

y(0) =
m∑

i=1

αiy(ξi) ≤
m∑

i=1

αiy(ξj) < y(ξj),

where y(ξj) = max{y(ξi) : i = 1, 2, . . . ,m}. So ξj > η. By (4.2), we have

lim
t→+∞

y(t) ≥ y(ξj) > y(0) ≥ 0,

which contradicts the second boundary condition.
If

∑m
i=1 αi = 0, we have 0 = limt→∞ y(t) > y(0), which contradicts the first

boundary condition.
Case 2. There exists 0 < a < b, b ∈ (0,∞] satisfying y(t) > 0 for t ∈ (a, b),
y(a) = y(b) = 0, y′(a) ≥ 0. By the definition of z(t), we have z′(t) > 0, t ∈ (a, b)
and z(a) ≥ 0. So z(t) > 0, t ∈ (a, b); i.e., y′(t) > 0, t ∈ (a, b). By y(a) = 0, we have
y(b) > 0, a contradiction.
Case 3. There exists b ∈ (0,∞) satisfying y(t) > 0, t ∈ [0, b), y(b) = 0, y′(b) ≤ 0.
By the definition of z(t), we have z′(t) > 0, t ∈ [0, b) and z(b) ≤ 0. So z(t) < 0,
t ∈ [0, b). Then y′(t) = (x2 − x1)′(t) < 0, t ∈ [0, b).
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If
∑m

i=1 αi ∈ (0, 1), we have by the first boundary condition,

0 < y(0) =
m∑

i=1

αiy(ξi) <
m∑

i=1

αiy(ξj) < y(ξj),

where y(ξj) = max{y(ξi) : i = 1, 2, . . . ,m}. So ξj > b and y(ξj) > y(0) > 0. So
there exist c, d satisfying b < c < ξj < d < ∞ such that y(t) > 0 for t ∈ (c, d),
y(c) = y(d) = 0, y′(c) > 0. By Case 2, there is a contradiction.

If
∑m

i=1 αi = 0, then y(0) = 0, which contradicts y(t) > 0, t ∈ [0, b). �

By Corollary 3.2 and Lemma 4.1, we have the following result.

Theorem 4.2. Suppose that f(t, x) is nonincreasing in x for all t ∈ I. Also assume
that there exists r > 0 such that∫ ∞

0

f(t, 0)dt < Φp

( r

∆1

)
.

Then problem (4.1) has a unique positive solution.

References

[1] R. P. Agarwal, D. O’Regan; Infinite Interval Problems for Differential, Difference and Inte-

gral Equations, Kluwer Academic Publishes, Dordrecht/Boston/London, 2001.

[2] C. Z. Bai, J. X. Fang; On positive solutions of boundary-value problems for second-order
functional differential equations on infinite intervals, J. Math. Anal. Appl. 282 (2003) 711-

731.

[3] C. Corduneanu; Integral Equations and Stability of Feedback Systems, Academic Press, New
York, 1973.

[4] Z. J. Du, C. Y. Xue and W. G. Ge; Multiple solutions for three-point boundary-value problem

with nonlinear terms depending on the first order derivative, Arch. Math. 84 (2005) 341-349.
[5] X. He and W. Ge; Triple solutions for second order three-point boundary-value problems. J.

Math. Anal. Appl. 268 (2002) 256-265.

[6] V. A. Il’in, E. I. Moiseev; Nonlocal boundary-value problem of the second kind for a Sturm-
CLiouville operator, Differential Equations 23 (1987) 979-987.

[7] D. X. Ma, Z. J. Du, W. G. Ge; Existence and iteration of monotone positive solutions
for multipoint boundary-value problem with p-Laplacian operator, Comput. Math. Appl. 50

(2005) 729-739.

[8] R.Y. Ma and H. Y. Wang; Positive solutions of nonlinear three-point boundary-value prob-
lems, J. Math. Anal. Appl. 279 (2003) 216-227.

[9] M. Meehan, D. O’Regan; Existence theory for nonlinear Fredholm and Volterra integral

equations on half-open intervals, Nonlinear Anal. 35 (1999) 355-387.
[10] Y. Tian, W. G. Ge, W. R. Shan; Positive solutions for three-point boundary-value problem

on the half-line, Comput. Math. Appl. 53(7), (2007) 1029-1039.
[11] B. Q. Yan; Multiple unbounded solutions of boundary-value problems for second-order differ-

ential equaitons on the half-line, Nonlinear Anal. 51 (2002) 1031-1044.

[12] B. Q. Yan, Y. S. Liu; Unbounded solutions of the singular boundary-value problems for second

order differential equations on the half-line, Appl. Math. Comput. 147 (2004) 629-644.
[13] M. Zima; On positive solution of boundary-value problems on the half-line, J. Math. Anal.

Appl. 259(2001) 127-136.

Yu Tian
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876,
China

E-mail address: tianyu2992@163.com

Weigao Ge

Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081,
China


	1. Introduction
	2. Related Lemmas
	3. Existence of positive solutions
	4. Uniqueness of positive solutions
	References

