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EXISTENCE OF QUADRATIC-MEAN ALMOST PERIODIC
SOLUTIONS TO SOME STOCHASTIC HYPERBOLIC

DIFFERENTIAL EQUATIONS

PAUL H. BEZANDRY, TOKA DIAGANA

Abstract. In this paper we obtain the existence of quadratic-mean almost
periodic solutions to some classes of partial hyperbolic stochastic differential

equations. The main result of this paper generalizes in a natural fashion some

recent results by authors. As an application, we consider the existence of
quadratic-mean almost periodic solutions to the stochastic heat equation with

divergence terms.

1. Introduction

Let (H, ‖ · ‖, 〈·, ·〉) be a real Hilbert space which is separable and let (Ω,F ,P) be
a complete probability space equipped with a normal filtration {Ft : t ∈ R}, that
is, a right-continuous, increasing family of sub σ-algebras of F .

For the rest of this article, if A : D(A) ⊂ H 7→ H is a linear operator, we then
define the operator A : D(A) ⊂ L2(Ω,H) 7→ L2(Ω,H) as follows: X ∈ D(A) and
AX = Y if and only if X,Y ∈ L2(Ω,H) and AX(ω) = Y (ω) for all ω ∈ Ω.

Let A : D(A) ⊂ H 7→ H be a sectorial linear operator. For α ∈ (0, 1), let Hα

denote the intermediate Banach space between D(A) and H. Examples of those
Hα include, among others, the fractional spaces D((−A)α), the real interpolation
spaces DA(α,∞) due to Lions and Peetre, and the Hölder spaces DA(α), which
coincide with the continuous interpolation spaces that both Da Prato and Grisvard
introduced in the literature.

In Bezandry and Diagana [2], the concept of quadratic-mean almost periodicity
was introduced and studied. In particular, such a concept was, subsequently, uti-
lized to study the existence and uniqueness of a quadratic-mean almost periodic
solution to the class of stochastic differential equations

dX(t) = AX(t)dt+ F (t,X(t))dt+G(t,X(t))dW (t), t ∈ R, (1.1)

where A : D(A) ⊂ L2(Ω; H) 7→ L2(Ω; H) is a densely defined closed linear operator,
and F : R × L2(Ω; H) 7→ L2(Ω; H), G : R × L2(Ω; H) 7→ L2(Ω;L0

2) are jointly
continuous functions satisfying some additional conditions.
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Similarly, in [3], Bezandry and Diagana made extensive use of the same very
concept of quadratic-mean almost periodicity to study the existence and unique-
ness of a quadratic-mean almost periodic solution to the class of nonautonomous
semilinear stochastic differential equations

dX(t) = A(t)X(t) dt+ F (t,X(t)) dt+G(t,X(t)) dW (t), t ∈ R, (1.2)

where A(t) for t ∈ R is a family of densely defined closed linear operators satisfying
the so-called Acquistapace and Terreni conditions [1], F : R×L2(Ω,H) → L2(Ω,H),
G : R × L2(Ω,H) → L2(Ω,L0

2) are jointly continuous satisfying some additional
conditions, and W (t) is a Wiener process.

The present paper is definitely inspired by [2, 3, 6] and consists of studying the
existence of quadratic-mean almost periodic solutions to the stochastic differential
equation of the form

d
(
X(ω, t) + f(t,BX(ω, t))

)
=

[
AX(ω, t) + g(t, CX(ω, t))

]
dt+ h(t,LX(ω, t))dW (ω, t)

(1.3)

for all t ∈ R and ω ∈ Ω, where A : D(A) ⊂ H → H is a sectorial linear operator
whose corresponding analytic semigroup is hyperbolic, that is, σ(A) ∩ iR = ∅, B,
C, and L are (possibly unbounded linear operators on H) and f : R×H → Hβ(0 <
α < 1

2 < β < 1), g : R × H → H, and h : R × H → L0
2 are jointly continuous

functions.
To analyze (1.3), our strategy consists of studying the existence of quadratic-

mean almost periodic solutions to the corresponding class of stochastic differential
equations of the form

d
(
X(t) + F (t, BX(t))

)
=

[
AX(t) +G(t, CX(t))

]
dt+H(t, LX(t))dW (t) (1.4)

for all t ∈ R, where A : D(A) ⊂ L2(Ω,H) → L2(Ω,H) is a sectorial linear operator
whose corresponding analytic semigroup is hyperbolic, that is, σ(A) ∩ iR = ∅, B,
C, and L are (possibly unbounded linear operators on L2(Ω,H)) and F : R ×
L2(Ω,H) → L2(Ω,Hβ) (0 < α < 1

2 < β < 1), G : R × L2(Ω,H) → L2(Ω,H), and
H : R × L2(Ω,H) → L2(Ω,L0

2) are jointly continuous functions satisfying some
additional assumptions.

It is worth mentioning that the main results of this paper generalize those ob-
tained in Bezandry and Diagana [3].

The existence of almost periodic (respectively, periodic) solutions to autonomous
stochastic differential equations has been studied by many authors, see, e.g., [1, 2,
9, 16] and the references therein. In particular, Da Prato and Tudor [5], have
studied the existence of almost periodic solutions to (1.2) in the case when A(t) is
periodic. Though the existence and uniqueness of quadratic-mean almost periodic
solutions to (1.4) in the case when A is sectorial is an important topic with some
interesting applications, which is still an untreated question and constitutes the
main motivation of the present paper. Among other things, we will make extensive
use of the method of analytic semigroups associated with sectorial operators and the
Banach’s fixed-point principle to derive sufficient conditions for the existence and
uniqueness of a quadratic-mean almost periodic solution to (1.4). To illustrate our
abstract results, we study the existence of quadratic-mean almost periodic solutions
to the stochastic heat equation with divergence coefficients.
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2. Preliminaries

For details on this section, we refer the reader to [2, 4] and the references therein.
Throughout the rest of this paper, we assume that (K, ‖ · ‖K) and (H, ‖ · ‖) are real
separable Hilbert spaces, and (Ω,F ,P) is a probability space. The space L2(K,H)
stands for the space of all Hilbert-Schmidt operators acting from K into H, equipped
with the Hilbert-Schmidt norm ‖ · ‖2.

For a symmetric nonnegative operator Q ∈ L2(K,H) with finite trace we assume
that {W (t), t ∈ R} is a Q-Wiener process defined on (Ω,F ,P) with values in K.
It is worth mentioning that the Wiener process W can obtained as follows: let
{Wi(t), t ∈ R}, i = 1, 2, be independent K-valued Q-Wiener processes, then

W (t) =

{
W1(t) if t ≥ 0,
W2(−t) if t ≤ 0,

is Q-Wiener process with the real number line as time parameter. We then let
Ft = σ{W (s), s ≤ t}.

The collection of all strongly measurable, square-integrable H-valued random
variables, will be denoted L2(Ω,H). Of course, this is a Banach space when it is
equipped with norm

‖X‖L2(Ω,H) =
(
E‖X‖2

)1/2

,

where the expectation E is defined by

E[g] =
∫

Ω

g(ω)dP(ω).

Let K0 = Q1/2K and let L0
2 = L2(K0,H) with respect to the norm

‖Φ‖2
L0

2
= ‖ΦQ1/2‖2

2 = Trace(ΦQΦ∗) .

Let (B, ‖ · ‖) be a Banach space. This setting requires the following preliminary
definitions.

Definition 2.1. A stochastic process X : R → L2(Ω; B) is said to be continuous
whenever

lim
t→s

E‖X(t)−X(s)‖2 = 0.

Definition 2.2. A continuous stochastic process X : R → L2(Ω; B) is said to be
quadratic mean almost periodic if for each ε > 0 there exists l(ε) > 0 such that any
interval of length l(ε) contains at least a number τ for which

sup
t∈R

E‖X(t+ τ)−X(t)‖2 < ε.

The collection of all stochastic processes X : R → L2(Ω; B) which are quadratic
mean almost periodic is then denoted by AP (R;L2(Ω; B)).

The next lemma provides some properties of quadratic mean almost periodic
processes.

Lemma 2.3. If X belongs to AP (R;L2(Ω; B)), then
(i) the mapping t→ E‖X(t)‖2 is uniformly continuous;
(ii) there exists a constant M > 0 such that E‖X(t)‖2 ≤M , for all t ∈ R.
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Let CUB(R;L2(Ω; B)) denote the collection of all stochastic processes X : R 7→
L2(Ω; B), which are continuous and uniformly bounded. It is then easy to check
that CUB(R;L2(Ω; B)) is a Banach space when it is equipped with the norm:

‖X‖∞ = sup
t∈R

(
E‖X(t)‖2

)1/2

.

Lemma 2.4. AP (R;L2(Ω; B)) ⊂ CUB(R;L2(Ω; B)) is a closed subspace.

In view of the above, the space AP (R;L2(Ω; B)) of quadratic mean almost peri-
odic processes equipped with the norm ‖ · ‖∞ is a Banach space.

Let (B1, ‖·‖B1) and (B2, ‖·‖B2) be Banach spaces and let L2(Ω; B1) and L2(Ω; B2)
be their corresponding L2-spaces, respectively.

Definition 2.5. A function F : R × L2(Ω; B1) → L2(Ω; B2)), (t, Y ) 7→ F (t, Y ),
which is jointly continuous, is said to be quadratic mean almost periodic in t ∈ R
uniformly in Y ∈ K where K ⊂ L2(Ω; B1) is a compact if for any ε > 0, there exists
l(ε,K) > 0 such that any interval of length l(ε,K) contains at least a number τ for
which

sup
t∈R

E‖F (t+ τ, Y )− F (t, Y )‖2
B2
< ε

for each stochastic process Y : R → K.

Theorem 2.6. Let F : R×L2(Ω; B1) → L2(Ω; B2), (t, Y ) 7→ F (t, Y ) be a quadratic
mean almost periodic process in t ∈ R uniformly in Y ∈ K, where K ⊂ L2(Ω; B1)
is compact. Suppose that F is Lipschitz in the following sense:

E‖F (t, Y )− F (t, Z)‖2
B2
≤ME‖Y − Z‖2

B1

for all Y, Z ∈ L2(Ω; B1) and for each t ∈ R, where M > 0. Then for any qua-
dratic mean almost periodic process Φ : R → L2(Ω; B1), the stochastic process
t 7→ F (t,Φ(t)) is quadratic mean almost periodic.

3. Sectorial Operators on H

In this section, we introduce some notations and collect some preliminary results
from Diagana [7] that will be used later. If A is a linear operator on H, then ρ(A),
σ(A), D(A), ker(A), R(A) stand for the resolvent set, spectrum, domain, kernel,
and range of A. If B1,B2 are Banach spaces, then the notation B(B1,B2) stands
for the Banach space of bounded linear operators from B1 into B2. When B1 = B2,
this is simply denoted B(B1).

Definition 3.1. A linear operator A : D(A) ⊂ H → H (not necessarily densely
defined) is said to be sectorial if the following hold: there exist constants ζ ∈ R,
θ ∈ (π

2 , π), and M > 0 such that Sθ,ζ ⊂ ρ(A),

Sθ,ζ := {λ ∈ C : λ 6= ζ, ]; | arg(λ− ζ)| < θ},

‖R(λ,A)‖ ≤ M

|λ− ζ|
, λ ∈ Sθ,ζ

where R(λ,A) = (λI −A)−1 for each λ ∈ ρ(A).
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Remark 3.2. If the operator A is sectorial, then it generates an analytic semigroup
(T (t))t≥0, which maps (0,∞) into B(H) and such that there exist constants M0,
M1 > 0 such that

‖T (t)‖ ≤M0e
ζt, t > 0 (3.1)

‖t(A− ζI)T (t)‖ ≤M1e
ζt, t > 0 (3.2)

Definition 3.3. A semigroup (T (t))t≥0 is hyperbolic; that is, there exist a projec-
tion P and constants M , δ > 0 such that T (t) commutes with P , ker(P ) is invariant
with respect T (t), T (t) : R(S) → R(S) is invertible, and

‖T (t)Px‖ ≤Me−δt‖x‖, t > 0, (3.3)

‖T (t)Sx‖ ≤Meδt‖x‖, t ≤ 0, (3.4)

where S := I − P and, for t ≤ 0, T (t) := (T (−t))−1.

Recall that the analytic semigroup (T (t))t≥0 associated with the linear operator
A is hyperbolic if and if σ(A) ∩ iR = ∅.

Definition 3.4. Let α ∈ (0, 1). A Banach space (Hα, ‖ · ‖α) is said to be an
intermediate space between D(A) and H, or a space of class Jα, if D(A) ⊂ Hα ⊂ H
and there is a constant c > 0 such that

‖x‖α ≤ c‖x‖1−α‖x‖α
[D(A)], x ∈ D(A), (3.5)

where ‖ · ‖[D(A)] is the graph norm of A. Here, ‖u‖[D(A)] = ‖u‖ + ‖Au‖, for each
u ∈ D(A).

Concrete examples of Hα include D((−A)α) for α ∈ (0, 1), the domains of the
fractional powers of A, the real interpolation spaces DA(α,∞), α ∈ (0, 1), defined
as the space of all x ∈ H such that

[x]α = sup
0≤t≤1

‖t1−α(A− ζI)e−ζtT (t)x‖ <∞,

with the norm
‖x‖α = ‖x‖+ [x]α,

and the abstract Holder spaces DA(α) := D(A)
‖·‖α .

Lemma 3.5 ([6, 7]). For the hyperbolic analytic semigroup (T (t))t≥0, there exist
constants C(α) > 0, δ > 0, M(α) > 0, and γ > 0 such that

‖T (t)Sx‖α ≤ c(α)eδt‖x‖ for t ≤ 0, (3.6)

‖T (t)Px‖α ≤M(α)t−αe−γt‖x‖ for t > 0. (3.7)

The next Lemma is crucial for the rest of the paper. A version of it in a general
Banach space can be found in Diagana [6, 7].

Lemma 3.6 ([6, 7]). Let 0 < α < β < 1. For the hyperbolic analytic semigroup
(T (t))t≥0, there exist constants c > 0, δ > 0, and γ > 0 such that

‖AT (t)Qx‖α ≤ n(α, β)eδt‖x‖ ≤ n′(α, β)eδt‖x‖β , for t ≤ 0 (3.8)

‖AT (t)Px‖α ≤M(α)t−αe−γt‖x‖ ≤M ′(α)t−αe−γt‖x‖β , for t > 0. (3.9)



6 P. H. BEZANDRY, T. DIAGANA EJDE-2009/111

Also, for Ξ ∈ L0
2,

‖AT (t)QΞ‖L0
2
≤ n1(α, β)eδt‖Ξ‖L0

2
, for t ≤ 0 (3.10)

‖AT (t)PΞ‖L0
2
≤M1(α)t−αe−γt‖Ξ‖L0

2
, for t > 0. (3.11)

4. Existence of Quadratic-Mean Almost Periodic Solutions

This section is devoted to the existence and uniqueness of a quadratic-mean
almost periodic solution to the stochastic hyperbolic differential equation (1.4)

Definition 4.1. Let α ∈ (0, 1). A continuous random function, X : R → L2(Ω; Hα)
is said to be a bounded solution of (1.4) provided that the function s → AT (t −
s)PF (s,BX(s)) is integrable on (−∞, t), s→ AT (t−s)QF (s,BX(s)) is integrable
on (t,∞) for each t ∈ R, and

X(t) = −F (t, BX(t))−
∫ t

−∞
AT (t− s)PF (s,BX(s)) ds

+
∫ ∞

t

AT (t− s)SF (s,BX(s)) ds

+
∫ t

−∞
T (t− s)PG(s, CX(s)) ds−

∫ ∞

t

T (t− s)SG(s, CX(s)) ds

+
∫ t

−∞
T (t− s)PH(s, LX(s)) dW (s)−

∫ ∞

t

T (t− s)SH(s, LX(s)) dW (s)

for each t ∈ R.

In the rest of this article, we denote by Γ1, Γ2, Γ3, Γ4, Γ5, and Γ6 the nonlinear
integral operators defined by

(Γ1X)(t) :=
∫ t

−∞
AT (t− s)PF (s,BX(s)) ds,

(Γ2X)(t) :=
∫ ∞

t

AT (t− s)SF (s,BX(s)) ds,

(Γ3X)(t) :=
∫ t

−∞
T (t− s)PG(s, CX(s)) ds

(Γ4X)(t) :=
∫ ∞

t

T (t− s)SG(s, CX(s)) ds,

(Γ5X)(t) :=
∫ t

−∞
T (t− s)PH(s, LX(s)) dW (s),

(Γ6X)(t) :=
∫ ∞

t

T (t− s)SH(s, LX(s)) dW (s).

To discuss the existence of quadratic-mean almost periodic solution to (1.4) we
need to set some assumptions on A, B, C, L, F , G, and H. First of all, note that
for 0 < α < β < 1, then

L2(Ω,Hβ) ↪→ L2(Ω,Hα) ↪→ L2(Ω; H)
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are continuously embedded and hence there exist constants k1 > 0, k(α) > 0 such
that

E‖X‖2 ≤ k1E‖X‖2
α for each X ∈ L2(Ω,Hα),

E‖X‖2
α ≤ k(α)E‖X‖2

β for each X ∈ L2(Ω,Hβ).

(H1) The operator A is sectorial and generates a hyperbolic (analytic) semigroup
(T (t))t≥0.

(H2) Let α ∈ (0, 1
2 ). Then Hα = D((−A)α), or Hα = DA(α, p), 1 ≤ p ≤ ∞,

or Hα = DA(α), or Hα = [H, D(A)]α. We also assume that B,C,L :
L2(Ω,Hα) → L2(Ω; H) are bounded linear operators and set

$ := max
(
‖B‖B(L2(Ω,Hα),L2(Ω;H)), ‖C‖B(L2(Ω,Hα),L2(Ω;H)), ‖L‖B(L2(Ω,Hα),L2(Ω;H))

)
.

(H3) Let α ∈ (0, 1
2 ) and α < β < 1. Let F : R × L2(Ω; H) → L2(Ω,Hβ),

G : R × L2(Ω; H) → L2(Ω; H) and H : R × L2(Ω; H) → L2(Ω;L0
2) are

quadratic-mean almost periodic. Moreover, the functions F , G, and H are
uniformly Lipschitz with respect to the second argument in the following
sense: there exist positive constants KF , KG, and KH such that

E‖F (t, ψ1)− F (t, ψ2)‖2
β ≤ KF E‖ψ1 − ψ2‖2,

E‖G(t, ψ1)−G(t, ψ2)‖2 ≤ KGE‖ψ1 − ψ2‖2,

E‖H(t, ψ1)−H(t, ψ2)‖2
L0

2
≤ KHE‖ψ1 − ψ2‖2,

for all stochastic processes ψ1, ψ2 ∈ L2(Ω; H) and t ∈ R.

Theorem 4.2. Under assumptions (H1)–(H3), the evolution equation (1.4) has a
unique quadratic-mean almost periodic mild solution whenever Θ < 1, where

Θ := $
[
k′(α)K ′

F

{
1 + c

(Γ(1− α)
γ1−α

+
1
δ

)}
+ k′1 ·K ′

G

(
M ′(α)

Γ(1− α)
γ1−α

+
C ′(α)
δ

)
+ c

√
TrQ ·K ′

H · k′1 ·
{K ′(α, β)√

δ
+ 2K ′(α, γ, δ,Γ)

}]
.

To prove this Theorem 4.2, we will need the following lemmas, which will be
proven under our initial assumptions.

Lemma 4.3. Under assumptions (H1)–(H3), the integral operators Γ1 and Γ2 de-
fined above map AP (R;L2(Ω,Hα)) into itself.

Proof. The proof for the quadratic-mean almost periodicity of Γ2X is similar to
that of Γ1X and hence will be omitted. Let X ∈ AP (R;L2(Ω; Hα)). Since
B ∈ B(L2(Ω; Hα), L2(Ω; H)) it follows that the function t → BX(t) belongs to
AP (R;L2(Ω; H)). Using Theorem 2.6 it follows that Ψ(·) = F (·, BX(·)) is in
AP (R;L2(Ω; Hβ)) whenever X ∈ AP (R;L2(Ω; Hα)). We can now show that Γ1X ∈
AP (R;L2(Ω; Hα)). Indeed, since X ∈ AP (R;L2(Ω; Hβ)), for every ε > 0 there ex-
ists l(ε) > 0 such that for all ξ there is t ∈ [ξ, ξ + l(ε)] with the property:

E‖ΨX(t+ τ)−ΨX(t)‖2
β < ν2ε for each t ∈ R,

where ν = γ1−α

M ′(α)Γ(1−α) with Γ(·) being the classical gamma function.
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Now, the estimate in (3.9) yields

E‖Γ1X(t+ τ)− Γ1X(t)‖2
α

≤ E
( ∫ ∞

0

‖AT (s)P [Ψ(t− s+ τ)−Ψ(t− s)]‖αds
)2

≤M ′(α)2
( ∫ ∞

0

s−αe−γsds
)( ∫ ∞

0

s−αe−γsE‖Ψ(t− s+ τ)−Ψ(t− s)‖2
βds

)
≤

(M ′(α)Γ(1− α)
γ1−α

)2

sup
t∈R

E‖Ψ(t+ τ)−Ψ(t)‖2
βds < ε

for each t ∈ R, and hence Γ1X ∈ AP (R;L2(Ω; Hα)). �

Lemma 4.4. Under assumptions (H1)–(H3), the integral operators Γ3 and Γ4 de-
fined above map AP (R;L2(Ω; Hα)) into itself.

Proof. The proof for the quadratic-mean almost periodicity of Γ4X is similar to
that of Γ3X and hence will be omitted. Note, however, that for Γ4X, we make use
of (3.6) rather than (3.7).

Let X ∈ AP (R;L2(Ω,Hα)). Since C ∈ B(L2(Ω; Hα), L2(Ω; H)), it follows that
CX ∈ AP (R, L2(Ω; H))). Setting Φ(t) = G(t, CX(t)) and using Theorem 2.6 it fol-
lows that Φ ∈ AP (R;L2(Ω,H))). We can now show that Γ3X ∈ AP (R;L2(Ω,Hα)).
Indeed, since Φ ∈ AP (R;L2(Ω,H))), for every ε > 0 there exists l(ε) > 0 such that
for all ξ there is τ ∈ [ξ, ξ + l(ε)] with

E‖Φ(t+ τ)− Φ(t)‖2 < µ2 · ε for each t ∈ R,

where µ = γ1−α

M(α)Γ(1−α) . Now using the expression

(Γ3X)(t+ τ)− (Γ3X)(t) =
∫ ∞

0

T (s)P [Φ(t− s+ τ)− Φ(t− s)] ds

and (3.7) it easily follows that

E‖(Γ3X)(t+ τ)− (Γ3X)(t)‖2
α < ε for each t ∈ R,

and hence, Γ3X ∈ AP (R;L2(Ω; Hα)). �

Lemma 4.5. Under assumptions (H1)–(H3), the integral operators Γ5 and Γ6 map
AP (R;L2(Ω; Hα)) into itself.

Proof. Let X ∈ AP (R;L2(Ω; Hα)). Since L ∈ B(L2(Ω; Hα), L2(Ω; H)), it follows
that LX ∈ AP (R, L2(Ω; H))). Setting Λ(t) = H(t, LX(t)) and using Theorem 2.6
it follows that Λ ∈ AP (R;L2(Ω;L0

2)). We claim that Γ5X ∈ AP (R;L2(Ω; Hα)).
Indeed, since Λ ∈ AP (R;L2(Ω;L0

2)), for every ε > 0 there exists l(ε) > 0 such that
for all ξ there is τ ∈ [ξ, ξ + l(ε)] with

E‖Λ(t+ τ)− Λ(t)‖2
L0

2
< ζ · ε for each t ∈ R, (4.1)

where

ζ =
1

2c2 TrQ ·K(α, γ, δ,Γ)
.

Now using the expression

(Γ5X)(t+ τ)− (Γ5X)(t) =
∫ ∞

0

T (s)P [Λ(t− s+ τ)− Λ(t− s)] dW (s),
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Equation (3.5), the arithmetic-geometric inequality, and Ito isometry we have

E‖(Γ5X)(t+ τ)− (Γ5X)(t)‖2
α

=
∥∥∫ ∞

0

T (s)P [Λ(t− s+ τ)− Λ(t− s)] dW (s)
∥∥2

α

≤ c2E
{

(1− α)
∥∥∫ ∞

0

T (s)P [Λ(t− s+ τ)− Λ(t− s)] dW (s)
∥∥

+ α
∥∥∫ ∞

0

T (s)P [Λ(t− s+ τ)− Λ(t− s)] dW (s)
∥∥

[D(A)]

}2

≤ c2E
{∥∥∫ ∞

0

T (s)P [Λ(t− s+ τ)− Λ(t− s)] dW (s)
∥∥

+
∥∥A∫ ∞

0

T (s)P [Λ(t− s+ τ)− Λ(t− s)] dW (s)
∥∥}2

≤ 2c2 TrQ
{∫ ∞

0

E‖T (s)P [Λ(t− s+ τ)− Λ(t− s)]‖2
L0

2
ds

+
∫ ∞

0

E‖AT (s)P [Λ(t− s+ τ)− Λ(t− s)]‖2
L0

2
ds

}
.

Now

E‖T (s)P [Λ(t− s+ τ)− Λ(t− s)]‖2
L0

2
≤M2e−2δsE‖Λ(t− s+ τ)− Λ(t− s)‖2

L0
2
,

and

E‖AT (s)P [Λ(t− s+ τ)− Λ(t− s)]‖2
L0

2

≤M2
1 (α)s−2αe−2γsE‖Λ(t− s+ τ)− Λ(t− s)‖2

L0
2
.

Hence,

E‖(Γ5X)(t+ τ)− (Γ5X)(t)‖2
α ≤ 2c2 TrQ ·K(α, γ, δ,Γ) sup

t∈R
E‖Λ(t+ τ)− Λ(t)‖2

L0
2
.

where

K(α, γ, δ,Γ) =
M2

2δ
+
M2

1 (α)Γ(1− 2α)
γ1−2α

,

and it follows from (4.1) that Γ5X ∈ AP (R;L2(Ω; Hα).
As for Γ6X ∈ AP (R;L2(Ω,Hα)), since Λ ∈ AP (R;L2(Ω;L2

0)), for every ε > 0
there exists l(ε) > 0 such that for all ξ there is τ ∈ [ξ, ξ + l(ε)] with

E‖Λ(t+ τ)− Λ(t)‖2
L2

0
< κ · ε for each t ∈ R, (4.2)

where κ = δ
c2·Tr Q·K(α,β) . Now using the expression

(Γ6X)(t+ τ)− (Γ6X)(t) =
∫ 0

−∞
T (s)S[Λ(t− s+ τ)− Λ(t− s)] dW (s)
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Equation (3.5 ), the arithmetic-geometric inequality, and Ito isometry we have

E‖(Γ6X)(t+ τ)− (Γ6X)(t)‖2
α

=
∥∥∫ 0

−∞
T (s)S[Λ(t− s+ τ)− Λ(t− s)] dW (s)

∥∥2

α

≤ 2c2 TrQ
{∫ 0

−∞
E‖T (s)S[Λ(t− s+ τ)− Λ(t− s)]‖2

L0
2
ds

+
∫ 0

−∞
E‖AT (s)S[Λ(t− s+ τ)− Λ(t− s)]‖2

L0
2
ds

}
However,

E‖T (s)S[Λ(t− s+ τ)− Λ(t− s)]‖2
L0

2
≤M2e2δsE‖Λ(t− s+ τ)− Λ(t− s)‖2

L0
2
,

E‖AT (s)S[Λ(t− s+ τ)− Λ(t− s)]‖2
L0

2
≤ n2

1(α, β)e2δsE‖Λ(t− s+ τ)− Λ(t− s)‖2
L0

2

Thus,

E‖(Γ6X)(t+ τ)− (Γ6X)(t)‖2
α ≤ c2 · TrQ · K(α, β)

δ
sup
t∈R

E‖Λ(t+ τ)− Λ(t)‖2
L0

2
ds,

where K(α, β)) = M2 +n2
1(α, β) is a constant depending on α and β and it follows

from (4.2) that Γ6X ∈ AP (R;L2(Ω; Hα)). �

We are ready for the proof of Theorem 4.2.

Proof. Consider the nonlinear operator M on the space AP (R;L2(Ω; Hα)) equipped
with the α-sup norm ‖X‖∞,α = supt∈R(E‖X(t)‖2

α)1/2 and defined by

MX(t) = −F (t, BX(t))−
∫ t

−∞
AT (t− s)PF (s,BX(s)) ds

+
∫ ∞

t

AT (t− s)SF (s,BX(s)) ds

+
∫ t

−∞
T (t− s)PG(s, CX(s)) ds−

∫ ∞

t

T (t− s)SG(s, CX(s)) ds

+
∫ t

−∞
T (t− s)PH(s, LX(s)) dW (s)−

∫ ∞

t

T (t− s)SH(s, LX(s)) dW (s)

for each t ∈ R.
As we have previously seen, for every X ∈ AP (R;L2(Ω; Hα)), f(·, BX(·)) ∈

AP (R;L2(Ω; Hβ)) ⊂ AP (R;L2(Ω; Hα)). In view of Lemmas 4.3, 4.4, and 4.5, it
follows that M maps AP (R;L2(Ω; Hα)) into itself. To complete the proof one has
to show that M has a unique fixed point.

Let X,Y ∈ AP (R;L2(Ω; Hα)). By (H1), (H2), and (H3), we obtain

E‖F (t, BX(t))− F (t, BY (t))‖2
α ≤ k(α)KF E‖BX(t)−BY (t)‖2

≤ k(α) ·KF$
2‖X − Y ‖2

∞,α,

which implies

‖F (·, BX(·))− F (·, BY (·))‖∞,α ≤ k′(α) ·K ′
F$‖X − Y ‖∞,α.
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Now for Γ1 and Γ2, we have the following evaluations

E‖(Γ1X)(t)− (Γ1Y )(t)‖2
α

≤ E
( ∫ t

−∞
‖AT (t− s)P [F (s,BX(s))− F (s,BY (s))]‖αds

)2

≤ c2
( ∫ t

−∞
(t− s)−αe−γ(t−s)ds

)
×

( ∫ t

−∞
(t− s)−αe−γ(t−s)E‖[F (s,BX(s))− F (s,BY (s))]‖2

αds
)

≤ c2k(α)KF$
2‖X − Y ‖2

∞,α

( ∫ t

−∞
(t− s)−αe−γ(t−s)ds

)2

= c2k(α)KF

(Γ(1− α)
γ1−α

)2

$2‖X − Y ‖2
∞,α,

which implies

‖Γ1X − Γ1Y ‖∞,α ≤ c · k′(α) ·K ′
F

Γ(1− α))
γ1−α

$‖X − Y ‖∞,α.

Similarly,

E‖(Γ2X)(t)− (Γ2Y )(t)‖2
α

≤ E
( ∫ ∞

t

‖AT (t− s)S[F (s,BX(s))− F (s,BY (s))]‖αds
)2

≤ c2k(α)KF

δ2
$2‖X − Y ‖2

∞,α,

which implies

‖Γ2X − Γ2Y ‖∞,α ≤
c · k′(α) ·K ′

F

δ
$‖X − Y ‖∞,α.

As to Γ3 and Γ4, we have the following evaluations

E‖(Γ3X)(t)− (Γ3Y )(t)‖2
α

≤ E
( ∫ t

−∞
‖T (t− s)P [G(s, CX(s))−G(s, CY (s))]‖αds

)2

≤ k1 ·M2(α)
( ∫ t

−∞
(t− s)−αe−γ(t−s)ds

)
×

( ∫ t

−∞
(t− s)−αe−γ(t−s)E‖G(s, CX(s))−G(s, CY (s))‖2

αds
)

≤ k1 ·KG ·M2(α)
(Γ(1− α)

γ1−α

)2

$2‖X − Y ‖2
∞,α,

which implies

‖Γ3X − Γ3Y ‖∞,α ≤ k′1 ·K ′
G ·M ′(α)

Γ(1− α))
γ1−α

$‖X − Y ‖∞,α.
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Similarly,

E‖(Γ4X)(t)− (Γ4Y )(t)‖2
α

≤ E
( ∫ ∞

t

‖T (t− s)S[G(s, CX(s))−G(s, CY (s))]‖αds
)2

≤ k1KGC(α)
δ2

$2‖X − Y ‖2
∞,α,

which implies

‖Γ4X − Γ4Y ‖∞,α ≤
k′1 ·K ′

G · C ′(α)
δ

$‖X − Y ‖∞,α.

Finally for Γ5 and Γ6, we have the following evaluations

E‖(Γ5X)(t)− (Γ5Y )(t)‖2
α

≤ 2c2 TrQ{
∫ ∞

0

E‖T (s)P [H(t, LX(t))−H(t, LY (t))‖2
L0

2
ds

≤ 2c2 · TrQ · k1 ·K(α, γ, δ,Γ) ·KH ·$2‖X − Y ‖2
∞,α,

which implies

‖ΓX5 − Γ5Y ‖∞,α ≤ 2c ·
√

TrQ · k′1 ·K ′(α, γ, δ,Γ) ·K ′
H ·$‖X − Y ‖∞,α.

Similarly,

E‖(Γ6X)(t)− (Γ6Y )(t)‖2
α ≤ c2 · TrQ · k1 ·KH · K(α, β)

δ
$2‖X − Y ‖2

∞,α,

which implies

‖ΓX6 − Γ6Y ‖∞,α ≤ c ·
√

TrQ · k′1 ·K ′
H · K

′(α, β)√
δ

·$‖X − Y ‖∞,α.

Consequently,
‖MX −MY ‖∞,α ≤ Θ · ‖X − Y ‖∞,α.

Clearly, if Θ < 1, then (1.4) has a unique fixed-point by Banach fixed point theorem,
which is obviously the only quadratic-mean almost periodic solution to it. �

5. Example

Let Γ ⊂ RN (N ≥ 1) be a open bounded subset with C2 boundary ∂Γ. To
illustrate our abstract results, we study the existence of quadratic mean almost
periodic solutions to the stochastic heat equation in divergence given by

∂
[
Φ + F (t, d̂ivΦ)

]
=

[
∆Φ +G(t, d̂ivΦ)

]
∂t +H(t,Φ)∂W (t), in Γ

Φ = 0, on ∂Γ
(5.1)

where the unknown Φ is a function of ω ∈ Ω, t ∈ R, and x ∈ Γ, the symbols d̂iv and
∆ stand respectively for the first and second-order differential operators defined by

d̂iv :=
N∑

j=1

∂

∂xj
, ∆ =

N∑
j=1

∂2

∂x2
j

,

and the coefficients F,G : R × L2(Ω,Hα
0 (Γ) ∩ H2α(Γ)) 7→ L2(Ω, L2(Γ)) and H :

R× L2(Ω,Hα
0 (Γ) ∩H2α(Γ)) → L2(Ω,L0

2) are quadratic-mean almost periodic.
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Define the linear operator appearing in (5.1) as follows:

AX = ∆X for all u ∈ D(A) = L2(Ω; H1
0(Γ) ∩H2(Γ)).

Using the fact that the operator A, defined in L2(Γ) by

Au = ∆u for all u ∈ D(A) = H1
0(Γ) ∩H2(Γ),

is sectorial and whose corresponding analytic semigroup is hyperbolic, one easily
sees that the operator A defined above is sectorial and hence is the infinitesimal
generator of an analytic semigroup (T (t))t≥0. Moreover, the semigroup (T (t))t≥0

is hyperbolic as
σ(A) ∩ iR = ∅.

For each µ ∈ (0, 1), we take Hµ = D((−∆)µ) = L2(Ω,Hµ
0 (Γ) ∩ H2µ(Γ)) equipped

with its µ-norm ‖ · ‖µ. Moreover, since α ∈ (0, 1
2 ), we suppose that 1

2 < β < 1. Let-
ting L = I, and BX = CX = div X for all X ∈ L2(Ω,Hα) = L2(Ω, D((−∆)α)) =
L2(Ω,Hα

0 (Γ) ∩ H2α(Γ)), one easily see that both B and C are bounded from
L2(Ω,Hα

0 (Γ) ∩H2α(Γ)) in L2(Ω, L2(Γ)) with $ = 1.
We require the following assumption:
(H4) Let 1

2 < β < 1, and

F : R× L2(Ω,Hα
0 (Γ) ∩H2α(Γ)) 7→ L2(Ω,Hβ

0 (Γ) ∩H2β(Γ))

be quadratic-mean almost periodic in t ∈ R uniformly inX ∈ L2(Ω,Hα
0 (Γ)∩

H2α(Γ)), G : R × L2(Ω,Hα
0 (Γ) ∩ H2α(Γ)) 7→ L2(Ω, L2(Γ)) be quadratic-

mean almost periodic in t ∈ R uniformly in X ∈ L2(Ω,Hα
0 (Γ) ∩ H2α(Γ)).

Moreover, the functions F,G are uniformly Lipschitz with respect to the
second argument in the following sense: there exists K ′ > 0 such that

E‖F (t,Φ1)− F (t,Φ2)‖β ≤ K ′E‖Φ1 − Φ2‖L2(Γ),

E‖G(t,Φ1)−G(t,Φ2)‖L2(Γ) ≤ K ′E‖Φ1 − Φ2‖L2(Γ),

E‖H(t, ψ1)−H(t, ψ2)‖2
L0

2
≤ K ′E‖ψ1 − ψ2‖2

L2(Γ)

for all Φ1,Φ2, ψ1, ψ2 ∈ L2(Ω;L2(Γ)) and t ∈ R.
As a final result, we have the following theorem.

Theorem 5.1. Under the above assumptions including (H4), the N -dimensional
stochastic heat equation (5.1) has a unique quadratic-mean almost periodic solution
Φ ∈ L2(Ω,H1

0(Γ) ∩H2(Γ)) whenever K ′ is small enough.
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