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MULTIPLICITY OF SOLUTIONS FOR SOME DEGENERATE
QUASILINEAR ELLIPTIC EQUATIONS

VIVIANA SOLFERINO

Abstract. We show the existence of infinitely many solutions for a symmetric
quasilinear problem whose principal part is degenerate.

1. Introduction and statement of main result

Let Ω be a bounded open subset of Rn with n ≥ 2. We are interested in the
solvability of the quasilinear elliptic problem

−div(jξ(x, u,∇u)) + js(x, u,∇u) = g(x, u) in Ω ,

u = 0 on ∂Ω ,
(1.1)

where j : Ω× R× Rn → R is defined as

j(x, s, ξ) =
1
2

a(x, s)|ξ|2 .

A feature of quasilinear problems like (1.1) is that, for a general u ∈ H1
0 (Ω), the term

js(x, u,∇u) belongs to L1(Ω) under reasonable assumptions, but not to H−1(Ω).
As a consequence, the functional

f(u) =
∫

Ω

j(x, u,∇u)−
∫

Ω

G(x, u) , G(x, s) =
∫ s

0

g(x, t) dt ,

whose Euler-Lagrange equation is represented by (1.1), is continuous on H1
0 (Ω),

but not locally Lipschitz, in particular not of class C1.
In spite of this fact, existence and multiplicity results have been already obtained

for this class of problems, also by means of variational methods, starting from the
case in which a is bounded and bounded away from zero (see [1, 4]). Actually, in
[1] the nonsmoothness of the functional is overcome by a suitable approximation
procedure, while in [4] a direct approach, based on a critical point theory for con-
tinuous functionals developed in [5, 6, 7, 8], is used. However, it seems to be hard,
in the approach of [1], to get multiplicity results when, e.g., f is even.

Both approaches have been extended to the case in which a is still bounded away
from zero, but possibly unbounded (unbounded case), in [2, 9], respectively. Again,
multiplicity results when f is even are proved only in the second paper.
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Finally, in [3] the case in which a is bounded, but not bounded away from zero
(degenerate case) is addressed in the line of [1, 2]. Also in this case, no multiplicity
result is proved when f is even.

The main purpose of this paper is to prove that, in the model case mentioned
in [3] and with a symmetry assumption, problem (1.1) possesses infinitely many
solutions. We also show that it is not necessary to restart all the machinery of the
previous cases to get the result. By a change of variable, the degenerate case can be
reduced to that of [4]. Apart from the model case, it would be interesting to check
if, up to a change of variable, the degenerate case can be reduced to a suitable form
of the unbounded case and viceversa.

To state our result, consider the model case

a(x, s) =
1

(b(x) + s2)α ,

where b is a measurable function satisfying 0 < β1 ≤ b(x) ≤ β2 a.e. in Ω and
α ∈ [0, n

2n−2 ).
Let also g : Ω × R → R be a Carathéodory function satisfying the following

assumptions:
• there exists b, d > 0 and 2 < p < 2∗(1− α) such that

|g(x, s)| ≤ b|s|p−1 + d (1.2)

for almost every x ∈ Ω and every s ∈ R
• for almost every x ∈ Ω and every s ∈ R,

g(x,−s) = −g(x, s). (1.3)

We set G(x, s) =
∫ s

0
g(x, t) dt and we assume that there exist ν > 2, R > 0 such

that
0 < νG(x, s) ≤ sg(x, s). (1.4)

for almost every x ∈ Ω and all s ∈ R with |s| ≥ R.
It easily follows that the function a satisfies the following conditions:
• there exist c1, c2 > 0 such that

c1

(1 + |s|)2α ≤ a(x, s) ≤ c2 (1.5)

for almost every x ∈ Ω, for every s ∈ R,
• for almost every x in Ω the function a(x, .) is differentiable on R and there

exist c3 > 0 such that, for almost every x ∈ Ω, its derivative

as(x, s) ≡ ∂a

∂s
(x, s) =

−2α s a(x, s)
b(x) + s2

satisfies
|as(x, s)| ≤ c3 ∀s ∈ R (1.6)

• for almost every x ∈ Ω and all s ∈ R
a(x, s) = a(x,−s). (1.7)

Definition 1.1. We say that u is a weak solution of (1.1) if u ∈ H1
0 (Ω) and∫

Ω

jξ(x, u,∇u)∇v + js(x, u,∇u)v =
∫

Ω

g(x, u) v

for every v ∈ C∞0 (Ω).
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We are now able to state our main result.

Theorem 1.2. Assume that conditions (1.2), (1.3) and (1.4) hold. Then there
exists a sequence {uh} ⊂ H1

0 (Ω) ∩ L∞(Ω) of weak solutions of (1.1) such that∫
Ω

j(x, uh,∇uh)−
∫

Ω

G(x, uh)

approaches +∞ as h → +∞.

2. Proof of the main result

Let ϕ ∈ C2(R) be defined as

ϕ(s) = s (1 + s2)
α

2(1−α) .

Remark 2.1. We observe that ϕ is odd and that there exists γ > 0 such that

ϕ′(s) ≥ γ(1 + |ϕ(s)|)α. (2.1)

Moreover we have

lim
s→±∞

sϕ′(s)
ϕ(s)

= lim
s→±∞

(
1 + s

ϕ′′(s)
ϕ′(s)

)
=

1
1− α

. (2.2)

Let us consider the change of variable u = ϕ(v). We can define on H1
0 (Ω) the

functional

f̃(v) =
1
2

∫
Ω

A(x, v)|∇v|2 −
∫

Ω

G̃(x, v),

where

A(x, s) = a(x, ϕ(s)) · (ϕ′(s))2, G̃(x, s) = G(x, ϕ(s)) =
∫ s

0

g̃(x, t)dt,

with g̃(x, s) = g(x, ϕ(s)) · ϕ′(s).
Now let us consider the integrand j̃ : Ω× R× Rn → R defined by

j̃(x, s, ξ) =
1
2
A(x, s)|ξ|2.

Remark 2.2. It is readily seen that (2.1) and the left inequality of (1.5) imply
that for almost every x ∈ Ω and for every (s, ξ) ∈ R× Rn, there holds

j̃(x, s, ξ) ≥ α0|ξ|2,

where α0 = c1 γ2

2 .

Remark 2.3. By Remark 2.1 there exists Λ > 0 such that, for a.e. x ∈ Ω and for
every s ∈ R, we have

A(x, s) ≤ Λ, (2.3)

|As(x, s)| ≤ Λ. (2.4)

Proposition 2.4. Assume condition (1.4). Then
ν

1− α
G̃(x, s) ≤ sg̃(x, s) (2.5)

for every s ∈ R with |s| ≥ R.
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Proof. Condition (1.4) implies

νG̃(x, s)ϕ′(s) ≤ ϕ(s) G̃s(x, s)

hence

ν
sϕ′(s)
ϕ(s)

G̃(x, s) ≤ sG̃s(x, s)

and taking into account Remark 2.1, we get the thesis. �

Proposition 2.5. There exists µ < ν
1−α − 2 such that, for almost every x ∈ Ω,

for every ξ ∈ Rn, for every s ∈ R with |s| ≥ R, we have

0 ≤ sj̃s(x, s, ξ) ≤ µ j̃(x, s, ξ). (2.6)

Proof. Indeed

j̃s(x, s, ξ) =
1
2
As(x, s)|ξ|2

=
1
2
[as(x, ϕ(s)) · (ϕ′(s))3 + 2ϕ′(s) · ϕ′′(s) · a(x, ϕ(s))]|ξ|2

= a(x, ϕ(s)) · ϕ′(s)
[−α ϕ(s) (ϕ′(s))2

b(x) + (ϕ(s))2
+ ϕ′′(s)

]
|ξ|2.

(2.7)

Let s > 0. Then recalling that a(x, ϕ(s)) and ϕ′(s) are positive functions, it suffices
to prove that the square bracket is non negative. Note that the expression is equal
to

αs(1 + s2)
α

2(1−α)

(1− α)(1 + s2)2
[−(s2 + 1− α)(1 + s2)

α
(1−α)

b(x) + (1 + s2)
α

(1−α) s2
+

(s2 + 1− α) b(x)

(1− α)(b(x) + (1 + s2)
α

1−α s2)
+2

]
.

Observing that the second term in square bracket is positive and the sum of the
first and third is equal to

(1 + s2)
α

1−α (s2 − (1− α)) + 2 b(x)

b(x) + (1 + s2)
α

1−α s2
,

the assertion follows if we assume R =
√

1− α. On the other hand if s < 0, taking
into account that ϕ′′(s) is an odd function, we deduce that the square bracket
in (2.7) is negative. Now we prove the right inequality. Since ϕ′(s) ≥ 0 and
as(x, ϕ(s)) ≤ 0, we have

s j̃s(x, s, ξ) ≤ 2 j̃(x, s, ξ)
(ϕ′′(s) s

ϕ′(s)

)
and by Remark 2.1 it follows the assertion with R large enough and µ = 2 α

1−α . �

We now are able to prove the main result of the paper.

Proof of Theorem 1.2. By Remark 2.2 and 2.3 and Proposition 2.4 and 2.5 we are
able to apply Theorem 2.6 in [4]. So obtaining a sequence of weak solutions {vh} ⊂
H1

0 (Ω) of the problem∫
Ω

A(x, v)∇v∇w +
1
2

∫
Ω

As(x, v)|∇u|2 w =
∫

Ω

g̃(x, v)w
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for every w ∈ C∞0 (Ω) with f(vh) → ∞. By Theorem 7.1 in [9] these solutions
belong to L∞(Ω). If we set uh = ϕ(vh), it is clear that uh ∈ H1

0 (Ω) ∩ L∞(Ω) and
an easy calculation shows that each uh is a weak solution of (1.1) with∫

Ω

j(x, uh,∇uh)−
∫

Ω

G(x, uh) → +∞

as h → +∞. �
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