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HOMEOMORPHISMS AND FREDHOLM THEORY FOR
PERTURBATIONS OF NONLINEAR FREDHOLM MAPS OF

INDEX ZERO WITH APPLICATIONS

PETRONIJE S. MILOJEVIĆ

Abstract. We develop a nonlinear Fredholm alternative theory involving k-

ball and k-set perturbations of general homeomorphisms and of homeomor-

phisms that are nonlinear Fredholm maps of index zero. Various generalized
first Fredholm theorems and finite solvability of general (odd) Fredholm maps

of index zero are also studied. We apply these results to the unique and fi-

nite solvability of potential and semilinear problems with strongly nonlinear
boundary conditions and to quasilinear elliptic equations. The basic tools used

are the Nussbaum degree and the degree theories for nonlinear C1-Fredholm

maps of index zero and their perturbations.

1. Introduction

Tromba [31] proved that a locally injective and proper Fredholm map T of index
zero is a homeomorphism. The purpose of this paper is to give various extensions
of this result to maps of the form T + C, where T is a homeomorphism and C is a
k-set contractive map. We prove several Fredholm alternative results and various
extensions of the first Fredholm theorem for this class of maps using either Nuss-
baum’s degree or the degree theories for (non) compact perturbations of Fredholm
maps as developed by Fitzpatrick, Pejsachowisz, Rabier, Salter [14, 23, 25] and
Benevieri, Calamai, Furi [3, 4, 5]. Applications to potential equations with nonlin-
ear boundary conditions and to Dirichlet problems for quasilinear elliptic equations
are given.

Let us describe our main results in more detail. Throughout the paper, we
assume that X and Y are infinite dimensional Banach spaces. In Section 2, we
establish a number of nonlinear Fredholm alternatives involving k-ball and k-set
perturbations C : X → Y of general homeomorphisms T : X → Y as well as of
homeomorphisms that are nonlinear Fredholm maps of index zero. In particular,
we obtain various homeomorphism results for T + C assuming that it is locally
injective, satisfies

Condition (+): {xn} is bounded whenever {(T + C)xn} converges,
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and α(C) < β(T ), [15], using the set measure of noncompactness α,

α(T ) = sup{α(T (A))/α(A) : A ⊂ X bounded, α(A) > 0},
β(T ) = inf{α(T (A))/α(A) : A ⊂ X bounded, α(A) > 0}.

α(T ) and β(T ) are related to the properties of compactness and properness of the
map T , respectively. In particular, these results show that such homeomorphisms
are stable under k-set contractive perturbations. We also prove such results when
T + C is asymptotically close to a suitable map that is positively homogeneous
outside some ball. In the last part of Section 2, we establish Fredholm alternatives
for equations of the form Tx + Cx + Dx = f with T either a homeomorphism
or a Fredholm map of index zero, assuming that α(D) < β(T ) − α(C), T + C is
asymptotically close to a k-positive homogeneous map and D quasibounded. We
show that these equations are either uniquely solvable or are finitely solvable for
almost all right hand sides and that the cardinality of the solution set is constant
on certain connected components in Y . In particular, we obtain such alternatives
for T + D when T is either a c-expansive homeomorphism or an expansive along
rays local homeomorphism and D is quasibounded with α(D) < c.

In Section 3, we study finite solvability of equations Tx + Cx + Dx = f that are
perturbations of odd Fredholm maps of index zero with T + C odd and asymptoti-
cally close to a suitable k-positive homogeneous map. These results can be consid-
ered as generalized first Fredholm theorems. We complete this section by proving
several Borsuk type results for (non) compact perturbations of odd Fredholm maps
of index zero. All the results in this section are proved using the recent degree
theories for nonlinear perturbations for Fredholm maps of index zero as defined by
Fitzpatrick, Pejsachowicz-Rabier [14, 23], Benevieri-Furi [3, 4], Rabier-Salter [25]
and Benevieri-Calamai-Furi [5].

In Section 4, we apply some of our results to the unique and finite solvability of
potential and semilinear problems with (strongly) nonlinear boundary value condi-
tions and the Dirichlet problems with strong nonlinearities. Problems of this kind
arise in many applications like steady-state heat transfer, electromagnetic prob-
lems with variable electrical conductivity of the boundary, heat radiation and heat
transfer (cf. [28] and the references therein). Except for [24], the earlier studies
assume that the nonlinearities have at most a linear growth and were based on the
boundary element method.

Finally, in Section 5, some of our results are applied to the finite solvability of
quasilinear elliptic equations on a bounded domain. The Fredholm part is a C1

map of type (S+) that is asymptotically close to a k-homogeneous map and the
perturbation is a k1-set contraction.

2. Perturbations of homeomorphisms and nonlinear Fredholm
alternatives

Let X, Y be infinite dimensional Banach spaces, U be an open subset of X and
T : U → Y be as above. We recall the following properties (see [15]) of α(T ) and
β(T ) defined in the introduction. First, we note that α(T ) is related to the property
of compactness of the map T and the number β(T ) is related to the properness of
T .

(1) α(λT ) = |λ|α(T ) and β(λT ) = |λ|β(T ) for each λ ∈ R.
(2) α(T + C) ≤ α(T ) + α(C).
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(3) β(T )β(C) ≤ β(ToC) ≤ α(T )β(C) (when defined)
(4) If β(T ) > 0, then T is proper on bounded closed sets.
(5) β(T )− α(C) ≤ β(T + C) ≤ β(T ) + α(C).
(6) If T is a homeomorphism and β(T ) > 0, then α(T−1)β(T ) = 1.

If T : X → Y is a homeomorphism, then (3) implies 1 = β(I) = β(T−1oT ) ≤
α(T−1)β(T ). Hence, β(T ) > 0.

If L : X → Y is a bounded linear operator, then β(L) > 0 if and only if Im L
is closed and dim ker L < ∞ and α(L) ≤ ‖L‖. Moreover, one can prove that L is
Fredholm if and only if β(L) > 0 and β(L∗) > 0, where L∗ is the adjoint of L.

Let T : U → Y be, as before, a map from an open subset U of a Banach space
X into a Banach space Y , and let p ∈ U be fixed. Let Br(p) be the open ball in X
centered at p with radius r. Suppose that Br(p) ⊂ U and set

α(T |Br(p)) = sup{αT (A)/α(A) : A ⊂ Br(p) bounded, α(A) > 0}.
This is non-decreasing as a function of r, and clearly α(T |Br(p)) ≤ α(T ). Hence,
the following definition makes sense:

αp(T ) = lim
r→0

α(T |Br(p)).

Similarly, we define βp(T ). We have αp(T ) ≤ α(T ) and βp(T ) ≥ β(T ) for any p. If
T is of class C1, then αp(T ) = α(T ′(p)) and βp(T ) = β(T ′(p)) for any p [7]. Note
that for a Fredholm map T : X → Y , βp(T ) > 0 for all p ∈ X.

Recall that a map T : X → Y is a c-expansive map if ‖Tx− Ty‖ ≥ c‖x− y‖ for
all x, y ∈ X and some c > 0.

Example 2.1. Let T : X → Y be continuous and c-expansive for some c > 0. Then
α(T ) ≥ β(T ) ≥ c. If T is also a homeomorphism, then α(T−1) = 1/β(T ) ≤ 1/c.

Example 2.2. Let T : X → Y be continuous and for each p ∈ X there is an
r > 0 such that T : B(p, r) → Y has the form Tx = T (p) + L(x− p) + R(x), where
L : X → Y is a continuous linear map such that ‖Lx‖ ≥ c1‖x‖ for some c1 > 0 and
all x, and R is a Lipschitz map with Lipchitz constant c2 < c1. Then T : B → T (B)
is a homeomorphism. Moreover, for c = c1 − c2

‖Tx− Ty‖ ≥ c‖x− y‖ for all x, y ∈ B

and α(T |B) ≥ β(T |B) ≥ c, βp(T ) ≥ c, α(T−1|T (B)) ≤ 1/c and αT (p)(T−1) =
1/βp(T ) ≤ 1/c.

Example 2.3. Let T : X → Y be a C1 local homeomorphism. Then, for each
p ∈ X, T has a representation as in Example 2.2 with a suitable r > 0 and therefore
βp(T ) ≥ c, αT (p)(T−1) = 1/βp(T ) ≤ 1/c for some c = c(p) > 0.

For a continuous map F : X → Y , let Σ be the set of all points x ∈ X where
F is not locally invertible and let card F−1({f}) be the cardinal number of the set
F−1({f}). We need the following result.

Theorem 2.4 (Ambrosetti). Let F ∈ C(X, Y ) be a proper map. Then the cardinal
number cardF−1({f}) is constant, finite (it may be even 0) on each connected
component of the set Y \ F (Σ).

In [20], using Browder’s theorem [6], we have shown that if T : X → Y is
closed on bounded closed subsets of X and is a local homeomorphism, then it is
a homeomorphism if and only if it satisfies condition (+). Now, we shall look at
perturbations of such maps.
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Theorem 2.5 (Fredholm Alternative). Let T : X → Y be a homeomorphism and
C : X → Y be such that α(C) < β(T ) (T be a c-expansive homeomorphism and C
be k-φ-contraction with k < c, respectively). Then either

(i) T + C is injective (locally injective, respectively), in which case it is an
open map and T + C is a homeomorphism if and only if either one of the
following conditions holds
(a) T + C is closed ( in particular, proper, or satisfies condition (+)),
(b) T+C is injective and R(T + C) is closed, or

(ii) T + C is not injective (not locally injective, respectively), in which case,
assuming additionally that T +tC satisfies condition (+), the equation Tx+
Cx = f is solvable for each f ∈ Y with (T + C)−1(f) compact and the
cardinal number card(T + C)−1(f) is positive, constant and finite on each
connected component of the set Y \ (T + C)(Σ).

Proof. Since β(T + C) ≥ β(T ) − α(C) > 0, T + C is proper on bounded closed
subsets of X. Hence, if T + C satisfies condition (+), then it is a proper map and
therefore closed. Assume that (i) holds. We shall show that T +C is an open map.
The equation Tx + Cx = f is equivalent to y + CT−1y = f , y = Tx. Then the
map CT−1 is k/c-φ-contractive with k/c < 1 if T is expensive. If α(C) < β(T ),
then the map CT−1 is α(CT−1)-contractive since

α(CT−1) ≤ α(C)α(T−1) = α(C)/β(T ) < 1.

Moreover, I + CT−1 is (locally) injective since such is T + C. Hence, I + CT−1 is
an open map ([22], see also [11]). Thus, T + C is an open map since T + C = (I +
CT−1)T and therefore it is a local homeomorphism. Hence, it is a homeomorphism
by Browder’s theorem [6] if (a) holds.

Let (i)(b) hold. Then T + C is surjective since (T + C)(X) is open and closed,
and it is therefore a homeomorphism.

(ii) Suppose that T +C is not injective (locally injective, respectively). We have
seen above that CT−1 is k-contractive, k < 1, and I + tCT−1 satisfies condition
(+) since C is bounded. Hence, using the homotopy H(t, x) = x + tCT−1x and
the degree theory for condensing maps [22], we get that I + CT−1 is surjective.
Therefore, T + C is surjective. Since T + C is proper on X, the cardinal number
card(T + C)−1(f) is positive, constant and finite on each connected component of
the set Y \ (T + C)(Σ) by Theorem 2.4. �

Remark 2.6. Under the conditions of Theorem 2.5, we have that condition (+) is
equivalent to R(T + C)(X) is closed when T + C injective.

Remark 2.7. If X is an infinite dimensional Banach space and T : X → X is a
homeomorphism, then T satisfies condition (+) but it need not be coercive in the
sense that ‖Tx‖ → ∞ as ‖x‖ → ∞. It was proved in [9, Corollary 8] that for every
proper subset U ⊂ X, there is a homeomorphism T : X → X such that it maps
X \ U into U . Then, selecting U to be a ball in X, such a homeomorphism is not
coercive.

Corollary 2.8. Let T : X → Y be a homeomorphism and C : X → Y be continuous
and uniformly bounded; i.e., ‖Cx‖ ≤ M for all x and some M > 0, and α(C) <
β(T ). Then either

(i) T + C is injective, in which case T + C is a homeomorphism, or
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(ii) T + C is not injective, in which case T + C is surjective, (T + C)−1(f)
is compact for each f ∈ Y , and the cardinal number card(T + C)−1(f) is
positive, constant and finite on each connected component of the set Y \
(T + C)(Σ).

Proof. We note first that the equation Tx+Cx = f is equivalent to y+CT−1y = f ,
with y = Tx. Using the uniform boundedness of C, it is easy to see that for each
f ∈ Y , ‖H(t, y) = y + tCT−1y − tf‖ → ∞ as ‖y‖ → ∞ uniformly in t ∈ [0, 1].
Hence, the Nussbaum degree deg(I − CT−1, B(0, r), f) 6= 0 for some r > 0 large.
Thus, the equation Tx+Cx = f is solvable for each f ∈ Y . Hence, (i) follows from
Theorem 2.5(i)(b).

We have remarked before that T +C is proper on bounded closed subsets. Next,
we shall show that T + C is a proper map. Let K ⊂ Y be compact and xn ∈
(T + C)−1(K). Then yn = Txn + Cxn ∈ K and we may assume that yn → y ∈ K.
Since C is uniformly bounded, {Txn} is bounded. Set zn = Txn and note that
yn = (I + CT−1)zn ∈ K. Hence, zn ∈ (I + CT−1)−1(yn) ⊂ (I + CT−1)−1(K)
and {zn} bounded. Since I + CT−1 is proper on bounded closed subsets, we may
assume that zn → z ∈ B(0, r) ∩ (I + CT−1)−1(K) for some r > 0. Hence, xn =
T−1zn → T−1z = x ∈ (T + C)−1(K) since T + C is proper on bounded closed
subsets. Thus, T + C is a proper map and (ii) follows by Theorem 2.4. �

When T is Fredholm of index zero, then the injectivity of T +C can be replaced
by the local injectivity.

Theorem 2.9 (Fredholm Alternative). Let T : X → Y be a Fredholm map of index
zero and C : X → Y be such that α(C) < β(T ). Then either

(i) T + C is locally injective, in which case it is an open map and it is a
homeomorphism if and only if one of the following conditions holds
(a) T + C is closed ( in particular, proper, or satisfies condition (+)),
(b) T+C is injective and R(T + C) is closed, or

(ii) T +C is not locally injective, in which case, assuming additionally that T is
locally injective and T+tC satisfies condition (+), the equation Tx+Cx = f
is solvable for each f ∈ Y with (T + C)−1(f) compact and the cardinal
number card(T +C)−1(f) is positive, constant and finite on each connected
component of the set Y \ (T + C)(Σ).

Proof. As observed before, T + C is proper on bounded closed subsets of X. If it
satisfies condition (+), then it is proper. Let (i) hold. Then T + C is an open map
by a theorem of Calamai [7]. Hence, T +C is a local homeomorphism. If (a) holds,
then T + C is a homeomorphism if and only if it is a closed map by Browder’s
theorem [6]. If (b) holds, then T+C is surjective since R(T +C) is open and closed.
Hence, it is a homeomorphism.

Let (ii) hold. Then T is a homeomorphism by part (i)-a) (or by Tromba’s
theorem [31]) since it is proper on bounded closed subsets and satisfies condition
(+). Hence, the conclusions follow as in Theorem 2.5(ii). �

Condition α(C) < β(T ) in (i) can be replaced by αp(C) < βp(T ) for each p ∈ X
since T+C is also open in this case [7]. This condition always holds if T is a
Fredholm map of index zero and C is compact. In view of this remark, we have the
following extension of Tromba’s homeomorphism result for proper locally injective
Fredholm maps of index zero [31].
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Corollary 2.10. Let T : X → Y be a Fredholm map of index zero, C : X → Y be
compact and T +C be locally injective and closed. Then T +C is a homeomorphism.

Corollary 2.11. Let T : X → Y be a locally injective closed Fredholm map of
index zero, C : X → Y be continuous and uniformly bounded and α(C) < β(T ).
Then either

(i) T + C is locally injective, in which case T + C is a homeomorphism, or
(ii) T +C is not locally injective, in which case T +C is surjective, (T +C)−1(f)

is compact for each f ∈ Y , and the cardinal number card(T + C)−1(f) is
positive, constant and finite on each connected component of the set Y \
(T + C)(Σ).

Proof. T is a homeomorphism by Corollary 2.10. We have shown in the proof of
Corollary 2.8 that T + C is proper and surjective. If T + C is locally injective,
then it is a homeomorphism by Theorem 2.9(i)(a). Part (ii) follows from Theorem
2.4. �

The following lemmas, needed later on, give a number of particular conditions
on T and C that imply condition (+). Recall that a map C is quasibounded if, for
some k > 0,

|C| = lim sup
‖x‖→∞

‖Cx‖/‖x‖k < ∞.

Lemma 2.12. Suppose that T,C : X → Y and either one of the following condi-
tions holds

(i) ‖Cx‖ ≤ a‖Tx‖+b for some constants a ∈ [0, 1) and b > 0 and all ‖x‖ large
and ‖Tx‖ → ∞ as ‖x‖ → ∞.

(ii) There exist constants c, c0, k > 0 and R > R0 such that

‖Tx‖ ≥ c‖x‖k − c0 for all ‖x‖ ≥ R.

and C is quasibounded with the quasinorm |C| < c.
Then T + tC satisfies condition (+) uniformly in t ∈ [0, 1].

A map T is positive k-homogeneous outside some ball if T (λx) = λkT (x) for
some k ≥ 1, all ‖x‖ ≥ R and all λ ≥ 1. We say that T is asymptotically close to a
positive k-homogeneous map A if

|T −A| = lim sup
‖x‖→∞

‖Tx−Ax‖/‖x‖k < ∞.

We note that T is asymptotically close to a positively k-homogeneous map A if
there is a functional c : X → [0, a] such that

‖T (tx)/tk −Ax‖ ≤ c(t)‖x‖k,

In this case, |T −A| ≤ a.

Lemma 2.13 ([20]). (a) Let A : X → Y be continuous, closed (in particular,
proper) on bounded and closed subsets of X and for some R0 ≥ 0

A(λx) = λk(Ax) (2.1)

for all ‖x‖ ≥ R0, λ ≥ 1 and some k ≥ 1. Suppose that either one of the following
conditions holds

(i) There is a constant M > 0 such that if Ax = 0, then ‖x‖ ≤ M
(ii) A is injective
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(iii) A is locally injective and (2.1) holds for all λ > 0.
Then there exist constants c > 0 and R > R0 such that

‖Ax‖ ≥ c‖x‖k for all ‖x‖ ≥ R (2.2)

and, in addition, A−1 is bounded when (ii) holds. Moreover, if A is positively
k-homogeneous, then Ax = 0 has only the trivial solution if and only if (2.2) holds.

(b) If T : X → Y is asymptotically close to A with |T − A| sufficiently small,
then T also satisfies (2.2) with c replaced by c− |T −A|.

Let us connect this with eigenvalue problems. Let T,C be asymptotically close
to k-positive homogeneous maps T0 and C0, respectively. We say that µ is not an
eigenvalue of T0 relative to C0 if T0x = µC0x implies that x = 0. Then one can use
Lemma 2.13 to show that T − µC satisfies condition (2.2) provided that µ is not
an eigenvalue of T0 relative to C0.

Lemma 2.14. (i) Let A : X = X∗∗ → X∗ be k-positive homogeneous such that
(Ax, x) ≥ m‖x‖k for all x ∈ X and some m > 0, k ≥ 2, G : X → X∗ be k-positive
homogeneous, g(x) = (Gx, x) be weakly continuous and f(x) = (Ax + Gx, x) be
weakly lower semicontinuous and positive definite, i.e., f(x) > 0 for x 6= 0. Then

(Ax + Gx, x) ≥ c‖x‖k for all x ∈ X and some c > 0.

(ii) If T,C : X → X∗ are asymptotically close to A and G, respectively with |T −A|
and |C −G| sufficiently small, then there is a c1 > 0 and an R > 0 such that

‖Tx + Cx‖ ≥ c1‖x‖k−1 for all ‖x‖ ≥ R. (2.3)

Proof. Let c = inf‖x‖=1 f(x). If c = 0, then there is a sequence {xn} such that
f(xn) → c = 0. We may assume that xn ⇀ x0. Since f is weakly lower semicon-
tinuous, we get

lim
n→∞

f(xn) ≥ f(x0).

Hence, f(x0) ≤ 0 and therefore x0 = 0 by the positive definiteness of f . On the
other hand,

lim
n→∞

f(xn) ≥ m lim
n→∞

‖x‖k − lim
n→∞

|(Gxn, xn)| ≥ m > 0

since g(x) is weakly continuous and ‖xn‖ = 1. This is a contradiction, and therefore
c > 0. By the k-positive homogeneity of f we get that f(x/‖x‖) ≥ c for each x 6= 0.
Thus, f(x) ≥ c‖x‖k.

(ii) Let ε > 0 be such that 2ε + |T − A| + |C − G| < c with c > 0 in part
(i). Then there is an R > 0 such that ‖Tx − Ax‖ ≤ (ε + |T − A|)‖x‖k−1 and
‖Cx − Gx‖ ≤ (ε + |C − G|)‖x‖k−1 for all ‖x‖ ≥ R. This implies (2.3) with
c1 = c− 2ε− |T −A| − |C −G|. �

For G : X → X∗, define g(x) = (Gx, x). If G is weakly continuous, g need not
be weakly lower semicontinuous. It is easy to show that

(1) g is weakly lower semicontinuous if G is weakly continuous and monotone,
i.e., (Gx−Gy, x−y) ≥ 0, or G is completely continuous, i.e., Gxn → Gx if xn ⇀ x.

(2) If A : X → X∗ is such that h(x) = (Ax, x) is weakly lower semicontinu-
ous and G is completely continuous, then f(x) = (Ax + Gx, x) is weakly lower
semicontinuous.

Lemma 2.15 ([20]). Let T : X → Y be a homeomorphism and C : X → Y .
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(i) If I +CT−1 : Y → Y is proper on bounded closed subsets of Y and if either
T or C is bounded, then T + C is proper on bounded closed subsets of X.

(ii) If T−1 is bounded and I+CT−1 : Y → Y satisfies condition (+), then T +C
satisfies condition (+). Conversely, if either T or C is bounded, and T +tC,
t ∈ [0, 1], satisfies condition (+), or C has a linear growth and T−1 is
quasibounded with a sufficiently small quasinorm, then I + tCT−1 : Y → Y
satisfies condition (+), t ∈ [0, 1].

Lemma 2.16. Let T : X → Y be a C1 local homeomorphism and C : X → Y be
c-expansive. Then T + C is locally expansive and therefore it is locally injective on
X.

Proof. Let p ∈ X be fixed. By Example 2.3, there is an r = r(p) > 0 such that
T : B(p, r) → Y is c(p)-expansive for some c(p) ∈ (0, c). Hence, T + C is c− c(p)-
expansive on B and is therefore locally injective on X. �

Next, we shall prove some nonlinear extensions of the Fredholm alternative to
set contractive like perturbations of homeomorphisms as well as of Fredholm maps
of index zero that are asymptotically close to positive k-homogeneous maps.

Theorem 2.17 (Fredholm alternative). Let T : X → Y be a homeomorphism
and C,D : X → Y be continuous maps such that α(D) < β(T ) − α(C) with |D|
sufficiently small (T be a c-expansive homeomorphism and C be a k-φ-contraction
with k < c, respectively ), where

|D| = lim sup
‖x‖→∞

‖Dx‖/‖x‖k < ∞.

Assume that T + C is injective (locally injective, respectively) and either ‖Tx +
Cx‖ ≥ c‖x‖k− c0 for all ‖x‖ ≥ R for some R, c and c0, or T +C is asymptotically
close to a continuous, closed (proper, in particular) on bounded and closed subsets
of X positive k-homogeneous map A outside some ball in X; i.e., there are k ≥ 1
and R0 > 0 such that A(λx) = λkAx for all ‖x‖ ≥ R0, all λ ≥ 1 with A−1(0)
bounded and |T + C −A| sufficiently small. Then either

(i) T + C + D is injective, in which case T + C + D is a homeomorphism, or
(ii) T +C+D is not injective, in which case the solution set (T +C+D)−1({f})

is nonempty and compact for each f ∈ Y and the cardinal number card(T +
C+D)−1({f}) is constant, finite and positive on each connected component
of the set Y \ (T + C + D)(Σ).

Proof. Since T is a homeomorphism, it is proper and β(T ) > 0. Moreover, T + C
satisfies condition (+) by Lemma 2.13(i)(a). Since α(C) < β(T ), T + C is proper
on bounded closed subsets of X and is therefore proper by condition (+). It follows
that T + C is a homeomorphism by Theorem 2.5(i)(a). Next, we claim that Ht =
T + C + tD satisfies condition (+).

Let yn = (T + C + tnD)xn → y as n → ∞ with tn ∈ [0, 1], and suppose that
‖xn‖ → ∞. Then, by Lemma 2.13(b) with c1 = c− |T + C|,

c1‖xn‖k − c0 ≤ ‖(T + C)xn‖ ≤ ‖yn‖+ (|D|+ ε)‖xn‖k

for all n large and any ε > 0 fixed. Dividing by ‖xn‖k and letting n → ∞, we get
that c ≤ |D|. This contradicts our assumption that |D| is sufficiently small and
therefore condition (+) holds for Ht. Let (i) hold. Since α(D) < β(T ) − α(C) ≤
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β(T +C) and H1 = T +C+D satisfies condition (+), T +C+D is a homeomorphism
by Theorem 2.5(i)(a).

Next, let (ii) hold. Since α(D) < β(T + C), T + C is a homeomorphism and
Ht satisfies condition (+), the equation Tx + Cx + Dx = f is solvable for each f
by Theorem 2.5(ii). Moreover, T + C + D is proper on closed bounded sets since
β(T + C + D) ≥ β(T ) − α(C + D) ≥ β(T ) − α(C) − α(D) > 0. Hence, the map
T + C + D is proper on X by condition (+), and the other conclusions follow from
Theorem 2.4. �

If C = 0 in Theorem 2.17, then the injectivity of T + D can be weaken to local
injectivity when T is c-expansive.

Corollary 2.18. Let T : X → Y be a c-expansive homeomorphism and D : X → Y
be a continuous map such that α(D) < c and

|D| = lim sup
‖x‖→∞

‖Dx‖/‖x‖ < c.

Then either
(i) T + D is locally injective, in which case T + D is a homeomorphism, or
(ii) T +D is not locally injective, in which case the solution set (T +D)−1({f})

is nonempty and compact for each f ∈ Y and the cardinal number card(T +
D)−1({f}) is constant, finite and positive on each connected component of
the set Y \ (T + D)(Σ).

Proof. Let (i) hold. Then T is a homeomorphism, β(T ) ≥ c and α(D) < β(T ).
Since T +D satisfies condition (+) by Lemma 2.12(ii), T +D is a homeomorphism
by Theorem 2.5(i)(a). Part (ii) follows from Theorem 2.17(ii) with C = 0. �

Next, we shall look at various conditions on a c-expansive map that make it
a homeomorphism. They came about when some authors tried to give a positive
answer to the Nirenberg problem on surjectivity of a c-expansive map with T (0) = 0
and mapping a neighborhood of zero onto a neighborhood of zero.

Corollary 2.19. Let T : X → Y be a c-expansive map and D : X → Y be a
continuous maps such that α(D) < c and

|D| = lim sup
‖x‖→∞

‖Dx‖/‖x‖ < c.

Suppose that either one of the following conditions holds
(a) Y is reflexive, T is Fréchet differentiable and

lim sup
x→x0

‖T ′(x)− T ′(x0)‖ < c for each x0 ∈ X

(b) T : X → X is Fréchet differentiable and such that the logarithmic norm
µ(T ′(x)) of T ′(x) is strictly negative for all x ∈ X, where

µ(T ′(x)) = lim
t→0+

(‖I + tT ′(x)‖ − 1)/t

(c) X = Y = H is a Hilbert space, T is Fréchet differentiable and such that
either

inf
‖h‖=1

Re(T ′(x)h, h) > 0 for all x ∈ H,

or
sup
‖h‖=1

Re(T ′(x)h, h) < 0 for all x ∈ H,
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(d) X is reflexive and T : X → X∗ is a C1 potential map.

Then either

(i) T + D is locally injective, in which case T + D is a homeomorphism, or
(ii) T +D is not locally injective, in which case the solution set (T +D)−1({f})

is nonempty and compact for each f ∈ Y and the cardinal number card(T +
D)−1({f}) is constant, finite and positive on each connected component of
the set Y \ (T + D)(Σ).

Proof. T is a homeomorphism by Chang-Shujie [8] in parts (a), (d), and by Her-
nandez-Nashed [16] in parts (b), (c). Since ‖Tx‖ ≥ c‖x‖ − ‖T (0)‖, Corollary 2.18
applies. �

Recall that a map T : X → Y is expansive along rays if for each y ∈ Y , there
is a c(y) > 0 such that ‖Tx − Ty‖ ≥ c(y)‖x − y‖ for all x, y ∈ T−1([0, y]), where
[0, y] = {ty : 0 ≤ t ≤ 1}.

Theorem 2.20. An expansive along rays local homeomorphism T : X → Y is a
homeomorphism. A locally expansive local homeomorphism is a homeomorphism if
m = infx c(x) > 0. In general, a locally expansive local homeomorphism need not
be a homeomorphism.

Proof. Note first that if T is a c-expansive local homeomorphism, then it is an
open map. Since R(T ) is also closed, T is surjective. Since it is injective, it is a
homeomorphism. Next, assume that T is just expansive along rays. We may assume
that T (0) = 0. Since T is a local homeomorphism, there is a ball B about 0 in Y and
a continuous local inverse g : B → X of T with g(0) = 0. Next, we shall continue
the local inverse g along each ray from 0 as far out as possible. To that end, let D
be the set of all points y ∈ Y such that there is a continuous inverse g of T defined
on the ray [0, y] = {ty : 0 ≤ t ≤ 1} and g(0) = 0. It is known that D is an open
subset of Y , the value of g(y) depends uniquely on T and y, the map T−1 defined
by T−1(y) = g(y) is an inverse of T on D and T−1 is continuous (see John [18] for
details). Next, it has been shown in Hernandez-Nashed [16] that D = Y . Hence, T
is a homeomorphism. If T is a locally expensive local homeomorphism with m > 0,
then T is a homeomorphism by John’s theorem [18] since the scalar derivative of T
is D−

x T = lim infy→x ‖Tx− Ty‖/‖x− y‖ = c(x) and m = infx D−
x T > 0.

A C1 local homeomorphism is locally expansive by Example 2.3, but it need not
be a homeomorphism. �

Corollary 2.21. Let T : X → Y be an expansive along rays local homeomorphism
and D : X → Y be a continuous maps such that α(D) < β(T ) and ‖Dx‖ ≤ M for
all x ∈ X and some M > 0. Then either

(i) T + D is injective, in which case T + D is a homeomorphism, or
(ii) T + D is not injective, in which case the solution set (T + D)−1({f}) is

nonempty and compact for each f ∈ Y and the cardinal number card(T +
D)−1({f}) is constant, finite and positive on each connected component of
the set Y \ (T + D)(Σ).

The proof of the above corollary follows from Theorem 2.20 and Corollary 2.8.
Next, we shall give another extension of the Fredholm Alternative to perturbations
of nonlinear Fredholm maps of index zero.
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Theorem 2.22 (Fredhom Alternative). Let T : X → Y be a Fredholm map of
index zero and C,D : X → Y be continuous maps such that α(D) < β(T ) − α(C)
with |D| sufficiently small, where

|D| = lim sup
‖x‖→∞

‖Dx‖/‖x‖k < ∞.

Assume that either ‖Tx + Cx‖ ≥ c‖x‖k − c0 for all ‖x‖ ≥ R for some R, c and c0,
or T + C is asymptotically close to a continuous, closed (in particular, proper) on
bounded and closed subsets of X positive k-homogeneous map A, outside some ball
in X, i.e., there are k ≥ 1 and R0 > 0 such that A(λx) = λkAx for all ‖x‖ ≥ R0,
all λ ≥ 1 and (A)−1(0) bounded with |T + C −A| sufficiently small. Then either

(i) T +C+D is locally injective, in which case T +C+D is a homeomorphism,
or

(ii) T + C + D is not locally injective, in which case, assuming additionally
that T + C is locally injective, the solution set (T + C + D)−1({f}) is
nonempty and compact for each f ∈ Y and the cardinal number card(T +
C+D)−1({f}) is constant, finite and positive on each connected component
of the set Y \ (T + C + D)(Σ).

Proof. Let (i) hold. Since α(D) < β(T )−α(C) ≤ β(T +C), we get β(T +C+D) > 0
and therefore T + C + D is proper on bounded closed subsets of X. We have that
T + C + D satisfies condition (+) as in Theorem 2.17. Hence, T + C + D is proper
on X and so it is closed on X. Since α(C + D) < β(T ) and T is Fredholm of index
zero, T + C + D is an open map by Calamai’s theorem [7]. Hence, T + C + D is
surjective since the range (T +C +D)(X) is both open and closed. Since T +C +D
is a local homeomorphism, it is a homeomorphism by the Banach-Mazur theorem.

Let (ii) hold. Since α(C) < β(T ) and T + C is locally injective and satisfies
condition (+) by Lemma 2.13(i)(a), T +C is a homeomorphism by Theorem 2.9(i).
Since α(D) < β(T ) − α(C) ≤ β(T + C), the conclusions follow as in Theorem
2.17(ii). �

Corollary 2.23. Let T,C : X → Y and T + C be Fredholm maps of index zero
such that α(C) < β(T ) and |C| sufficiently small, where

|C| = lim sup
‖x‖→∞

‖Cx‖/‖x‖k < ∞.

Assume that either ‖Tx‖ ≥ c‖x‖k − c0 for all ‖x‖ ≥ R for some R, c and c0, or
T is asymptotically close to a continuous, closed (in particular, proper) on bounded
and closed subsets of X positive k-homogeneous map A, outside some ball in X;
i.e., there are k ≥ 1 and R0 > 0 such that

A(λx) = λkAx

for all ‖x‖ ≥ R0, all λ ≥ 1 and (A)−1(0) bounded with |T + C − A| sufficiently
small. Then either

(i) T+C is locally injective, in which case T+C is a homeomorphism, or
(ii) T+C is not locally injective, in which case, assuming additionally that T is

locally injective, the solution set (T + C)−1({f}) is nonempty and compact
for each f ∈ Y and the cardinal number card(T + C)−1({f}) is constant,
finite and positive on each connected component of the open and dense set
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of regular values RT+C = Y \(T +C)(S) of Y , where S is the set of singular
points of T + C.

Proof. Part (i) and the surjectivity of T + C follow from Theorem 2.17 (with C
replaced by D). As before, we have that T + C is proper on bounded and closed
set and satisfies condition (+). Hence, it is proper and the other conclusions follow
from the general theorem on nonlinear Fredholm maps of index zero (see [33]). �

3. Finite solvability of equations with perturbations of odd
Fredholm maps of index zero

In this section, we shall study perturbations of Fredholm maps of index zero
assuming that the maps are odd. We shall first look at compact perturbations and
use the Fitzpatrick-Pejsachowisz-Rabier-Salter degree.

Theorem 3.1 (Generalized First Fredholm Theorem). Let T : X → Y be a Fred-
holm map of index zero that is proper on bounded and closed subsets of X and
C,D : X → Y be compact maps with |D| sufficiently small, where

|D| = lim sup
‖x‖→∞

‖Dx‖/‖x‖k < ∞.

Assume that T+C is odd, asymptotically close to a continuous, closed (in particular,
proper) on bounded and closed subsets of X positive k-homogeneous map A, outside
some ball in X, i.e., there exists R0 > 0 such that

A(λx) = λkAx

for all ||x|| ≥ R0, for all λ ≥ 1 and some k ≥ 1, and ‖x‖ ≤ M < ∞ if Ax = 0
and |T + C − A| sufficiently small. Then the equation Tx + Cx + Dx = f is
solvable for each f ∈ Y with (T +C +D)−1({f}) compact and the cardinal number
card(T+C+D)−1({f}) is constant, finite and positive on each connected component
of the set Y \ (T + C + D)(Σ).

Proof. Step 1. Let p be a base point of T . By Lemma 2.13, there is an R > 0 such
that condition (2.2) holds for T + C. Define the homotopy H(t, x) = Tx + Cx +
tDx − tf for t ∈ [0, 1]. Since T + C satisfies (2.2), it is easy to show that H(t, x)
satisfies condition (+) and therefore H(t, x) 6= 0 for (t, x) ∈ [0, 1] × ∂B(0, R1) for
some R1 ≥ R.

Next, we note that H(t, x) is a compact perturbation tD of the odd map T + C
with T Fredholm of index zero. Then, by the homotopy theorem [25, Corollary
7.2] and the Borsuk theorem for such maps of Rabier-Salter [25], we get that the
Fitzpatrick-Pejsachowisz-Rabier-Salter degree

degT,p(H1, B(R1, 0), 0) = degT,p(T + C + D − f,B(R1, 0), 0)

= ν degT,p(T + C,B(R1, 0), 0) 6= 0

where ν is 1 or −1.
Step 2. T has no base point. Then pick a point q ∈ X and let A : X → Y

be a continuous linear map with finite dimensional range such that T ′(q) + A is
invertible. Then T +A is Fredholm of index zero, proper on B̄(0, r) and q is a base
point of T + A. Moreover, T + C + D = (T + A) + (C −A) + D. We have reduced
the problem to the case when there is a base point for T + A and the maps T + A,
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C −A and D satisfy the same conditions of the theorem as the maps T , C and D.
Then, as in Step 1,

degT+A,q(H1, B(R1, 0), 0) = degT+A,q((T + A) + (C −A) + D − f,B(R1, 0), 0)

= ν degT+A,q(T + C,B(R1, 0), 0) 6= 0

where ν is 1 or −1.
Hence, by the existence theorem of this degree, we have that Tx+Cx+Dx = f

is solvable in either case. Next, since T +C+D is continuous and satisfies condition
(+), it is proper since it is proper on bounded closed sets as a compact perturbation
of such a map. Hence, the second part of the theorem follows from Theorem 2.4. �

Remark 3.2. Earlier generalizations of the first Fredholm theorem to condensing
vector fields, maps of type (S+), monotone like maps and (pseudo) A-proper maps
assumed the homogeneity of T with Tx = 0 only if x = 0 (see [17, 19, 21] and the
references therein).

Next, we provide some generalizations of the Borsuk-Ulam principle for odd
compact perturbations of the identity. The first result generalizes Theorem 3.1
when D = 0.

Theorem 3.3. Let T : X → Y be a Fredholm map of index zero that is proper
on closed bounded subsets of X and C : X → Y be compact such that T + C is
odd outside some ball B(0, R). Suppose that T + C satisfies condition (+). Then
Tx + Cx = f is solvable, (T + C)−1(f) is compact for each f ∈ Y and the cardinal
number card(T +C)−1(f) is positive and constant on each connected component of
Y \ (T + C)(Σ).

Proof. Condition (+) implies that for each f ∈ Y there is an r = rf > R and γ > 0
such that

‖Tx + Cx− tf‖ ≥ γ for all t ∈ [0, 1], ‖x‖ = r.

The homotopy H(t, x) = Tx + Cx − tf is admissible for the Rabier-Salter degree
and H(t, x) 6= 0 on [0, 1]× ∂B(0, r). Hence, by the homotopy [25, Corollary 7.2], if
p ∈ X is a base point of T , then

degT,p(T + C − f,B(0, r), 0) = ν degT,p(T + C,B(0, r), 0) 6= 0

since ν is plus or minus one and the second degree is odd by the generalized Borsuk
theorem in [25]. If T has no base point, then proceed as in Step 2 of the proof of
Theorem 3.1. Hence, the equation Tx + Cx = f is solvable in either case. The
second part follows from Theorem 2.4 since T + C is proper on bounded closed
subsets and satisfies condition (+). �

Next, we shall prove a more general version of Theorem 3.3.

Theorem 3.4. Let T : X → Y be a Fredholm map of index zero that is proper
on closed bounded subsets of X and C1, C2 : X → Y be compact such that T + C1

is odd outside some ball B(0, R). Suppose that H(t, x) = Tx + C1x + tC2x − tf
satisfies condition (+). Then Tx + C1x + C2x = f is solvable for each f ∈ Y with
(T + C1 + C2)−1(f) compact and the cardinal number card(T + C1 + C2)−1(f) is
positive and constant on each connected component of Y \ (T + C1 + C2)(Σ).
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Proof. Condition (+) implies that for each f ∈ Y there is an r = rf > R with
0 /∈ H([0, 1]× ∂B(0, r). If p is a base points of T , then by [25, Theorem 7.1],

degT,p(H(1, .), B(0, r), 0) = ν degT,p(T1 + C1, B(0, r), 0) 6= 0

where ν ∈ {−1, 1}.
Next, if T has no a base point, then pick q ∈ X and let A be a continuous linear

map from X to Y with finite dimensional ranges such that T ′(q) + A is invertible.
Then we can rewrite H as H(t, x) = (T + A)x + (C1 − A)x + tC2x − tf , where
T + A, C1 − A and C2 satisfy all the conditions of the theorem and T + A has a
base point. As in the first case, we get that

degT+A,q(H(1, .), B(0, r), 0) = degT+A,q((T + A) + (C1 −A) + C2 − f,B(0, r), 0)

= ν degT+A,q((T + A) + (C1 −A), B(0, r), 0) 6= 0

where ν ∈ {−1, 1}. Hence, the equation Tx + C1x + C2x = f is solvable in either
case. The other conclusions follow from Theorem 2.4. �

Next, we shall study k-set contractive perturbations of Fredholm maps of index
zero. Denote by degBCF the degree of Benevieri-Calamai-Furi. When T + C is not
locally injective, we have the following extension of Theorem 2.22.

Theorem 3.5 (Generalized First Fredholm Theorem). Let T : X → Y be a
Fredholm map of index zero and C,D : X → Y be continuous maps such that
α(D) < β(T )− α(C) with |D| sufficiently small, where

|D| = lim sup
‖x‖→∞

‖Dx‖/‖x‖k < ∞.

Assume that T + C is asymptotically close to a continuous, closed (in particular,
proper) on bounded and closed subsets of X positive k-homogeneous map A, outside
some ball in X for all λ ≥ 1 and some k ≥ 1, ‖x‖ ≤ M < ∞ if Ax = 0, |T +C−A|
sufficiently small, and degBCF (T + C,B(0, r), 0) 6= 0 for all large r. Then the
equation Tx + Cx + Dx = f is solvable for each f ∈ Y with (T + C + D)−1({f})
compact and the cardinal number card(T + C + D)−1({f}) is constant, finite and
positive on each connected component of the set Y \ (T + C + D)(Σ).

Proof. Since β(T + C) ≥ β(T )−α(C) > 0, we have that T + C is proper on closed
bounded sets and satisfies condition (2.2) for some R > 0 by Lemma 2.13 with
c = c− |T − C|. Moreover, α(D + C) ≤ α(D) + α(C) < β(T ). Let f ∈ Y be fixed
and ε > 0 and R1 > R such that |D| + ε + ‖f‖/Rk

1 < c and ‖Dx‖ ≤ (|D| + ε)‖x‖
for all ‖x‖ ≥ R1. Define the homotopy H(t, x) = Tx + Cx + tDx− tf for t ∈ [0, 1].
Then, H(t, x) 6= 0 for (t, x) ∈ [0, 1]× (X \B(0, R1). If not, then there is a t ∈ [0, 1]
and x with ‖x‖ ≥ R1 such that H(t, x) = 0. Then

c1‖xn‖k ≤ ‖Txn + Cxn‖ = tn‖Dxn − f‖ ≤ (|D|+ ε)‖xn‖k + ‖f‖.
Hence, c1 < |D|+ ε+‖f‖/Rk

1 , in contradiction to our choice of ε and R1. Similarly,
arguing by contradiction, we get that H(t, x) satisfies condition (+).

Next, we will show that H(t, x) is an admissible oriented homotopy on [0, 1] ×
B(0, R2) for some R2 ≥ R1. Set F(t,x)=tDx. Then for any subset A ⊂ B(0, R2),
α(F ([0, 1] × A)) = α({tDx : t ∈ [0, 1], x ∈ A}) = α({ty : t ∈ [0, 1], y ∈ D(A)}) =
α(D(A)) ≤ α(D)α(A). Hence, α(F ) ≤ α(D). Moreover, α(C+F ) ≤ α(C)+α(F ) ≤
α(C) + α(D) < β(T ). Thus, we get that β(H) ≥ β(T ) − α(C + F ) > 0. This
implies that H is proper on bounded closed subsets of [0, 1] × X with the norm
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‖(t, x)‖ =max {|t|, ‖x‖} for (t, x) ∈ R × X. Since H satisfies condition (+), it is
proper on [0, 1]×X. Thus, H−1(0) is compact and contained in [0, 1]×B(0, R2) for
some R2 ≥ R1. Since B(0, R2) is simply connected, H(0, .) = T +C : B(0, R2) → Y
is oriented by [3, Proposition 3.7]. Hence, H is oriented by [3, Proposition 3.5] and
the homotopy [5, Theorem 6.1] implies that

degBCF (H1, B(R1, 0), 0) = degBCF (T + C + D − f,B(R1, 0), 0)

= degBCF (T + C,B(R1, 0), 0) 6= 0.

Thus, the equation Tx + Cx + Dx = f is solvable. The other conclusions follow
from Theorem 2.4 since H(0, .) = T +C +D satisfies condition (+) and is therefore
proper. �

Remark 3.6. Theorems 3.1 and 3.5 are valid without the asymptotic assumption
if the k-positive homogeneity of T + C is replaced by ‖Tx + Cx‖ ≥ c‖x‖k for all
x outside some ball (see Lemma 2.13), or by condition (+) for T + C if D = 0.
Moreover, the degree assumption in Theorem 3.5 holds if T and C are odd maps
by the generalized Borsuk theorem in Benevieri-Calamai [2]. In particular, we have
the following result.

Corollary 3.7. Let T : X → Y be a Fredholm map of index zero and C : X → Y
be a continuous map such that α(C) < β(T ), T and C be odd outside some ball and
T + C satisfy condition (+). Then the equation Tx + Cx = f is solvable for each
f ∈ Y with (T +C)−1({f}) compact and the cardinal number card(T +C)−1({f}) is
constant, finite and positive on each connected component of the set Y \(T +C)(Σ).

4. Applications to (quasi) linear elliptic nonlinear boundary-value
problems

Potential problems with strongly nonlinear boundary-value conditions.
Consider the nonlinear boundary-value problem

∆Φ = 0 in Q ⊂ R2

−∂nΦ = b(x,Φ(x))− f on Γ = ∂Q.
(4.1)

where Γ is a simple smooth closed curve, ∂n is the outer normal derivative on Γ.
The nonlinearities appear only in the boundary conditions. Using the Kirchhoff
transformation, more general quasilinear equations can be transformed into this
form. This kind of equations with various nonlinearities arise in many applications
like steady-state heat transfer, electromagnetic problems with variable electrical
conductivity of the boundary, heat radiation and heat transfer (cf. [28] and the ref-
erences therein). Except for [27], the earlier studies assume that the nonlinearities
have at most a linear growth and were based on the boundary element method.
We shall study (4.1) using the theory in Sections 2-3. We note also that bifurca-
tion problems for quasilinear elliptic systems with nonlinearities in the boundary
conditions have recently been discussed by Shi and Wang [29]. Their study is
based on the abstract global bifurcation theorem of Pejsachowicz and Rabier [23]
for Fredholm maps of index zero.

Assume b(x, u) = b0(x, u) + b1(x, u) satisfies
(1) b0 : Γ × R → R is a Carathéodory function; i.e., b0(., u) is measurable for

all u ∈ R and b0(x, .) is continuous for a.e. x ∈ Γ
(2) b0(x, ) is strictly increasing on R
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(3) For p ≥ 2, there exist constants a1 > 0, a2 ≥ 0, c1 > 0 and c2 ≥ 0 such
that

|b0(x, u)| ≤ a1|u|p−1 + a2, b0(x, u)u ≥ c1|u|p + c2.

(4) b1 satisfies the Carathéodory conditions and |b1(x, u)| ≤ M for all (x, u) ∈
Γ× R and some M > 0.

We shall reformulate (4.1) as a boundary integral equation. Recall that the single
layer operator V is defined by

V u(x) = −1/(2π)
∫

Γ

u(y)log|x− y|dsy, x ∈ Γ

and the double layer operator K is defined by

Ku(x) = 1/(2π)
∫

Γ

u(y)∂n log |x− y|dsy, x ∈ Γ.

We shall make the ansatz: Find a boundary distribution u (in some space) such
that

Φ(x) = −1/(2π)
∫

Γ

u(y)log|x− y|dsy, x ∈ Q.

Then, by the properties of the normal derivative of the monopole potential [10, 32],
we derive the nonlinear boundary integral equation [27]

((1/2I −K∗)u + B(V u) = f.

This equation can be written in the form

Tu + Cu = f (4.2)

where we set T = 1/2I −K∗ + B0V , Cu = B1V with Biu = bi(x, u), i = 0, 1.

Theorem 4.1. Let (1)-(4) hold and q = p/(p− 1). Then either
(i) the BVP (4.1) is locally injective in Lq(Q), in which case it is uniquely

solvable in Lq(Q) for each h ∈ Lq(Q) and the solution depends continuously
on h, or

(ii) the BVP (4.1) is not locally injective, in which case it is solvable in Lq(Q)
for each h ∈ Lq(Q), the solution set is compact and the cardinality of the
solution set is finite and constant on each connected component of Lq(Q) \
(T +C)(Σ), where Σ = {u ∈ Lq(Q) : (4.1) is not locally uniquely solvable}.

Proof. We have that V,K, K∗ : Lp(Γ) → Lq(Γ) are compact maps for each p, q ∈
[1,∞] [13] and therefore such are the maps B0V,C : Lq(Γ) → Lq(Γ). By condition
(2), it was shown in [27] that T is strictly V -monotone; i.e., for each u, v ∈ Lp(Γ),
u 6= v,

(Tu− Tv, V (u− v))L2(Γ) > 0.

This implies that T is injective.
Next, as in [26] but without the differentiability of b0, we shall show first that T

is surjective in Lq(Q). To that end, we shall show that the problem

∆Φ = 0, ∂nΦ = B0(Φ)− f (4.3)

has a solution in W 1
2 (Q). For Φ ∈ W 1

2 (Q), define

j(Φ(x)) =
∫ Φ(x)

0

b0(x, s)ds.
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Since b0(x, .) is a strictly monotone proper function, j is a strictly convex and lower
semicontinuous function whose subgradient is given by ∂j(u) = B0(u) [1, Theorem
2.3]. Then the above problem is equivalent to the minimization of the functional

F (Φ) = 1/2
∫

Q

|∆Φ|2 + G(Φ)−
∫

Γ

fΦdsΓ

over W 1
2 (Q), where, for Φ ∈ W 1

2 ,

G(Φ) =
∫

Γ

j(Φ)dsx, for j(Φ) ∈ L1(Γ)

and G(Φ) = +∞ otherwise. Since W 1
2 (Q) is continuously imbedded in Lp(Γ),

condition (3) implies that for each Φ ∈ W 1
2 (Q) there exist constants c > 0 and

c1 ∈ R independent of Φ such that

G(Φ|Γ) ≥ c

∫
Γ

|u(x)|pdsx + c1

∫
Γ

|u(x)|dsx,

where u = Φ|Γ. This implies that F (Φ) is coercive because

F (Φ) = 1/2
∫

Q

|∆Φ|2 +
∫

Γ

j(Φ)dsx −
∫

Γ

fΦdsΓ

≥ 1/2
∫

Q

|∆Φ|2 + c(p)
∫

Γ

|Φ|pdsx − ‖f‖Lp(Γ)‖Φ‖Lp(Γ).

Hence, there is a unique function Φ ∈ W 1
2 (Q) that minimizes F .

Next, if Φ ∈ W 1
2 (Q) is the unique minimizer of F, then by the properties of V

there is a unique boundary function u ∈ W
−1/2
2 (Γ) such that V u = Φ|Γ. As in

[27], we get that u ∈ Lq(Γ) and is a solution of Tu = f for each f ∈ Lq(Γ). Thus,
T : Lq(Γ) → Lq(Γ) is bijective. Since T is a compact perturbation of the identity
and injective, it is an open map by the Shauder invariance of domain theorem.
Hence, T is a homeomorphism. Since b1(x, .) is bounded and C is compact by the
compactness of V , the conclusions follow from Corollary 2.8. �

Example 4.2. If b0(u) = |u|up−2 and b1 = 0, or if b0(u) = |u|up−2 and b1(u) =
arctan u with p even, then part (i) of Theorem 4.1 holds. Note that b(u) is strictly
increasing in either case and therefore (4.1) is injective as in the proof of Theorem
4.1. Part (ii) of Theorem 4.1 is valid if e.g., b1(u) = a sinu + b cos u.

When the nonlinearities have a linear growth, we have the following result.

Theorem 4.3. Let b(x, u) = b0(x, u)+b1(x, u) be such that b0(x, u) is a Carathéodory
function, b0(x, .) is strictly increasing on R and

(1) There exist constants a1 > 0 and a2 ≥ 0 such that

|b0(x, u)| ≤ a1|u|+ a2

(2) b1 satisfies the Carathéodory conditions and for some positive constants c1

and c2 with c1 sufficiently small

|b1(x, u)| ≤ c1|u|+ c2 for all (x, u) ∈ Γ× R.

Assume that I −K is injective. Then either
(i) the BVP (4.1) is locally injective in L2(Q), in which case it is uniquely

solvable in L2(Q) for each h ∈ L2(Q) and the solution depends continuously
on h, or
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(ii) the BVP (4.1) is not locally injective, in which case it is solvable in L2(Q)
for each h ∈ L2(Q), the solution set is compact and the cardinality of the
solution set is finite and constant on each connected component of L2(Q) \
(T + C)(Σ), where Σ = {u ∈ L2(Q) : (4.1) is not locally uniquely solvable}
and T = I −K + B0V .

Proof. The BVP (4.1) is equivalent to the operator equation

(I −K)u + B(V u) = f

(cf. [28]). This equation can be written in the form

Tu + Cu = f (4.4)

where we set T = I −K + B0V , Cu = B1V with Biu = bi(x, u), i=0,1.
Since K is compact and I−K is injective, it is a homeomorphism by the Fredholm

alternative. As above, T is a compact perturbation of the identity and injective.
It satisfies condition (+). Indeed, let yn = (I −K + B0V )un → y in L2(Γ). Then
c‖un‖ ≤ ‖(I −K)un‖ = ‖yn−B0V un‖ ≤ c1 + a‖V ‖‖un‖+ b. Since a is sufficiently
small, this implies that {un} is bounded and T satisfies condition (+). Since T is
a compact perturbation of the identity, it is proper on bounded closed subsets of
L2(Γ). Condition (+) implies that T is proper on L2(Γ). Hence, the range R(T ) is
closed and therefore T is a homeomorphism by Theorem 2.5(i)(b) applied to I −K
and B0V . By condition 2), it follows as above that that T + tC satisfies condition
(+) and the conclusions follow from Theorem 2.5. �

Remark 4.4. Theorem 4.3 is also valid when b0 = 0. The injectivity of I −K has
been studied in [10, 32].

Semilinear elliptic equations with nonlinear boundary-value conditions.
Consider the nonlinear BVP

∆u = f(x, u,∇u) + g in Q ⊂ Rn, (4.5)

−∂nu = b(x, u(x))− h on Γ = ∂Q, . (4.6)

where Q ⊂ Rn, (n=2 or 3), is a bounded domain with smooth boundary Γ satisfying
a scaling assumption diam(Q) < 1 for n = 2, ∂n is the outer normal derivative on
Γ.

Let b = b0 + b1. As in [28], assume that
(1) b0(x, u) is a Carathéodory function such that ∂

∂ub0(x, u) is Borel measurable
and satisfies

0 < c ≤ ∂

∂u
b0(x, u) ≤ C < ∞ for almost all x ∈ Γ and all u ∈ R

(2) b1 and f are Carathéodory functions such that

|b1(x, u)| ≤ a(x) + c(1 + |u|), |f(x, u, v)| ≤ d(x) + c(1 + |u|+ |v|)

for almost all x ∈ Γ and u, v ∈ R, some functions a(x) ∈ L2(Γ) and
b(x) ∈ L2(Q) and c > 0 sufficiently small.

Define the Nemytskii maps Bi : L2(Γ) → L2(Γ) by Biu(x) = bi(x, u(x)), i = 0, 1,
and F : H1(Q) → L2(Q) by Fu(x) = f(x, u(x),∇u(x)). Denote by Hs(Q) and
Hs(Γ) the Sobolev spaces of order s in Q and on Γ, respectively. In particular,
H−s(Q) = (H̃s(Q))∗, where H̃s is the completion of C∞

0 (Q) in Hs(Rn). We also
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have that [28] for each 0 ≤ s ≤ 1, B0 : Hs(Γ) → Hs(Γ) is bounded. Denote by (., .)
the L2 inner product. As in [12], inserting (4.5)-(4.6) into Green’s formula∫

Q

∆u.v dx +
∫

Q

∆u.∆v dx−
∫

Γ

∂u

∂n
v dsΓ = 0

we obtain the weak formulation of (4.5)-(4.6): for a given g ∈ H̃−1, find u ∈ H1(Q)
such that for all v ∈ H1(Q),

(Au, v)H1(Q) = (∇u,∇v)Q + (B0u|Γ, v|Γ)Γ − (B1u|Γ, v|Γ)Γ
− (h, v|Γ)Γ − (Fu, v)Q − (g, v)Q = 0.

(4.7)

Define T,C : H1(Q) → H1(Q) by

(Tu, v)H1(Q) = (∇u,∇v)Q + (B0u|Γ, v|Γ)Γ,

(Cu, v)H1(Q) = −(B1u|Γ, v|Γ)Γ − (h, v|Γ)Γ − (Fu, v)Q − (g, v)Q.

Theorem 4.5. Let (1)-(2) hold. Then either
(i) The problem (4.5)-(4.6) is locally injective in H1(Q), in which case it is

uniquely solvable in H1(Q) for each g ∈ H̃−1(Q) and h ∈ H−1/2(Γ) and
the solution depends continuously on (g, h), or

(ii) the problem (4.5)-(4.6) is not locally injective in H1(Q), in which case it is
solvable in H1(Q) for each (g, h) ∈ H̃−1(Q) × H−1/2(Γ), the solution set
is compact and the cardinality of the solution set is finite and constant on
each connected component of H1(Q)\ (T +C)(Σ), where Σ = {u ∈ H1(Q) :
(4.5)-(4.6) is not locally uniquely solvable}.

Proof. By (1), B0 satisfies the Lipschitz condition and is l-strongly monotone in
L2(Γ). This implies that T also satisfies the Lipschitz condition and that

(Tu− Tv, u− v)H1(Q) ≥ ‖∇(u− v)‖2L2(Q) + l‖u− v‖L2(Γ) ≥ k‖u− v‖2H1(Q).

Hence, T is k-strongly monotone and is therefore a homeomorphism in H1(Q)
with ‖Tu − Tv‖ ≥ k‖u − v‖. Moreover, C : H1(Q) → H1(Q) is compact since
F : H1(Q) → L2(Q) is continuous and the embedding of L2(Q) into H̃−1(Q) is
compact, and B1 : L2(Γ) → L2(Γ) is continuous and the embeddings H1/2(Γ) →
L2(Γ) → H−1/2(Γ) are also compact. Since c is sufficiently small, ‖Tun + Cun‖ →
∞ as ‖un‖ → ∞. Hence, being proper on bounded closed subsets, T +C is proper.
Moreover, T + tC satisfies condition (+) and the conclusions of the theorem follow
from Theorem 2.5. �

Remark 4.6. The solvability of problem (4.5)-(4.6) with sublinear nonlinearities
was proved by Efendiev, Schmitz and Wendland [12] using a degree theory for
compact perturbations of strongly monotone maps.

Semilinear elliptic equations with strong nonlinearities. Consider the prob-
lem

∆u + λ1u− f(u) + g(u) = h, (h ∈ L2)

u
∣∣
∂Q

= 0,
(4.8)

where Q is a bounded domain in Rn and λ1 is the smallest positive eigenvalue of
∆ on Q.

Assume that f and g = g1 + g2 are Carathéodory functions such that
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(1) For p ≥ 2 if n = 2 and p ∈ [2, 2n/(n − 2)) if n ≥ 3, there exist constants
a1 > 0, a2 ≥ 0, c1 > 0 and c2 ≥ 0 such that

|f(u)| ≤ a1|u|p + a2, f(u)u ≥ c1|u|p+1 + c2.

(2) f is differentiable
(3) |g1(u)| ≤ b1|u|p + b2 with b1 ≤ a1 and g1(u)u ≥ c1|u|p+1 + c2.
(4) |g2(u)| ≤ c1|u|p + c2 for all u with c1 sufficiently small.

Define X = {u ∈ W 1
2 (Q) : u = 0 on ∂Q}. Note that X is compactly embedded

into Lp(Q) for each p as in (1) by the Sobolev embedding theorem. We shall look
at weak solutions of (4.8); i.e., u ∈ X such that Tu + Cu = h, where

(Tu, v)1,2 = (∇u,∇v)− λ1(u, v) + (f(u), v), (Ciu, v) = (gi(u), v), i = 1, 2

C = C1 + C2 and (., .) is the L2 inner product. In X, the derivative of T is
T ′(u)v = ∆v − λ1v − f ′(u)v. Since T ′(u) is a selfadjoint elliptic map in X, T is
Fredholm of index zero in X.

Next, we shall show that ‖Tu + C1u‖ → ∞ if ‖u‖ → ∞ in X. Suppose that
‖un‖2,1 = ‖∇un‖22 + ‖un‖22 →∞. Thus

((T + C1)un, un) = ‖∇un‖22 − λ1‖un‖22 + (f(un) + g1(un), un)

≥ ‖∇un‖22 − λ1‖un‖22 + c‖un‖p+1
p+1 − c′‖u‖2.

If ‖∇un‖22 →∞ and ‖un‖22 ≤ k, then

((T + C1)un, un) ≥ ‖∇un‖22 − λ1‖un‖22 + c‖un‖p+1
2 − c′‖un‖2 ≥ ‖∇un‖22 − k1

since ‖∇u‖22 ≥ c1‖u‖22. If also ‖un‖22 →∞, then

((T + C1)un, un) ≥ ‖∇un‖22 + (k2‖un‖p−1
2 − λ1 − c′/‖un‖2)‖un‖22

since Lp+1 ⊂ L2. Thus, in either case ((T + C1)un, un)/‖un‖22,1 ≥ k3 > 0 as
‖un‖22,1 →∞. Hence, ‖(T +C1)un‖ → ∞ as ‖un‖22,1 →∞ by the Cauchy-Schwartz
inequality. In a similar way, we can show that ‖Tun‖ → ∞ as ‖u‖ → ∞ in X.

To show that T is proper, let K ⊂ X be compact and note that T−1(K) is
bounded by the coercivity of T . Let {un} ⊂ T−1(K). We may assume that it
converges weakly to u and Tun → v in X. Since X is compactly embedded in Lp

for each p as in (1), we have that un → u in L2 and Lp and (Tun, un) → (v, u).
Since

(Tun, un) = ‖∇un‖22 − λ1‖un‖22 + (T1un, un)

and T1u = f(u) is compact in X, we get that ‖∇un‖2 converges. Hence, we have
that {un} converges weakly in X and ‖un‖1,2 converges. Since X is a Hilbert space,
{un} converges in X. Hence, T is proper.

Theorem 4.7. Let (1)-(4) hold. Then either

(i) BVP (4.8) is locally injective in X, in which case it is uniquely solvable in
X for each h ∈ L2(Q) and the solution depends continuously on h, or

(ii) BVP (4.8) is not locally injective, in which case it is solvable in X for
each h ∈ L2(Q) and its solution set is compact. Moreover, the cardinality
of the solution set is finite and constant on each connected component of
X \ (T +C)(Σ), where Σ = {u ∈ X : (4.8) is not locally uniquely solvable}.
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Proof. Since c1 is sufficiently small, ‖C2u‖ ≤ a‖Tu + C1u‖+ b for all u and a < 1.
This and ‖Tu + C1u‖ → ∞ as ‖u‖ → ∞ imply that ‖Tu + C1u + tC2u‖ → ∞ as
‖u‖ → ∞. Since T is proper and C is compact, it follows that T + C is proper.
Indeed, let K ⊂ Y be compact and xn ∈ (T +C)−1(K). Then yn = (T +C)xn → y
since yn ∈ K and {xn} is bounded by the preceding remark. Since {yn − Cxn} is
compact, T is proper and Txn = yn − Cxn is compact we get that a subsequence
xnk

→ x. By the continuity of T + C, Tx + Cx = y in Y . Hence, T + C is proper
and the conclusions of the theorem follow from Theorem 2.9. �

Theorem 4.8. Let (1)-(2) hold with f ′(0) = 0, f ′(u) > 0 and |g(u)| ≤ M for some
M > 0 and all u. Then either

(i) BVP (4.8) is locally injective in X, in which case it is uniquely solvable in
X for each h ∈ L2(Q) and the solution depends continuously on h, or

(ii) BVP (4.8) is not locally injective, in which case it is solvable in X for
each h ∈ L2(Q) and the solution set is compact. Moreover, the cardinality
of the solution set is finite and constant on each connected component of
X \ (T +C)(Σ), where Σ = {u ∈ X : (4.8) is not locally uniquely solvable}.

Proof. T is a proper Fredholm map of index zero by the above remarks. Next, we
shall show that the singular set of T consists only of 0. Suppose that T ′(u)v =
0. Using the variational characterization of λ1, we get that u = 0 since 0 =
(T ′(u)v, v) =

∫
Q
|∇v|2−λ1v

2 +
∫

Q
f ′(u)v2 > 0. Hence, since f ′(0) = 0, T ′(0)v = 0,

i.e., ∆v+λ1v = 0 and v = 0 on the boundary of Q. Thus, this problem has nontrivial
solutions and therefore the singular set of T consists only of 0. Since T is Fredholm
of index zero and 0 is an isolated singular point, T is a local homeomorphism and
therefore a homeomorphism by its properness and the Banach-Mazur theorem. Set
Cu = g(u). Since ‖Cu‖ ≤ M1 < ∞ for all u, the conclusions of the theorem follow
from Corollary 2.11, since T + C is proper by the compactness of C as shown in
Theorem 4.7. �

Theorem 4.9. Let (1)-(4) hold and f and g1 be odd. Then (4.8) is solvable in X
for each h ∈ L2(Q) and its solution set is compact. Moreover, the cardinality of the
solution set is finite and constant on each connected component of X \ (T + C)(Σ),
where Σ = {u ∈ X : (4.8) is not locally uniquely solvable}.

Proof. Note that T + C1 is odd. As in the proof of Theorem 4.7, we have that
‖Tu + C1u + tC2u‖ → ∞ as ‖u‖ → ∞. Hence, the conclusions of the theorem
follow from Theorem 3.4. �

5. Solvability of quasilinear elliptic BVP’s with asymptotically
positive homogeneous nonlinearities

Let Q ⊂ Rn be a bounded domain with the smooth boundary and consider the
boundary value problem in a divergent form∑

|α|≤m

(−1)|α|DαAα(x, u, . . . ,Dmu) + k
∑
|α|≤m

(−1)|α|DαBα(x, u, . . . , Dmu) = f

(5.1)
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Let X be the closed subspace of Wm
p (Q) corresponding to the Dirichlet conditions.

Define the maps T,D : X → X∗ by

(Tu, v) =
∑
|α|≤m

∫
Q

Aα(x, u, . . . , Dmu)Dαvdx,

(Du, v) =
∑
|α|≤m

∫
Q

Bα(x, u, . . . , Dmu)Dαvdx.

Then weak solutions of (5.1) are solutions of the operator equation

Tu + Du = f, u ∈ X. (5.2)

We impose the following conditions on Aα.

(A1) For each α, let Aα : Q × Rsm → R be such that Aα(x, ξ) is measurable in
x and for each fixed ξ, and has continuous derivatives in ξ for a.e. x;

(A2) Assume that for p > 2, x ∈ Q, ξ ∈ Rsm , η ∈ Rsm−sm−1 , |α|, |β| ≤ m the
Aα’s satisfy

|Aα(x, ξ)| ≤ g0(|ξ0|)(h(x) +
∑

m−n/p≤γ|≤m

|ξγ |p−1);

(A3) |Aα,β(x, ξ)| ≤ g1(|ξ0|)(b(x) +
∑

m−n/p≤γ|≤m |ξγ |p−2),
(A4)

∑
|α|=|β|=m Aα,β(x, ξ)ηαηβ ≥ g2(1 +

∑
|γ|=m |ξγ |)p−2

∑
|α|=m η2

α, where
Aα,β(x, ξ) = ∂/∂ξβAβ(x, ξ), h, b ∈ Lq(Q), g0, g1 are continuous positive
nondecreasing functions and g2 > 0 is a constant.

For |α| ≤ m, there are Carathéodory functions aα such that

(a1) aα(x, tξ) = tp−1aα(x, ξ) for all t > 0, ξ ∈ Rsm

(a2) |1/tp−1Aα(x, tξ)− aα(x, ξ)| ≤ c(t)(1 + |ξ|)p−1

for each t > 0, x ∈ Q, and ξ ∈ Rsm , where 0 < lim c(t) is sufficiently small as
t →∞.

Proposition 5.1. Assume (A1)-(A4). Then T : X → X∗ is Fredholm of index
zero and is proper on bounded closed subsets of X.

Proof. The map T : X → X∗ is continuous and of type (S+) [30] and, as shown
before, it is proper on bounded closed subsets of X. By [30, Lemma 3.1], the
Fréchet derivative T ′(u) of T at u ∈ X is given by

(T ′(u)v, w) =
∑

|α|,|β|≤m

∫
Q

Aα,β(x, u, . . . ,Dmu)DβvDαwdx (5.3)

Next, we shall show that T ′(u) is Fredholm of index zero for each u ∈ X. First,
we shall show that T ′(u) satisfies condition (S+). We can write it in the form
T ′(u) = T ′1(u) + T ′2(u), where

(T ′1(u)v, w) =
∑

|α|=|β|=m

∫
Q

Aα,β(x, u, . . . ,Dmu)DβvDαwdx, (5.4)

(T ′2(u)v, w) =
∑

|α|,|β|≤m, |α+β|<2m

∫
Q

Aα,β(x, u, . . . , Dmu)DβvDαwdx. (5.5)
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It is easy to see that |(T ′2(u)v, w)| ≤ c‖v‖m,p ‖w‖m−1,p for some constant c > 0.
Hence, T ′2(u) : X → X∗ is compact since the embedding of Wm

p into W k
q is compact

for 0 ≤ k ≤ m− 1 if 1/q > 1/p− (m− k)/n > 0, or if q < ∞ and 1/p = (m− k)/n.
Next, we shall show that T ′1(u) : X → X∗ is of type (S+). Let vn ∈ X be such

that vn ⇀ v in X and
lim sup

n→∞
(T ′1(u)vn, vn − v) ≤ 0.

It follows that Dαvn → Dαv in Lp for each |α| < m by the Sobolev embedding
theorem. Next, we shall show that Dαvn → Dαv in Lp for each |α| = m. Since,
X is separable, there are finite dimensional subspaces {Xn} in X whose union is
dense in it. Since dist(v,Xn) → 0 for each v ∈ X, there is a wn ∈ Xn such that
wn → v in X as n →∞. Then

lim sup
n

(T ′1(u)vn − T ′1(u)wn, vn − wn)

≤ lim sup
n

(T ′1(u)vn, vn − v − (wn − v))− lim inf
n

(T ′1(u)wn, vn − wn)

≤ lim sup
n

(T ′1(u)vn, vn − v)− lim
n

(T ′1(u)vn, wn − v)− lim inf
n

(T ′1(u)wn, vn − wn)

≤ 0.

(5.6)
However,

(T ′1(u)(vn − wn), vn − wn)

=
∑

|α|=|β|=m

∫
Q

Aαβ(x, u, . . .Dmu)Dα(vn − wn)Dβ(vn − wn)dx

≥ g2

∫
Q

∑
|α|=m

Dα(vn − wn)2dx

= g2

∑
|α|=m

‖Dα(vn − wn)‖2

(5.7)

This and (5.6) imply that Dα(vn − wn) → 0 in Lp for each |α| = m. Hence,
Dαvn → Dαv in Lp for each |α| = m, and therefore vn → v in X. This shows
that T ′1(u) is continuous and of type (S+) as is T ′(u) = T ′1(u) + T ′2(u). Hence,
as shown before, T ′(u) is proper on bounded closed subsets of X. By Yood’s
criterion, the index of T ′(u) = dim N(T ′(u)) − codimR(T ′(u) ≥ 0. Moreover,
T ′(u)∗ = T ′1(u)∗ + T ′2(u)∗ with T ′2(u)∗ compact. Hence, using (A4), as above, we
get that T ′1(u)∗ is continuous and of type (S+). Thus, the index i(T ′1(u)∗) ≥ 0 and
i(T ′1(u)∗) = −i(T ′1(u)) ≤ 0. It follows that i(T ′1(u)) = 0. It is left to show that
T ′(u) is a continuous map in u. Let un → u. Then

(T ′(un)v − T ′(u)v, w)

=
∑

|α|,|β|≤m

∫
Q

[Aαβ(x, un, . . . , Dmun)−Aαβ(x, u, . . . , Dmu)DβvDαw dx.

The Nemytskii map Nu = Aαβ(x, u, . . . , Dmu) is continuous from X to Lp′(Q),
1/p+1/p′ = 1. Hence, T ′(un) → T ′(u) using also the Sobolev embedding theorem.
This completes the proof that T is a Fredholm map of index zero and is proper on
bounded closed subsets of X. �
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Remark 5.2. We can put T2 together with D and require the differentiability (Fred-
holmness) of only T1.

We assume that the B′
αs satisfy

(B1) For each |α| ≤ m, Bα(x, ξ) is a Caratheodory function and, for p > 2 there
exist a constant c > 0 and hα(x) ∈ Lq(Q), 1/p + 1/q = 1, such that

|Bα(x, ξ)| ≤ c(hα(x) + |ξ|p−1)

(B2) There is a sufficiently small k1 > 0 such that∑
|α|=m

|Bα(x, η, ξα)−Bα(x, η, ξ′α)| ≤ k1

∑
|α|=m

|ξα − ξα′ |

for each a.e. x ∈ Q, η ∈ R? and ξα, ξα′ ∈ R?.
Note that if Bα’s are differentiable for |α| = m and Bαα(x, ξ) = ∂/∂ξαBα(x, ξ)

are sufficiently small, then (B2) holds.
In view of Proposition 5.1, the results in the form of Theorems 4.1–4.5 are valid

for (5.1) as well as the corresponding ones involving maps that are asymptotically
close to positively k-homogeneous maps. A sample of such a theorem is given next.

Consider also the equation∑
|α|≤m

(−1)|α|Dαaα(x, u, . . . , Dm) = f (5.8)

in X. Define the map A : X → X∗ by

(Au, v) =
∑
|α|≤m

∫
Q

aα(x, u, . . . ,Dmu)Dαvdx. (5.9)

Then weak solutions of (5.8) are solutions of the operator equation

Au = f, u ∈ X. (5.10)

Theorem 5.3. Assume that (A1)–(A4), (a1)–(a2), (B1)–(B2) hold and that for
all large r, degBCF (T,B(0, r), 0) 6= 0. Suppose that A is of type (S+) and Au =
0 has no a nontrivial solution. Then (5.1) is solvable for each f ∈ X∗, has a
compact set of solutions whose cardinal number is constant, finite and positive on
each connected component of the set X∗ \ (T + D)(Σ), where Σ = {u ∈ X : T +
D is not locally invertible at u}.

Proof. In view of our discussion above, T is a Fredholm map of index zero that is
proper on bounded closed subsets of X. It is proper on X since it satisfies condition
(+), and therefore β(T ) > 0. We need to show that α(D) < β(T ). We note that the
boundedness and continuity of D follow from (A1)–(A2), the Sobolev embedding
theorem and the continuity of the Nemytskii maps in Lp spaces. We can write
D = D1 + D2, where

(D1u, v) =
∑
|α|=m

∫
Q

Bα(x, u, . . . ,Dmu)Dαvdx,

(D2u, v) =
∑
|α|<m

∫
Q

Bα(x, u, . . . , Dmu)Dαvdx,

The map D1 : X → X∗ is k1-set contractive by (B2), while D2 : X → X∗ is
compact by the Sobolev embedding theorem. Hence, α(D) = α(D1) ≤ k1 < β(T )
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since k1 is sufficiently small. Finally, condition (a2) implies that T is asymptotically
close to the (p− 1)− positive homogeneous map A given by (5.9). Hence, Theorem
3.5 applies with C = 0. �

Example 5.4. Let s > 0, k be sufficiently small, and look at

−∆u− µu
|u|s

1 + |u|s
+ kF (x, u,∇u) = f (5.11)

and
−∆u− µu = 0 (5.12)

Let A0(x, ξ0, ξ1, . . . , ξn) = ξ0
|ξ0|s

1+|ξ0|s and Ai(x, ξ0, ξ1, . . . , ξn) = ai(x, ξ0, ξ1, . . . , ξn) =
ξi and a0(x, ξ0, ξ1, . . . , ξn) = ξ0. Then A0, Ai, a0 and ai satisfy (a1)-(a2). Let F
satisfy (B1). Then (5.11) has a solution u ∈ W 1

2 (Q), u = 0 on ∂Q, for each
f ∈ L2(Q) if µ is not an eigenvalue of (5.12).

Example 5.5. Let p > 2, k be sufficiently small, and look at

−
n∑

i=1

∂

∂xi
[(1 +

n∑
j=1

| ∂u

∂xj
|2)p/2−1 ∂u

∂xi
] + µ(1 + |u|2)p/2−1u + kDu = f (5.13)

and

−
n∑

i=1

∂

∂xi
(

n∑
j=1

| ∂u

∂xj
|2)p/2−1 ∂u

∂xi
) + µ(|u|2)p/2−1u = 0. (5.14)

where D : W 1
p → W 1

p is k-set contractive; e.g., Du = F (x, u,∇u) in which case
it is compact, or Du =

∑n
i=1 ∂/∂xici(x, u,∇u) with the ci ki-contractive in ∇u

with ki small. Let A0(x, ξ0, ξ1, . . . ξn) = (1 + ξ2
0)p/2−1ξ0, Ai(x, ξ0, ξ1, . . . , ξn) =

(1 +
∑n

j=1 ξ2
j )p/2−1ξi, a0(x, ξ0, ξ1, . . . ξn) = (ξ2

0)p/2−1ξ0 and ai(x, ξ0, ξ1, . . . , ξn) =∑n
j=1(ξ

2
j )p/2−1ξi. Then the matrix (Aij(x, ξ0, ξ1, . . . ξn)) is symmetric. Let n = 2

for simplicity. Then the eigenvalues of the matrix are λ1 = (p/2−1)(1+ξ2
1+ξ2

2)p/2−1

and λ2 = λ1 + (p − 2)(1 + ξ2
1 + ξ2

2)p/2−2(ξ2
1 + ξ2

2). Hence, A0, Ai, a0 and ai satisfy
conditions (A1)–(A4) and (a1)–(a2), respectively. Then (5.13) has a compact set
of solution u ∈ W 1

p (Q), u = 0 on ∂Q, for each f ∈ X∗, if µ is not an eigenvalue
of (5.14) and n = 2. The solution set is finite for all f as in Theorem 5.3 since the
corresponding map T is odd.
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[8] K. C. Chang and L. Shujie; A remark on expanding maps, Proc. Amer. Math. Soc. 85(1982),

583-586.

[9] T. Chia-Chuan, W. Ngai-Ching; Invertibility in infinite-dimensional spaces, Proc. Amer.
Math. Soc. 128(2)(1999), 573-581.

[10] M. Costabel; Boundary integral operators on Lipschitz domain: elementary results, SIAM J.

Math. Anal. (1988), 613–626.
[11] K. Deimling; Nonlinear Functional Analysis, Springer, Berlin, 1985.

[12] M. A. Efendiev, H. Schmitz, W. L. Wendland; On some nonlinear potential problems, Elec-

tronic J. Diff. Equ., Vol. 1999(1999), No 18, pp.1-17.
[13] P. P. B. Eggermont and J Saranen; Lp estimates of boundary integral equations for some

nonlinear boundary value problems, Numer. Math. 58(1990), 465-478.

[14] P. M. Fitzpatrick, J. Pejsachowisz, P. J. Rabier; The degree of proper C2 Fredholm mappings
I, J. Reine Angew. Math. 247 (1992) 1-33.

[15] M. Furi, M. Martelli, and A. Vignoli; Contributions to the spectral theory for nonlinear
operators in Banach spaces, Ann. Mat. Pure Apl. (4) 118 (1978) 229-294.

[16] J. E. Hernandez and M. Z. Nashed; Global invertibility of expanding maps, Proc. Amer.

Math. Soc.,116(1) (1992), 285-291.
[17] P. Hess; On nonlinear mappings of monotone type homotopic to odd operators, J. Funct.

Anal. 11 (1972) 138-167.

[18] F. John; On quasi-isometric mappings, I, Comm. Pure Appl. Math. 21(1968), 77-110.
[19] P. S. Milojević; Fredholm theory and semilinear equations without resonance involving non-

compact perturbations, I, II, Applications, Publications de l’Institut Math. 42 (1987) 71-82

and 83-95.
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