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LOW REGULARITY SOLUTIONS OF THE
CHERN-SIMONS-HIGGS EQUATIONS IN THE LORENTZ
GAUGE

NIKOLAOS BOURNAVEAS

ABSTRACT. We prove local well-posedness for the 2 4+ 1-dimensional Chern-
Simons-Higgs equations in the Lorentz gauge with initial data of low regularity.
Our result improves earlier results by Huh [10} [I1].

1. INTRODUCTION

The Chern-Simon-Higgs model was proposed by Jackiw and Weinberg [12] and
Hong, Pac and Kim [J] in the context of their studies of vortex solutions in the
abelian Chern-Simons theory.

Local well-posedness of low regularity solutions was recently studied in Huh
[10, 11] using a null-form estimate for solutions of the linear wave equation due to
Foschi and Klainerman [8] as well as Strichartz estimates. Our aim in this paper
is to improve the results of [I0, [II] in the Lorentz gauge. For this purpose we
use estimates in the restriction spaces X*? introduced by Bourgain, Klainerman
and Machedon. A key ingredient in our proof is a modified version of a null-form
estimate of Zhou [19] and product rules in X*° spaces due to D’Ancona, Foschi
and Selberg [0, [7] and Klainerman and Selberg [13]. The Higgs field has fractional
dimension (see below for details), a common feature of systems involving the Dirac
equation, see for example Bournaveas [I} 2], D’Ancona, Foschi and Selberg [6] [7],
Machihara [14) [15], Machihara, Nakamura, Nakanishi and Ozawa [16], Selberg and
Tesfahun [I7], Tesfahun [18].

The Chern-Simon-Higgs equations are the Euler-Lagrange equations correspond-
ing to the Lagrangian density

K DA
L= e A,y + Dud PG~V (|]).

Here A, is the gauge field, F},, = 9, A, — 0, A, is the curvature, D, = 0, — 4, is
the covariant derivative, ¢ is the Higgs field, V is a given positive function and « is
a positive coupling constant. Greek indices run through {0, 1,2}, Latin indices run
through {1,2} and repeated indices are summed. The Minkowski metric is defined
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by (¢*¥) = diag(1,—1,—1). We define e#¥? = 0 if two of the indices coincide and
eM¥P = +1 according to whether (i, v, p) is an even or odd permutation of (0, 1, 2).
We define Klainerman’s null forms by

Qv (u,v) = 0ud,v — Oyud,v, (1.1a)

Qo(u,v) = g"” 9, ud,v. (1.1b)

Let I* = 2T m(@D“qﬁ). Then the Euler-Lagrange equations are (we set k = 2 for
simplicity)

1 «
FMV = §€uuo¢1 ) (128,)
D,D"6 = V' (|6). (1.2b)

The system has the positive conserved energy given by

2
= D,¢|? %) dz.
¢ /g w8+ V(9P do

We are interested in the so-called ‘non-topological’ case in which |¢| — 0 as |z| —
+00. For the sake of simplicity we follow [10,[11] and set V' = 0. It will be clear from
our proof that for various classes of V’s the term ¢V’(|$|?) can easily be handled.

Under the Lorentz gauge condition 0 A,, = 0 the Euler-Lagrange equations
become

oAj =0, Ao + 3ei;l;, (1.3a)
Ay = Ay + L1, (1.3b)
OpAp = 01 A1 + 0249, (1.3¢)
D,D"¢=0. (1.3d)
Alternatively, they can be written as a system of two nonlinear wave equations:
DA% = L (D, 0D50 — DpbDy0) + 52 (95 — 0, Ag)l0f,  (14a)
O¢ = 2{A%0,¢ + A“Ano. (1.4b)

We prescribe initial data in the classical Sobolev spaces A*(0,z) = af(z) € H®,
0 A*(0,2) = al(x) € H* Y, ¢(0,2) = ¢o(z) € HY, 0;¢0(0,7) = ¢1(x) € H*L.
Dimensional analysis shows that the critical values of a and b are a.. = 0 and
ber = % It is well known that in low space dimensions the Cauchy problem may
not be locally well posed for a and b close to the critical values due to lack of decay
at infinity. Observe also that ¢ has fractional dimension.

From the point of view of scaling it is natural to take b = a + % With this
choice it was shown in Huh [I0] that the Cauchy problem is locally well posed for

a=32+ecand b= 2+ e This was improved in Huh [II] to
3 9
a—1+€, b—§+€ (15)

(slightly violating b = a + %) The proof relies on the null structure of the right
hand side of (l.4al). Indeed,

Dy¢Ds¢ — DdDr¢ = Qrp(9,0) +1i (A, 95(161°) — Apd, (10]%)) -
On the other hand, since in (1.3 the A, satisfy first order equations and ¢ satisfies
a second order equation it is natural to investigate the case b = a + 1. It turns out
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that this choice allows us to improve on a at the expense of b. It is shown in Huh

[11] that we have local well posedness for
1 3

= — b = —. 1.6

a 27 2 ( )

To prove this result Huh uncovered the null structure in the right hand side of

equation (1.4b)). Indeed, if we introduce B, by 9,B* = 0 and 9,B, — 0,B,, =
EW,\A’\, then the equations take the form:

OBY = —Im (¢D"¢) = —Im ($07¢) + ie"*70,, B, |4|*, (1.7a)

O¢ = i€ Qua(By, ¢) + Qo(By, B*)¢ + Qu(B*, BY)¢ . (1.7b)

In this article we shall prove the Theorem stated below which corresponds to ex-

ponents a = ;1 + € and b = 5 + . This improves (L.6) by ; — € derivatives in both

a and b. Compared to (1.5)), it improves a by % derivatives at the expense of %

derivatives in b.

Theorem 1.1. Let n = 2 and i < s < % Consider the Cauchy problem for the
system (1.7)) with initial data in the following Sobolev spaces:

BY(0) = bj € H"Y(R?), 0,B7(0) = b] € H*(R?), (1.8a)
$(0) = ¢o € H*(R?),  0:9(0) = ¢ € H*(R?), (1.8b)
Then there exists a T > 0 and a solution (B, ¢) of ([L.7)-(L.8) in [0,T] x R? with
B,¢ € CO([0,T); H*1(R?)) N C*([0, T]; H* (R?)).

The solution is unique in a subspace of C°([0,T]; H¥*1(R?)) N C1([0,T]; H*(R?)),
namely in H*T10, where % <0 <s+ % (the definition of H*TY? is given in the
next section,).

Finally, we remark that the problem of global existence is much more difficult.
We refer the reader to Chae and Chae [4], Chae and Choe [5] and Huh [0} [I1].

2. BILINEAR ESTIMATES

In this Section we collect the bilinear estimates we need for the proof of Theorem
We shall work with the spaces H*? and H*? defined by
H*? = {ueS8 : AN ue L*(R*)},
H ={ue H? : gu e H19}
where A and A_ are defined by
Asu(r,€) = (1+[€*)*a(r.€),

__ 2 _[£]2)2 | 0/2
AP u(r,€) = (1 + 71(1 - 'ﬁ' |€)|2) (T, €).

)9/2

Notice that the weight (1 + (G| is equivalent to the weight w_(r,¢)?,

1+72+[€]?
where we define

wi (1, §) = 1+||7] £ [¢]].
We define the norms
[l oo = [[(€)*w—(7,€) (T, )| p2(res1),

[ullp=o = l[ull a0 + Ocullgrs.0-

ul




4 N. BOURNAVEAS EJDE-2009/114

The last norm is equivalent to
1) My (1, w_ (7€) U(7, &) || L2 (me+1).-

We can now state the null form estimate we are going to use in the proof of Theorem

in

Proposition 2.1. Let n =2, % <s< %, % <l <s+ % Let Q denote any of the
null forms defined by (1.1). Then for all sufficiently small positive § we have

QD )l rrs0-1+5 S (| Qllpgsrrollllgsrre. (2.1)
If Q = Qg there is a better estimate.

Proposition 2.2. Let n =2, s >0 and let 0 and § satisfy
1 1
5 < 0 < min{l,s + 5},
1
0§5§min{1—0,s+§—0}.

Then
1Qo(6,¥) [ rrs.0-1+5 < [|9] Hat10 (2.2)
For a proof of the above proposition, see [13, estimate (7.5)].

For Q = Q;j, Qo; estimate (2.1 should be compared (if we set § = s + % and
0 = 0) to the following estimate of Zhou [19]:

T

Ns,s—% (Qaﬁ(%d’)) S Ns+1,s+%(¢)Ns+1,s+%(w)7 (23)
where i < s < % and
Nso(u) = ws (7, €)*w-(7,€)°u(r, )| 2., - (2.4)

The spaces in estimate (2.1]) are different, with ¢ and v slightly less regular in the
sense that ||ul/ys.e < Nsg(u). Moreover we have to account for the extra hyperbolic
derivative of order § on the left hand side.

Proof of Proposition[2.1, We only sketch the proof for @ = Qg;. The proof for
Q = @;; is similar. Let
F(T7 5) = <§>Sw+ (Ta é)wg (Ta 5)5(7—) 5)’
G(r,€) = (O ws (r, w’ (1,)d (7, €).
Let H(7,&) be a test function. We may assume F, G, H > 0. We need to show:
/ (€ +m) w0 (T + A E 4 )l — A
(€)*w (1, w? (7,€) (m)*w+ (A, mw? (A, )
X F(1, )G\, n)H(T + X\, & +n)dT dXd€ dn
SF( 2 |Gl 2 | H | 2o

(2.5)

Using
(€+m)° <O+’
we see that we need to estimate the following integral (and a symmetric one):
/ w7+ A &)l = MGIF(H OGO M H (7 + A, + )
w (7, w? (1,8) (n)* w4 (A, mw? (A, n)

drd\d€dny (2.6)
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We restrict our attention to the region where 7 > 0, A > 0. The proof for all other
regions is similar. We use

™™ = A = ([€ln — nl€) + (7 — &) — (A = [nl)¢
= ([€ln = [n1&) + (7] = [€N)n = (Al = [n])¢

to see that, we need to estimate the following three integrals:

R+_/ [[€ln — Inl€|F(r,§)G(A\, n)H (+/\ § +n)drdAd€ dn

w0 (T 4+ N €+ m)wy (7, )w? (7,€) (n)swe (A, n)w? (A, )’

Jw

T+_/ 7| = €Il F (r, ) GO\ ) H (+/\§+n)d7d/\d€dn
w00+ N+ nwo (1, Ow (1, &) (n)swi (A, m)w? (A, )’

L+_/ I\l = Inll[€|F (T, )G (m)H( + A& mdrddedn
w0 (T 4+ N €+ mwy (7, )w? (7,€) (n)sw (A, n)w? (A, n)

We start with RT. We have
[In1€ = [€]n
SIEM2 M2 (el + DY (7 + AL = 1€+ nll + lIrl = 1€l + (1AL = [nlDY2.
Indeed,
llnl€ — 1€Inl* = 21nllg] (€]l - & -m)
= nll€l (€1 + [nl + 1€ +nl) (&l + |l = 1€ +nl) -
We have [¢] + [n] +[§ +n| < 2(|¢] + [n]) and
1+l =€ +nl = (T + A= [€+n]) = (A= [nl) = (7 = [¢])
SIr+A =€+l + A= Inll + [ — ]l
therefore follows. Following Zhou [19] we use to obtain

[Inl€ = [€lnl = [Inl€ — I€lnl**|Inle — [€]nl*~>*
S i€ — 1€lnPP* €122 /272 (€] + D) Y* = |7 + Al = 1€+l /27
+ |lmle = [Elnl?=IE 2= nl*2== (€] + [nl) "/~ |I7] — [&] /2=
+ |Inlg — €I 1€1 /2= nM2== (l&] + [n) 2= I\ = ][/
Therefore,
R" S RY + RS + Ry,
where

R+_/Hn|§ R S(|£\+|n\)“2 N+ A = €+ lE0
! 00 X €+ mwa (7, ©w? (7, €) () *w (A, n)w? (A, )
x F(1,&)GO\ ) H(T + A\, € +n) dr d\d€ dn

- / [Inl€ — [€]nl>* (€] + )"~
= W ul (A, g2/
X F(1, & )G\ H(T + N\, € +n)drd\ddn




6 N. BOURNAVEAS EJDE-2009/114

(we have used the fact that ws+2

for small 6, because 6 < s + 3.)

Y A 11 9 S il (If\ + )2 NI — [l
2
w4 A S mw (r Owl (7, ) () w (A mw? (A, 1)
X F(m,§)G(An)H(T + X, £+ n) dr dAdS dn
_ / [Inl€ = 1€lmI?* (1€l + )"/~
S Wl (A gl [l
X F(1,§)G(An)H(T + X, £+ n) dr dAdS dn

(we have used the fact that w'==%(7 + \,€ + 1) > 1. Indeed, 1 — —§ > 0 for
small § because 6 < s+ 3 < 1.)

PO 1 3Ll U el (S )27 1AL = [/
P T A e mw (1w (&) ) (A m)w? (A )
X F(1, & )G\n)H (T + X\, &+ 1) dr d\d€ dn

_ / [[nl€ — 1€mI?* (1€l + )"/~

T gl e 2
X F(1, )G\, m)H(T + X\, +n) dr dXd€ dn

- (T+)\,§+n)21. Indeed, s+ 4 —6—6 >0

We present the proof for R;‘ . The proofs for RT and R;‘ are similar. We change
variables 7 — u = |7| = [{| =7 — |£] and A — v = |A] — |n| = A — |n| and we use
the notation

fu(f) = F(’U,—I— |§|7£)7 gv(n) = G(U + ‘77|a77)’ Hu,v(Tlvgl) = H(u+v +7Jv£/)

to get
// //||n|£ [€[n[> (j€] + [n])"/ >
(1 + [u])?5=2 (1 + |v])? |E|5+1/2|p|2s+1/2

X fu(f)gv(ﬁ) u,u(|§| + |’l7|,£+ T]) df dn] du dv.
We have |[n|¢ — |€[n[* = 21¢]ln] (€]ln] — € - 1) therefore

1/2—s
/ HE |£\1/2 |7§||§|+1+/2|’7'> Fu©)g0(m) Huo (€] + ], € + m)dedn

([[ raeranzacan) v

= | fullzz(ee)llgoll o ey K72,

(€llnl = €-m)* (€| + |n)* 2 2
e // €| )25+t Hy o (1] + 0], & +n)* d€ dn

/ (1€ = nllnl = (€ =n)-0)** (& —nl+n)" %
& —n| |n|?s+1
X Hyo(1€ = nl+ [n|,&)?d dn.

where
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We use polar coordinates n = pw to get
Ks /// (I~ pwl +p— & w)* (' —pel +p)" ™
- € — pw|
X Hu,v(lfl - Pw‘ +p, g/)2 df/ dp dw.

For fixed ¢’ and w, we change variables p — 7' := | — pw| + p to get

w3 [ [ ool e

From [19, estimate (3.22)] we know that

1
-2 .
T s /Sl (T/,g.w)lf%dwsl’

therefore K < ||H ”124 Putting everything together we get:
R 5 ([ G ) ([ ) .
(1+ ul)?s72 (1+ Jvf)

Since 20 +2s — 1 > 2~%+2-%—1 =1 and 26 > 2-% > 1 we can use the
Cauchy-Schwarz inequality to conclude:

Ry S M fullz@e) ez Mlgoll e ey 2 [ H 1T = I F G 21 H] 4

This completes the estimates for R2+ .
Next we estimate TF. We use ||7| — [¢]| < w (7,€) 0w _(7,£)? to get

T+ — / 7| = [EllInlF (7, )G mH(T + A, & + n)drdA dE dny
w7 £ X € mw (1w (7, €) () *wi (A, mw? (A, 1)
< / F(r,)GAnH(T+ A §+1n)
- (€)7 (m)*w? (X, m)
Changing variables 7 — u := |7 — [{| =7 — [{| and A = v :=[A| = || = A — [n] we
have

1

+ < e
5 /]

{// Fu+[, )G+ [nl,n)H(u+v+ ¢ +[n,§ +n)

(1 +[o])?
For fixed ¢ and n we apply [19, Lemma A] in the (u,v)-variables to get
1
75 [[ P 8.0l G+ e

X | H(w + [§] + [, € + 1)l 2 d€dn
1
~ [[ o P Ol Gl & + i)l de
(€)% (m)
Now we do the same in the (£, n)-variables to get
T < ||||F(‘7§)HL2(R)||L§||||G('a77)HL2(1R)HL?7||||H(',€/)HL2(R)||L§,
~ LG AH 5

The proof for LT is similar. O

drd\ d€ dn.

du dv} de dn.

We are also going to need the following ‘product rules’ in H*? spaces.
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Proposition 2.3. Let n =2. Then

[wv]|g=c— S llull e [vlles, (2.8)
provided that
a+b+c>1 (2.9)
a+b>0, b+c>0, a+c>0 (2.10)
a+p+vy>1/2 (2.11)
a,B,v>0. (2.12)

Proof. If a,b,c > 0, the result is contained in [I3 Proposition Al]. If not, observe
that, due to (2.10), at most one of the a,b, c is negative. We deal with the case
¢ <0, a,b>0. All other cases are similar. Observe that

&) <(r] — &)@ (r. )|
< (7l — e / / (€ —ny~*[a(r — M€ — n)|[F(\, ) dAdn

el = 1) [ [ 1t = A&~ mltay <l
therefore
[uv][gr-c— S NUV | o= + |0V o,
where
U(r,€) = (&) “la(r,6)],
u/(Tv 6) = |ﬂ(7’, f)lv
V(7. §) = (&)~ lo(r, )l
v'(7,8) = [o(7, ).
Since a + ¢ > 0, we have
1OV [0~ S NUllmra+ea [V [ gos S lJull oo o] o
Since b+ ¢ > 0, we have
@' Vio— S W [maalVIsres S lullmaallvl gos-
The result follows. O
Proposition 2.4. Letn=2. If s > 1 and % <0<s— %, then H*Y is an algebra.
For the proof of the above proposition, see [13, Theorem 7.3].
Proposition 2.5. Letn=2, s > 1, % <f<s— % Assume that
—<a<0 —-s<a<s+a (2.13)

Then
o go? — goe, (2.14)

The proof can be found in [I3] Theorem 7.2].
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Proof of Theorem Theorem [L.] follows by well known methods from the
following a-priori estimates (together with the corresponding estimates for differ-
ences): For any space-time functions B, B, ¢, ¢’ € H*T%% and any v, u € {0,1,2}
we have:

16" Ol gre0-145 S N¢' llgasr.0]|@ll 2410, (2.15)
10" B) ¢ &' re0-1+5 S || Bllpgsrrol|@llpgerroll@ 1310, (2.16)
1Qua(B; @)l rso-145 S || Bllpgssr.0l|pllpgesre, (2.17)
1Qo(B, B' )l prso-1+5 S IBllpsrr0 | B [lge+1.0]|dll 3410, (2.18)
1Quv(B, B)llreo-1+5 S IBllggssr.0ll B llggs 1.0l dll 3410 (2.19)
Here % <s< i % <f<s+ % and ¢ is a sufficiently small positive number.
To prove we use Proposition to get:
1697 6llsre0-115 S 10/ llger10 1970l 100 S 16 e | Gllerno
Similarly, for we have
1(0"B) ¢ ¢'|| rs.o-145 S 10" Bllasoll@ ¢ mror0 S IBllpgsrrol|d ¢'|| oo

By Proposition and our assumptions on s and @ it follows that the space H5t1?
is an algebra. Therefore,

16 ¢ llrssr0 S NSllazsrr ol masre,

and estimate (2.16]) follows.
Estimate (2.17) follows from Proposition (2.1). Finally, we consider estimates
(2.18) and (2.19). We use the letter @ to denote any of the null forms Qo, Q...

We have
1Q(B, B') ¢|| grso-1+5 < (|Q(B, B) || rs.o-v45]|dl| oo (2.20)
This follows from Proposition[2.5| with s replaced by s+1 and « replaced by 6 —1+4.

Next, by (2.1)),

1Q(B, B[ ms0-1+5 S || Bllggesrol| B llpssr.0 (2.21)
therefore ([2.18) and (2.19) follow.
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