Electronic Journal of Differential Equations, Vol. 2009(2009), No. 114, pp. 1–10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

LOW REGULARITY SOLUTIONS OF THE CHERN-SIMONS-HIGGS EQUATIONS IN THE LORENTZ GAUGE

NIKOLAOS BOURNAVEAS

ABSTRACT. We prove local well-posedness for the 2 + 1-dimensional Chern-Simons-Higgs equations in the Lorentz gauge with initial data of low regularity. Our result improves earlier results by Huh [10, 11].

1. Introduction

The Chern-Simon-Higgs model was proposed by Jackiw and Weinberg [12] and Hong, Pac and Kim [9] in the context of their studies of vortex solutions in the abelian Chern-Simons theory.

Local well-posedness of low regularity solutions was recently studied in Huh [10, 11] using a null-form estimate for solutions of the linear wave equation due to Foschi and Klainerman [8] as well as Strichartz estimates. Our aim in this paper is to improve the results of [10, 11] in the Lorentz gauge. For this purpose we use estimates in the restriction spaces $X^{s,b}$ introduced by Bourgain, Klainerman and Machedon. A key ingredient in our proof is a modified version of a null-form estimate of Zhou [19] and product rules in $X^{s,b}$ spaces due to D'Ancona, Foschi and Selberg [6, 7] and Klainerman and Selberg [13]. The Higgs field has fractional dimension (see below for details), a common feature of systems involving the Dirac equation, see for example Bournaveas [1, 2], D'Ancona, Foschi and Selberg [6, 7], Machihara [14, 15], Machihara, Nakamura, Nakanishi and Ozawa [16], Selberg and Tesfahun [17], Tesfahun [18].

The Chern-Simon-Higgs equations are the Euler-Lagrange equations corresponding to the Lagrangian density

$$\mathcal{L} = \frac{\kappa}{4} \epsilon^{\mu\nu\rho} A_{\mu} F_{\nu\rho} + D_{\mu} \phi \, \overline{D^{\mu} \phi} - V(|\phi|^2).$$

Here A_{μ} is the gauge field, $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ is the curvature, $D_{\mu} = \partial_{\mu} - iA_{\mu}$ is the covariant derivative, ϕ is the Higgs field, V is a given positive function and κ is a positive coupling constant. Greek indices run through $\{0, 1, 2\}$, Latin indices run through $\{1, 2\}$ and repeated indices are summed. The Minkowski metric is defined

²⁰⁰⁰ Mathematics Subject Classification. 35L15, 35L70, 35Q40.

 $Key\ words\ and\ phrases.$ Chern-Simons-Higgs equations; Lorentz gauge; null-form estimates; low regularity solutions.

^{©2009} Texas State University - San Marcos.

Submitted February 22, 2009. Published September 12, 2009.

by $(g^{\mu\nu}) = diag(1, -1, -1)$. We define $\epsilon^{\mu\nu\rho} = 0$ if two of the indices coincide and $\epsilon^{\mu\nu\rho} = \pm 1$ according to whether (μ, ν, ρ) is an even or odd permutation of (0, 1, 2). We define Klainerman's null forms by

$$Q_{\mu\nu}(u,v) = \partial_{\mu}u\partial_{\nu}v - \partial_{\nu}u\partial_{\mu}v, \tag{1.1a}$$

$$Q_0(u,v) = g^{\mu\nu} \partial_{\mu} u \partial_{\nu} v. \tag{1.1b}$$

Let $I^{\mu} = 2Im(\overline{\phi}D^{\mu}\phi)$. Then the Euler-Lagrange equations are (we set $\kappa = 2$ for simplicity)

$$F_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\alpha} I^{\alpha}, \tag{1.2a}$$

$$D_{\mu}D^{\mu}\phi = -\phi V'(|\phi|^2). \tag{1.2b}$$

The system has the positive conserved energy given by

$$\mathcal{E} = \int_{\mathbb{R}^2} \sum_{\mu=0}^2 |D_{\mu}\phi|^2 + V(|\phi|^2) \, dx.$$

We are interested in the so-called 'non-topological' case in which $|\phi| \to 0$ as $|x| \to +\infty$. For the sake of simplicity we follow [10, 11] and set V = 0. It will be clear from our proof that for various classes of V's the term $\phi V'(|\phi|^2)$ can easily be handled.

Under the Lorentz gauge condition $\partial^{\mu}A_{\mu}=0$ the Euler-Lagrange equations (1.2) become

$$\partial_0 A_j = \partial_j A_0 + \frac{1}{2} \epsilon_{ij} I_i, \tag{1.3a}$$

$$\partial_1 A_2 = \partial_2 A_1 + \frac{1}{2} I_0,$$
 (1.3b)

$$\partial_0 A_0 = \partial_1 A_1 + \partial_2 A_2, \tag{1.3c}$$

$$D_{\mu} D^{\mu} \phi = 0.$$
 (1.3d)

Alternatively, they can be written as a system of two nonlinear wave equations:

$$\Box A^{\alpha} = \frac{1}{2} \epsilon^{\alpha\beta\gamma} \operatorname{Im}(\overline{D_{\gamma}\phi} D_{\beta}\phi - \overline{D_{\beta}\phi} D_{\gamma}\phi) + \frac{1}{2} \epsilon^{\alpha\beta\gamma} (\partial_{\beta} A_{\gamma} - \partial_{\gamma} A_{\beta}) |\phi|^{2}, \qquad (1.4a)$$

$$\Box \phi = 2iA^{\alpha}\partial_{\alpha}\phi + A^{\alpha}A_{\alpha}\phi. \tag{1.4b}$$

We prescribe initial data in the classical Sobolev spaces $A^{\mu}(0,x) = a_0^{\mu}(x) \in H^a$, $\partial_t A^{\mu}(0,x) = a_1^{\mu}(x) \in H^{a-1}$, $\phi(0,x) = \phi_0(x) \in H^b$, $\partial_t \phi(0,x) = \phi_1(x) \in H^{b-1}$. Dimensional analysis shows that the critical values of a and b are $a_{cr} = 0$ and $b_{cr} = \frac{1}{2}$. It is well known that in low space dimensions the Cauchy problem may not be locally well posed for a and b close to the critical values due to lack of decay at infinity. Observe also that ϕ has fractional dimension.

From the point of view of scaling it is natural to take $b=a+\frac{1}{2}$. With this choice it was shown in Huh [10] that the Cauchy problem is locally well posed for $a=\frac{3}{4}+\epsilon$ and $b=\frac{5}{4}+\epsilon$. This was improved in Huh [11] to

$$a = \frac{3}{4} + \epsilon, \quad b = \frac{9}{8} + \epsilon \tag{1.5}$$

(slightly violating $b = a + \frac{1}{2}$). The proof relies on the null structure of the right hand side of (1.4a). Indeed,

$$\overline{D_{\gamma}\phi}D_{\beta}\phi - \overline{D_{\beta}\phi}D_{\gamma}\phi = Q_{\gamma\beta}(\overline{\phi},\phi) + i\left(A_{\gamma}\partial_{\beta}(|\phi|^2) - A_{\beta}\partial_{\gamma}(|\phi|^2)\right).$$

On the other hand, since in (1.3) the A_{μ} satisfy first order equations and ϕ satisfies a second order equation it is natural to investigate the case b = a + 1. It turns out

that this choice allows us to improve on a at the expense of b. It is shown in Huh [11] that we have local well posedness for

$$a = \frac{1}{2}, \quad b = \frac{3}{2}.$$
 (1.6)

To prove this result Huh uncovered the null structure in the right hand side of equation (1.4b). Indeed, if we introduce B_{μ} by $\partial_{\mu}B^{\mu}=0$ and $\partial_{\mu}B_{\nu}-\partial_{\nu}B_{\mu}=\epsilon_{\mu\nu\lambda}A^{\lambda}$, then the equations take the form:

$$\Box B^{\gamma} = -\operatorname{Im}\left(\bar{\phi}D^{\gamma}\phi\right) = -\operatorname{Im}\left(\bar{\phi}\partial^{\gamma}\phi\right) + i\epsilon^{\mu\nu\gamma}\partial_{\mu}B_{\nu}|\phi|^{2},\tag{1.7a}$$

$$\Box \phi = i \epsilon^{\alpha \mu \nu} Q_{\mu \alpha}(B_{\nu}, \phi) + Q_0(B_{\mu}, B^{\mu}) \phi + Q_{\mu \nu}(B^{\mu}, B^{\nu}) \phi . \tag{1.7b}$$

In this article we shall prove the Theorem stated below which corresponds to exponents $a = \frac{1}{4} + \epsilon$ and $b = \frac{5}{4} + \epsilon$. This improves (1.6) by $\frac{1}{4} - \epsilon$ derivatives in both a and b. Compared to (1.5), it improves a by $\frac{1}{2}$ derivatives at the expense of $\frac{1}{8}$ derivatives in b.

Theorem 1.1. Let n=2 and $\frac{1}{4} < s < \frac{1}{2}$. Consider the Cauchy problem for the system (1.7) with initial data in the following Sobolev spaces:

$$B^{\gamma}(0) = b_0^{\gamma} \in H^{s+1}(\mathbb{R}^2), \quad \partial_t B^{\gamma}(0) = b_1^{\gamma} \in H^s(\mathbb{R}^2),$$
 (1.8a)

$$\phi(0) = \phi_0 \in H^{s+1}(\mathbb{R}^2), \quad \partial_t \phi(0) = \phi_1 \in H^s(\mathbb{R}^2).$$
 (1.8b)

Then there exists a T>0 and a solution (B,ϕ) of (1.7)-(1.8) in $[0,T]\times\mathbb{R}^2$ with

$$B, \phi \in C^0([0,T]; H^{s+1}(\mathbb{R}^2)) \cap C^1([0,T]; H^s(\mathbb{R}^2)).$$

The solution is unique in a subspace of $C^0([0,T];H^{s+1}(\mathbb{R}^2)) \cap C^1([0,T];H^s(\mathbb{R}^2))$, namely in $\mathcal{H}^{s+1,\theta}$, where $\frac{3}{4} < \theta < s + \frac{1}{2}$ (the definition of $\mathcal{H}^{s+1,\theta}$ is given in the next section).

Finally, we remark that the problem of global existence is much more difficult. We refer the reader to Chae and Chae [4], Chae and Choe [5] and Huh [10, 11].

2. Bilinear Estimates

In this Section we collect the bilinear estimates we need for the proof of Theorem 1.1. We shall work with the spaces $H^{s,\theta}$ and $\mathcal{H}^{s,\theta}$ defined by

$$H^{s,\theta} = \{ u \in \mathcal{S}' : \Lambda^s \Lambda^{\theta}_{-} u \in L^2(\mathbb{R}^{2+1}) \},$$

$$\mathcal{H}^{s,\theta} = \{ u \in H^{s,\theta} : \partial_t u \in H^{s-1,\theta} \}$$

where Λ and Λ_{-} are defined by

$$\widetilde{\Lambda^s u}(\tau, \xi) = (1 + |\xi|^2)^{s/2} \widetilde{u}(\tau, \xi),$$

$$\widetilde{\Lambda^{\theta}_{-} u}(\tau, \xi) = \left(1 + \frac{(\tau^2 - |\xi|^2)^2}{1 + \tau^2 + |\xi|^2}\right)^{\theta/2} \widetilde{u}(\tau, \xi).$$

Notice that the weight $\left(1 + \frac{(\tau^2 - |\xi|^2)^2}{1 + \tau^2 + |\xi|^2}\right)^{\theta/2}$ is equivalent to the weight $w_-(\tau, \xi)^{\theta}$, where we define

$$w_{+}(\tau, \xi) = 1 + ||\tau| \pm |\xi||.$$

We define the norms

$$||u||_{H^{s,\theta}} = ||\langle \xi \rangle^s w_-(\tau,\xi)^{\theta} \widetilde{u}(\tau,\xi)||_{L^2(\mathbb{R}^{2+1})},$$

$$||u||_{H^{s,\theta}} = ||u||_{H^{s,\theta}} + ||\partial_t u||_{H^{s,\theta}}.$$

The last norm is equivalent to

$$\|\langle \xi \rangle^{s-1} w_{+}(\tau, \xi) w_{-}(\tau, \xi)^{\theta} \widetilde{u}(\tau, \xi) \|_{L^{2}(\mathbb{R}^{2+1})}$$

We can now state the null form estimate we are going to use in the proof of Theorem 1.1.

Proposition 2.1. Let n=2, $\frac{1}{4} < s < \frac{1}{2}$, $\frac{3}{4} < \theta < s + \frac{1}{2}$. Let Q denote any of the null forms defined by (1.1). Then for all sufficiently small positive δ we have

$$||Q(\phi,\psi)||_{H^{s,\theta-1+\delta}} \lesssim ||\phi||_{\mathcal{H}^{s+1,\theta}} ||\psi||_{\mathcal{H}^{s+1,\theta}}.$$
 (2.1)

If $Q = Q_0$ there is a better estimate.

Proposition 2.2. Let n = 2, s > 0 and let θ and δ satisfy

$$\begin{split} \frac{1}{2} < \theta \leq \min\{1, s + \frac{1}{2}\}, \\ 0 \leq \delta \leq \min\{1 - \theta, s + \frac{1}{2} - \theta\}. \end{split}$$

Then

$$||Q_0(\phi, \psi)||_{H^{s,\theta-1+\delta}} \lesssim ||\phi||_{\mathcal{H}^{s+1,\theta}} ||\psi||_{\mathcal{H}^{s+1,\theta}}$$
(2.2)

For a proof of the above proposition, see [13, estimate (7.5)].

For $Q = Q_{ij}$, Q_{0j} estimate (2.1) should be compared (if we set $\theta = s + \frac{1}{2}$ and $\delta = 0$) to the following estimate of Zhou [19]:

$$N_{s,s-\frac{1}{2}}(Q_{\alpha\beta}(\phi,\psi)) \lesssim N_{s+1,s+\frac{1}{2}}(\phi)N_{s+1,s+\frac{1}{2}}(\psi),$$
 (2.3)

where $\frac{1}{4} < s < \frac{1}{2}$ and

$$N_{s,\theta}(u) = \|w_{+}(\tau,\xi)^{s} w_{-}(\tau,\xi)^{\theta} \widetilde{u}(\tau,\xi)\|_{L_{-\xi}^{2}}.$$
 (2.4)

The spaces in estimate (2.1) are different, with ϕ and ψ slightly less regular in the sense that $||u||_{\mathcal{H}^{s,\theta}} \leq N_{s,\theta}(u)$. Moreover we have to account for the extra hyperbolic derivative of order δ on the left hand side.

Proof of Proposition 2.1. We only sketch the proof for $Q = Q_{0j}$. The proof for $Q = Q_{ij}$ is similar. Let

$$F(\tau,\xi) = \langle \xi \rangle^s w_+(\tau,\xi) w_-^{\theta}(\tau,\xi) \widetilde{\phi}(\tau,\xi),$$

$$G(\tau,\xi) = \langle \xi \rangle^s w_+(\tau,\xi) w_-^{\theta}(\tau,\xi) \widetilde{\psi}(\tau,\xi).$$

Let $H(\tau,\xi)$ be a test function. We may assume $F,G,H\geq 0$. We need to show:

$$\int \frac{\langle \xi + \eta \rangle^{s} w_{-}^{\theta - 1 + \delta}(\tau + \lambda, \xi + \eta) | \tau \eta_{j} - \lambda \xi_{j}|}{\langle \xi \rangle^{s} w_{+}(\tau, \xi) w_{-}^{\theta}(\tau, \xi) \langle \eta \rangle^{s} w_{+}(\lambda, \eta) w_{-}^{\theta}(\lambda, \eta)}
\times F(\tau, \xi) G(\lambda, \eta) H(\tau + \lambda, \xi + \eta) d\tau \ d\lambda \ d\xi \ d\eta
\lesssim ||F||_{L^{2}} ||G||_{L^{2}} ||H||_{L^{2}}.$$
(2.5)

Using

$$\langle \xi + \eta \rangle^s \le \langle \xi \rangle^s + \langle \eta \rangle^s$$

we see that we need to estimate the following integral (and a symmetric one):

$$\int \frac{w_{-}^{\theta-1+\delta}(\tau+\lambda,\xi+\eta)|\tau\eta_{j}-\lambda\xi_{j}|F(\tau,\xi)G(\lambda,\eta)H(\tau+\lambda,\xi+\eta)}{w_{+}(\tau,\xi)w_{-}^{\theta}(\tau,\xi)\langle\eta\rangle^{s}w_{+}(\lambda,\eta)w_{-}^{\theta}(\lambda,\eta)}\,d\tau\,d\lambda\,d\xi\,d\eta \quad (2.6)$$

We restrict our attention to the region where $\tau \geq 0$, $\lambda \geq 0$. The proof for all other regions is similar. We use

$$\tau \eta - \lambda \xi = (|\xi|\eta - |\eta|\xi) + (\tau - |\xi|)\eta - (\lambda - |\eta|)\xi$$

= $(|\xi|\eta - |\eta|\xi) + (|\tau| - |\xi|)\eta - (|\lambda| - |\eta|)\xi$

to see that, we need to estimate the following three integrals:

$$\begin{split} R^+ &= \int \frac{||\xi|\eta - |\eta|\xi|F(\tau,\xi)G(\lambda,\eta)H(\tau+\lambda,\xi+\eta)d\tau d\lambda\,d\xi\,d\eta}{w_-^{1-\theta-\delta}(\tau+\lambda,\xi+\eta)w_+(\tau,\xi)w_-^\theta(\tau,\xi)\langle\eta\rangle^s w_+(\lambda,\eta)w_-^\theta(\lambda,\eta)},\\ T^+ &= \int \frac{||\tau| - |\xi|||\eta|F(\tau,\xi)G(\lambda,\eta)H(\tau+\lambda,\xi+\eta)d\tau d\lambda\,d\xi\,d\eta}{w_-^{1-\theta-\delta}(\tau+\lambda,\xi+\eta)w_+(\tau,\xi)w_-^\theta(\tau,\xi)\langle\eta\rangle^s w_+(\lambda,\eta)w_-^\theta(\lambda,\eta)},\\ L^+ &= \int \frac{||\lambda| - |\eta|||\xi|F(\tau,\xi)G(\lambda,\eta)H(\tau+\lambda,\xi+\eta)d\tau d\lambda\,d\xi\,d\eta}{w_-^{1-\theta-\delta}(\tau+\lambda,\xi+\eta)w_+(\tau,\xi)w_-^\theta(\tau,\xi)\langle\eta\rangle^s w_+(\lambda,\eta)w_-^\theta(\lambda,\eta)}. \end{split}$$

We start with R^+ . We have

$$||\eta|\xi - |\xi|\eta| \lesssim |\xi|^{1/2} |\eta|^{1/2} (|\xi| + |\eta|)^{1/2} (||\tau + \lambda| - |\xi + \eta|| + ||\tau| - |\xi|| + ||\lambda| - |\eta||)^{1/2}.$$
(2.7)

Indeed,

$$||\eta|\xi - |\xi|\eta|^2 = 2|\eta||\xi| (|\xi||\eta| - \xi \cdot \eta)$$

= |\eta||\xi| (|\xi| + |\eta| + |\xi| + |\xi|) (|\xi| + |\eta| - |\xi + \eta|).

We have $|\xi| + |\eta| + |\xi + \eta| \le 2(|\xi| + |\eta|)$ and

$$\begin{aligned} |\xi| + |\eta| - |\xi + \eta| &= (\tau + \lambda - |\xi + \eta|) - (\lambda - |\eta|) - (\tau - |\xi|) \\ &\leq |\tau + \lambda - |\xi + \eta|| + |\lambda - |\eta|| + |\tau - |\xi||, \end{aligned}$$

therefore (2.7) follows. Following Zhou [19] we use (2.7) to obtain

$$\begin{split} ||\eta|\xi - |\xi|\eta| &= ||\eta|\xi - |\xi|\eta|^{2s}||\eta|\xi - |\xi|\eta|^{1-2s} \\ &\lesssim ||\eta|\xi - |\xi|\eta|^{2s}|\xi|^{1/2-s}|\eta|^{1/2-s}\left(|\xi| + |\eta|\right)^{1/2-s}||\tau + \lambda| - |\xi + \eta||^{1/2-s} \\ &+ ||\eta|\xi - |\xi|\eta|^{2s}|\xi|^{1/2-s}|\eta|^{1/2-s}\left(|\xi| + |\eta|\right)^{1/2-s}||\tau| - |\xi||^{1/2-s} \\ &+ ||\eta|\xi - |\xi|\eta|^{2s}|\xi|^{1/2-s}|\eta|^{1/2-s}\left(|\xi| + |\eta|\right)^{1/2-s}||\lambda| - |\eta||^{1/2-s}. \end{split}$$

Therefore,

$$R^+ \lesssim R_1^+ + R_2^+ + R_3^+,$$

where

$$\begin{split} R_1^+ &= \int \frac{||\eta|\xi - |\xi|\eta|^{2s}|\xi|^{1/2-s}|\eta|^{1/2-s} \left(|\xi| + |\eta|\right)^{1/2-s} ||\tau + \lambda| - |\xi + \eta||^{\frac{1}{2}-s}}{w_-^{1-\theta-\delta}(\tau + \lambda, \xi + \eta)w_+(\tau, \xi)w_-^{\theta}(\tau, \xi)\langle\eta\rangle^s w_+(\lambda, \eta)w_-^{\theta}(\lambda, \eta)} \\ & \times F(\tau, \xi)G(\lambda, \eta)H(\tau + \lambda, \xi + \eta)\,d\tau\,d\lambda\,d\xi\,d\eta \\ &\leq \int \frac{||\eta|\xi - |\xi|\eta|^{2s} \left(|\xi| + |\eta|\right)^{1/2-s}}{w_-^{\theta}(\tau, \xi)w_-^{\theta}(\lambda, \eta)|\xi|^{s+1/2}|\eta|^{2s+1/2}} \\ & \times F(\tau, \xi)G(\lambda, \eta)H(\tau + \lambda, \xi + \eta)\,d\tau\,d\lambda\,d\xi\,d\eta \end{split}$$

(we have used the fact that $w_{-}^{s+\frac{1}{2}-\theta-\delta}(\tau+\lambda,\xi+\eta)\geq 1$. Indeed, $s+\frac{1}{2}-\theta-\delta>0$ for small δ , because $\theta< s+\frac{1}{2}$.)

$$\begin{split} R_2^+ &= \int \frac{||\eta|\xi - |\xi|\eta|^{2s}|\xi|^{1/2-s}|\eta|^{1/2-s}\left(|\xi| + |\eta|\right)^{1/2-s}||\tau| - |\xi||^{1/2-s}}{w_-^{1-\theta-\delta}(\tau + \lambda, \xi + \eta)w_+(\tau, \xi)w_-^{\theta}(\tau, \xi)\langle\eta\rangle^s w_+(\lambda, \eta)w_-^{\theta}(\lambda, \eta)} \\ & \times F(\tau, \xi)G(\lambda, \eta)H(\tau + \lambda, \xi + \eta)\,d\tau\,d\lambda\,d\xi\,d\eta \\ &\leq \int \frac{||\eta|\xi - |\xi|\eta|^{2s}\left(|\xi| + |\eta|\right)^{1/2-s}}{w_-^{\theta+s-\frac{1}{2}}(\tau, \xi)w_-^{\theta}(\lambda, \eta)|\xi|^{s+1/2}\,|\eta|^{2s+1/2}} \\ & \times F(\tau, \xi)G(\lambda, \eta)H(\tau + \lambda, \xi + \eta)\,d\tau\,d\lambda\,d\xi\,d\eta \end{split}$$

(we have used the fact that $w_{-}^{1-\theta-\delta}(\tau+\lambda,\xi+\eta) \geq 1$. Indeed, $1-\theta-\delta \geq 0$ for small δ because $\theta < s + \frac{1}{2} < 1$.)

$$\begin{split} R_3^+ &= \int \frac{||\eta|\xi - |\xi|\eta|^{2s}|\xi|^{1/2-s}|\eta|^{1/2-s}\left(|\xi| + |\eta|\right)^{1/2-s}||\lambda| - |\eta||^{1/2-s}}{w_-^{1-\theta-\delta}(\tau + \lambda, \xi + \eta)w_+(\tau, \xi)w_-^{\theta}(\tau, \xi)\langle\eta\rangle^s w_+(\lambda, \eta)w_-^{\theta}(\lambda, \eta)} \\ &\times F(\tau, \xi)G(\lambda, \eta)H(\tau + \lambda, \xi + \eta)\,d\tau\,d\lambda\,d\xi\,d\eta \\ &\leq \int \frac{||\eta|\xi - |\xi|\eta|^{2s}\left(|\xi| + |\eta|\right)^{1/2-s}}{w_-^{\theta}(\tau, \xi)w_-^{\theta+s-\frac{1}{2}}(\lambda, \eta)|\xi|^{s+1/2}|\eta|^{2s+1/2}} \\ &\times F(\tau, \xi)G(\lambda, \eta)H(\tau + \lambda, \xi + \eta)\,d\tau\,d\lambda\,d\xi\,d\eta \end{split}$$

We present the proof for R_2^+ . The proofs for R_1^+ and R_3^+ are similar. We change variables $\tau \mapsto u := |\tau| - |\xi| = \tau - |\xi|$ and $\lambda \mapsto v := |\lambda| - |\eta| = \lambda - |\eta|$ and we use the notation

$$f_u(\xi) = F(u + |\xi|, \xi), \ g_v(\eta) = G(v + |\eta|, \eta), \ H_{u,v}(\tau', \xi') = H(u + v + \tau', \xi')$$
to get

$$R_2^+ = \iint \frac{1}{(1+|u|)^{\theta+s-\frac{1}{2}}(1+|v|)^{\theta}} \left[\iint \frac{||\eta|\xi - |\xi|\eta|^{2s} (|\xi| + |\eta|)^{1/2-s}}{|\xi|^{s+1/2} |\eta|^{2s+1/2}} \right] \times f_u(\xi)g_v(\eta)H_{u,v}(|\xi| + |\eta|, \xi + \eta) d\xi d\eta du dv.$$

We have $||\eta|\xi - |\xi|\eta|^2 = 2|\xi||\eta|(|\xi||\eta| - \xi \cdot \eta)$ therefore

$$[\cdots] \lesssim \iint \frac{(|\xi||\eta| - \xi \cdot \eta)^s (|\xi| + |\eta|)^{1/2 - s}}{|\xi|^{1/2} |\eta|^{s + 1/2}} f_u(\xi) g_v(\eta) H_{u,v}(|\xi| + |\eta|, \xi + \eta) d\xi d\eta$$

$$\leq \left(\iint f_u(\xi)^2 g_v(\eta)^2 d\xi d\eta \right)^{1/2} K^{1/2}$$

$$= ||f_u||_{L^2(\mathbb{R}^2)} ||g_v||_{L^2(\mathbb{R}^2)} K^{1/2},$$

where

$$K = \iint \frac{(|\xi||\eta| - \xi \cdot \eta)^{2s} (|\xi| + |\eta|)^{1-2s}}{|\xi| |\eta|^{2s+1}} H_{u,v}(|\xi| + |\eta|, \xi + \eta)^{2} d\xi d\eta$$

$$= \iint \frac{(|\xi' - \eta||\eta| - (\xi' - \eta) \cdot \eta)^{2s} (|\xi' - \eta| + |\eta|)^{1-2s}}{|\xi' - \eta| |\eta|^{2s+1}}$$

$$\times H_{u,v}(|\xi' - \eta| + |\eta|, \xi')^{2} d\xi' d\eta.$$

We use polar coordinates $\eta = \rho \omega$ to get

$$K \lesssim \iiint \frac{(|\xi' - \rho\omega| + \rho - \xi' \cdot \omega)^{2s} (|\xi' - \rho\omega| + \rho)^{1-2s}}{|\xi' - \rho\omega|} \times H_{u,v}(|\xi' - \rho\omega| + \rho, \xi')^2 d\xi' d\rho d\omega.$$

For fixed ξ' and ω , we change variables $\rho \mapsto \tau' := |\xi' - \rho \omega| + \rho$ to get

$$K \lesssim \iint \left[\tau'^{1-2s} \int_{S^1} \frac{1}{(\tau' - \xi' \cdot \omega)^{1-2s}} d\omega \right] H(\tau', \xi')^2 d\xi' d\tau'.$$

From [19, estimate (3.22)] we know that

$$\tau'^{1-2s} \int_{S^1} \frac{1}{(\tau' - \xi' \cdot \omega)^{1-2s}} d\omega \lesssim 1;$$

therefore $K \lesssim \|H\|_{\tilde{A}}^2$. Putting everything together we get:

$$R_2^+ \lesssim \Big(\int \frac{\|f_u\|_{L^2(\mathbb{R}^2)}}{(1+|u|)^{\theta+s-\frac{1}{2}}} du \Big) \Big(\int \frac{\|g_v\|_{L^2(\mathbb{R}^2)}}{(1+|v|)^{\theta}} dv \Big) \|H\|.$$

Since $2\theta + 2s - 1 > 2 \cdot \frac{3}{4} + 2 \cdot \frac{1}{4} - 1 = 1$ and $2\theta > 2 \cdot \frac{3}{4} > 1$ we can use the Cauchy-Schwarz inequality to conclude:

$$R_2^+ \lesssim \|\|f_u\|_{L^2(\mathbb{R}^2)}\|_{L^2_u}\|\|g_v\|_{L^2(\mathbb{R}^2)}\|_{L^2_v}\|H\| = \|F\|\|G\|_{\tilde{A}}\|H\|_{\tilde{A}}.$$

This completes the estimates for R_2^+ .

Next we estimate T^+ . We use $||\tau| - |\xi|| \le w_+(\tau,\xi)^{1-\theta} w_-(\tau,\xi)^{\theta}$ to get

It we estimate
$$T^+$$
. We use $||\tau| - |\xi|| \le w_+(\tau, \xi)^{1-\theta} w_-(\tau, \xi)^{\theta}$ to get
$$T^+ = \int \frac{||\tau| - |\xi|| |\eta| F(\tau, \xi) G(\lambda, \eta) H(\tau + \lambda, \xi + \eta) d\tau d\lambda \, d\xi \, d\eta}{w_-^{1-\theta-\delta}(\tau + \lambda, \xi + \eta) w_+(\tau, \xi) w_-^{\theta}(\tau, \xi) \langle \eta \rangle^s w_+(\lambda, \eta) w_-^{\theta}(\lambda, \eta)}$$

$$\le \int \frac{F(\tau, \xi) G(\lambda, \eta) H(\tau + \lambda, \xi + \eta)}{\langle \xi \rangle^{\theta} \langle \eta \rangle^s w_-^{\theta}(\lambda, \eta)} d\tau d\lambda \, d\xi \, d\eta.$$

Changing variables $\tau \mapsto u := |\tau| - |\xi| = \tau - |\xi|$ and $\lambda \mapsto v := |\lambda| - |\eta| = \lambda - |\eta|$ we

$$T^{+} \lesssim \iint \frac{1}{\langle \xi \rangle^{\theta} \langle \eta \rangle^{s}} \left[\iint \frac{F(u+|\xi|,\xi)G(v+|\eta|,\eta)H(u+v+|\xi|+|\eta|,\xi+\eta)}{(1+|v|)^{\theta}} du dv \right] d\xi d\eta.$$

For fixed ξ and η we apply [19, Lemma A] in the (u, v)-variables to get

$$T^{+} \lesssim \iint \frac{1}{\langle \xi \rangle^{\theta} \langle \eta \rangle^{s}} \|F(u + |\xi|, \xi)\|_{L_{u}^{2}} \|G(v + |\eta|, \eta)\|_{L_{v}^{2}}$$

$$\times \|H(w + |\xi| + |\eta|, \xi + \eta)\|_{L_{w}^{2}} d\xi d\eta$$

$$= \iint \frac{1}{\langle \xi \rangle^{\theta} \langle \eta \rangle^{s}} \|F(\cdot, \xi)\|_{L^{2}(\mathbb{R})} \|G(\cdot, \eta)\|_{L^{2}(\mathbb{R})} \|H(\cdot, \xi + \eta)\|_{L^{2}(\mathbb{R})} d\xi d\eta.$$

Now we do the same in the (ξ, η) -variables to get

$$T^{+} \lesssim \|\|F(\cdot,\xi)\|_{L^{2}(\mathbb{R})}\|_{L^{2}_{\xi}} \|\|G(\cdot,\eta)\|_{L^{2}(\mathbb{R})}\|_{L^{2}_{\eta}} \|\|H(\cdot,\xi')\|_{L^{2}(\mathbb{R})}\|_{L^{2}_{\xi'}}$$
$$= \|F\|_{\tilde{A}} \|G\|_{\tilde{A}} \|H\|_{\tilde{A}}.$$

The proof for L^+ is similar.

We are also going to need the following 'product rules' in $H^{s,\theta}$ spaces.

Proposition 2.3. Let n = 2. Then

$$||uv||_{H^{-c,-\gamma}} \lesssim ||u||_{H^{a,\alpha}} ||v||_{H^{b,\beta}},$$
 (2.8)

provided that

$$a+b+c>1 (2.9)$$

$$a + b \ge 0, \quad b + c \ge 0, \quad a + c \ge 0$$
 (2.10)

$$\alpha + \beta + \gamma > 1/2 \tag{2.11}$$

$$\alpha, \beta, \gamma \ge 0. \tag{2.12}$$

Proof. If $a, b, c \ge 0$, the result is contained in [13, Proposition A1]. If not, observe that, due to (2.10), at most one of the a, b, c is negative. We deal with the case c < 0, $a, b \ge 0$. All other cases are similar. Observe that

$$\begin{split} &\langle \xi \rangle^{-c} \langle |\tau| - |\xi| \rangle^{-\gamma} |\widetilde{uv}(\tau, \xi)| \\ &\lesssim \langle |\tau| - |\xi| \rangle^{-\gamma} \iint \langle \xi - \eta \rangle^{-c} |\widetilde{u}(\tau - \lambda, \xi - \eta)| |\widetilde{v}(\lambda, \eta)| d\lambda d\eta \\ &+ \langle |\tau| - |\xi| \rangle^{-\gamma} \iint |\widetilde{u}(\tau - \lambda, \xi - \eta)| \langle \eta \rangle^{-c} |\widetilde{v}(\lambda, \eta)| d\lambda d\eta, \end{split}$$

therefore

$$||uv||_{H^{-c,-\gamma}} \lesssim ||Uv'||_{H^{0,-\gamma}} + ||u'V||_{H^{0,-\gamma}},$$

where

$$\begin{split} \widetilde{U}(\tau,\xi) &= \langle \xi \rangle^{-c} |\widetilde{u}(\tau,\xi)|, \\ \widetilde{u}'(\tau,\xi) &= |\widetilde{u}(\tau,\xi)|, \\ \widetilde{V}(\tau,\xi) &= \langle \xi \rangle^{-c} |\widetilde{v}(\tau,\xi)|, \\ \widetilde{v}'(\tau,\xi) &= |\widetilde{v}(\tau,\xi)|. \end{split}$$

Since $a + c \ge 0$, we have

$$||Uv'||_{H^{0,-\gamma}} \lesssim ||U||_{H^{a+c,\alpha}} ||v'||_{H^{b,\beta}} \lesssim ||u||_{H^{a,\alpha}} ||v||_{H^{b,\beta}}.$$

Since $b + c \ge 0$, we have

$$||u'V||_{H^{0,-\gamma}} \lesssim ||u'||_{H^{a,\alpha}} ||V||_{H^{b+c,\beta}} \lesssim ||u||_{H^{a,\alpha}} ||v||_{H^{b,\beta}}.$$

The result follows.

Proposition 2.4. Let n=2. If s>1 and $\frac{1}{2}<\theta\leq s-\frac{1}{2}$, then $H^{s,\theta}$ is an algebra. For the proof of the above proposition, see [13, Theorem 7.3].

Proposition 2.5. Let n = 2, s > 1, $\frac{1}{2} < \theta \le s - \frac{1}{2}$. Assume that $-\theta < \alpha < 0$ $-s < a < s + \alpha$. (2.13)

Then

$$H^{a,\alpha} \cdot H^{s,\theta} \hookrightarrow H^{a,\alpha}.$$
 (2.14)

The proof can be found in [13, Theorem 7.2].

Proof of Theorem 1.1. Theorem 1.1 follows by well known methods from the following a-priori estimates (together with the corresponding estimates for differences): For any space-time functions $B, B', \phi, \phi' \in \mathcal{H}^{s+1,\theta}$ and any $\gamma, \mu \in \{0, 1, 2\}$ we have:

$$\|\phi'\,\partial^{\gamma}\phi\|_{H^{s,\theta-1+\delta}} \lesssim \|\phi'\|_{\mathcal{H}^{s+1,\theta}} \|\phi\|_{\mathcal{H}^{s+1,\theta}},\tag{2.15}$$

$$\|(\partial^{\mu}B)\,\phi\,\phi'\|_{H^{s,\theta-1+\delta}} \lesssim \|B\|_{\mathcal{H}^{s+1,\theta}} \|\phi\|_{\mathcal{H}^{s+1,\theta}} \|\phi'\|_{\mathcal{H}^{s+1,\theta}},\tag{2.16}$$

$$||Q_{\mu\alpha}(B,\phi)||_{H^{s,\theta-1+\delta}} \lesssim ||B||_{\mathcal{H}^{s+1,\theta}} ||\phi||_{\mathcal{H}^{s+1,\theta}},$$
 (2.17)

$$||Q_0(B, B')\phi||_{H^{s,\theta-1+\delta}} \lesssim ||B||_{\mathcal{H}^{s+1,\theta}} ||B'||_{\mathcal{H}^{s+1,\theta}} ||\phi||_{\mathcal{H}^{s+1,\theta}}, \tag{2.18}$$

$$||Q_{\mu\nu}(B,B')\phi||_{\mathcal{H}^{s,\theta-1+\delta}} \lesssim ||B||_{\mathcal{H}^{s+1,\theta}} ||B'||_{\mathcal{H}^{s+1,\theta}} ||\phi||_{\mathcal{H}^{s+1,\theta}}. \tag{2.19}$$

Here $\frac{1}{4} < s < \frac{1}{2}$, $\frac{3}{4} < \theta < s + \frac{1}{2}$ and δ is a sufficiently small positive number. To prove (2.15) we use Proposition 2.3 to get:

$$\|\phi'\partial^{\gamma}\phi\|_{H^{s,\theta-1+\delta}} \lesssim \|\phi'\|_{H^{s+1,\theta}} \|\partial^{\gamma}\phi\|_{H^{s,\theta}} \lesssim \|\phi'\|_{\mathcal{H}^{s+1,\theta}} \|\phi\|_{\mathcal{H}^{s+1,\theta}}.$$

Similarly, for (2.16) we have

$$\|(\partial^{\mu}B)\phi\phi'\|_{H^{s,\theta-1+\delta}} \lesssim \|\partial^{\mu}B\|_{H^{s,\theta}} \|\phi\phi'\|_{H^{s+1,\theta}} \lesssim \|B\|_{\mathcal{H}^{s+1,\theta}} \|\phi\phi'\|_{H^{s+1,\theta}}.$$

By Proposition 2.4 and our assumptions on s and θ it follows that the space $H^{s+1,\theta}$ is an algebra. Therefore,

$$\|\phi \phi'\|_{H^{s+1,\theta}} \lesssim \|\phi\|_{H^{s+1,\theta}} \|\phi'\|_{H^{s+1,\theta}},$$

and estimate (2.16) follows.

Estimate (2.17) follows from Proposition (2.1). Finally, we consider estimates (2.18) and (2.19). We use the letter Q to denote any of the null forms $Q_0, Q_{\mu\nu}$. We have

$$||Q(B, B') \phi||_{H^{s,\theta-1+\delta}} \le ||Q(B, B')||_{H^{s,\theta-1+\delta}} ||\phi||_{H^{s+1,\theta}}. \tag{2.20}$$

This follows from Proposition 2.5 with s replaced by s+1 and α replaced by $\theta-1+\delta$. Next, by (2.1),

$$||Q(B, B')||_{H^{s,\theta-1+\delta}} \lesssim ||B||_{\mathcal{H}^{s+1,\theta}} ||B'||_{\mathcal{H}^{s+1,\theta}} \tag{2.21}$$

therefore (2.18) and (2.19) follow.

References

- [1] Bournaveas, N.; Low regularity solutions of the Dirac Klein-Gordon equations in two space dimensions. Comm. Partial Differential Equations 26 (2001), no. 7-8, 1345–1366.
- Bournaveas, N.; Local existence of energy class solutions for the Dirac-Klein-Gordon equations. Comm. Partial Differential Equations 24 (1999), no. 7-8, 1167-1193. (Reviewer: Shu-Xing Chen) 35Q53 (35L70)
- [3] Bournaveas, N.; Local existence for the Maxwell-Dirac equations in three space dimensions. Comm. Partial Differential Equations 21 (1996), no. 5-6, 693–720.
- [4] Chae, D.,; Chae, M.; The global existence in the Cauchy problem of the Maxwell-Chern-Simons-Higgs system. J. Math. Phys. 43 (2002), no. 11, 5470-5482.
- [5] Chae, D.,; Choe, K.; Global existence in the Cauchy problem of the relativistic Chern-Simons-Higgs theory. Nonlinearity 15 (2002), no. 3, 747–758.
- [6] D'Ancona, P., Foschi, D., Selberg, S.; Local well-posedness below the charge norm for the Dirac-Klein-Gordon system in two space dimensions. J. Hyperbolic Differ. Equ. 4 (2007), no. 2, 295-330.
- D'Ancona, P., Foschi, D., Selberg, S.; Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system. J. Eur. Math. Soc. 9 (2007), no. 4, 877-899.
- Foschi, D., Klainerman, S.; Bilinear space-time estimates for homogeneous wave equations. Ann. Sci. Ecole Norm. Sup. (4) 33 (2000), no. 2, 211-274.

- [9] Hong, J., Kim, Y., Pac, P. Y.; Multivortex solutions of the abelian Chern-Simons-Higgs theory. Phys. Rev. Lett. 64 (1990), no. 19, 2230-2233.
- [10] Huh, H.; Low regularity solutions of the Chern-Simons-Higgs equations. Nonlinearity 18 (2005), no. 6, 2581–2589.
- [11] Huh, H.; Local and global solutions of the Chern-Simons-Higgs system. J. Funct. Anal. 242 (2007), no. 2, 526-549.
- [12] Jackiw, R. Weinberg, E. J.; Self-dual Chern-Simons vortices. Phys. Rev. Lett. 64 (1990), no. 19, 2234–2237.
- [13] Klainerman, S., Selberg, S.; Bilinear estimates and applications to nonlinear wave equations. Commun. Contemp. Math. 4 (2002), no. 2, 223–295.
- [14] Machihara, S.; The Cauchy problem for the 1-D Dirac-Klein-Gordon equation. NoDEA Nonlinear Differential Equations Appl. 14 (2007), no. 5-6, 625-641.
- [15] Machihara, S.; Small data global solutions for Dirac-Klein-Gordon equation. Differential Integral Equations 15 (2002), no. 12, 1511–1517.
- [16] Machihara, S., Nakamura, M., Nakanishi, K., Ozawa, T.; Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation. J. Funct. Anal. 219 (2005), no. 1, 1–20
- [17] Selberg, S., Tesfahun, A.; Low regularity well-posedness of the Dirac-Klein-Gordon equations in one space dimension. Commun. Contemp. Math. 10 (2008), no. 2, 181–194.
- [18] Tesfahun, A.; Low regularity and local well-posedness for the 1+3 dimensional Dirac-Klein-Gordon system. Electron. J. Differential Equations 2007, No. 162, 26 pp.
- [19] Zhou, Yi; Local existence with minimal regularity for nonlinear wave equations. Amer. J. Math. 119 (1997), no. 3, 671–703.

NIKOLAOS BOURNAVEAS

UNIVERSITY OF EDINBURGH, SCHOOL OF MATHEMATICS, JAMES CLERK MAXWELL BUILDING, KING'S BUILDINGS, MAYFIELD ROAD, EDINBURGH, EH9 3JZ, UK

E-mail address: n.bournaveas@ed.ac.uk