Electronic Journal of Differential Equations, Vol. 2009(2009), No. 114, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

LOW REGULARITY SOLUTIONS OF THE CHERN-SIMONS-HIGGS EQUATIONS IN THE LORENTZ GAUGE

NIKOLAOS BOURNAVEAS

Abstract

We prove local well-posedness for the $2+1$-dimensional Chern-Simons-Higgs equations in the Lorentz gauge with initial data of low regularity. Our result improves earlier results by Huh 10 11.

1. Introduction

The Chern-Simon-Higgs model was proposed by Jackiw and Weinberg [12] and Hong, Pac and Kim [9] in the context of their studies of vortex solutions in the abelian Chern-Simons theory.

Local well-posedness of low regularity solutions was recently studied in Huh [10, 11] using a null-form estimate for solutions of the linear wave equation due to Foschi and Klainerman [8] as well as Strichartz estimates. Our aim in this paper is to improve the results of [10, 11] in the Lorentz gauge. For this purpose we use estimates in the restriction spaces $X^{s, b}$ introduced by Bourgain, Klainerman and Machedon. A key ingredient in our proof is a modified version of a null-form estimate of Zhou [19] and product rules in $X^{s, b}$ spaces due to D'Ancona, Foschi and Selberg [6, 7] and Klainerman and Selberg [13]. The Higgs field has fractional dimension (see below for details), a common feature of systems involving the Dirac equation, see for example Bournaveas [1, 2], D'Ancona, Foschi and Selberg [6, 7], Machihara [14, 15, Machihara, Nakamura, Nakanishi and Ozawa [16, Selberg and Tesfahun 17, Tesfahun 18 .

The Chern-Simon-Higgs equations are the Euler-Lagrange equations corresponding to the Lagrangian density

$$
\mathcal{L}=\frac{\kappa}{4} \epsilon^{\mu \nu \rho} A_{\mu} F_{\nu \rho}+D_{\mu} \phi \overline{D^{\mu} \phi}-V\left(|\phi|^{2}\right) .
$$

Here A_{μ} is the gauge field, $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is the curvature, $D_{\mu}=\partial_{\mu}-i A_{\mu}$ is the covariant derivative, ϕ is the Higgs field, V is a given positive function and κ is a positive coupling constant. Greek indices run through $\{0,1,2\}$, Latin indices run through $\{1,2\}$ and repeated indices are summed. The Minkowski metric is defined

[^0]by $\left(g^{\mu \nu}\right)=\operatorname{diag}(1,-1,-1)$. We define $\epsilon^{\mu \nu \rho}=0$ if two of the indices coincide and $\epsilon^{\mu \nu \rho}= \pm 1$ according to whether (μ, ν, ρ) is an even or odd permutation of $(0,1,2)$.

We define Klainerman's null forms by

$$
\begin{gather*}
Q_{\mu \nu}(u, v)=\partial_{\mu} u \partial_{\nu} v-\partial_{\nu} u \partial_{\mu} v \tag{1.1a}\\
Q_{0}(u, v)=g^{\mu \nu} \partial_{\mu} u \partial_{\nu} v \tag{1.1b}
\end{gather*}
$$

Let $I^{\mu}=2 \operatorname{Im}\left(\bar{\phi} D^{\mu} \phi\right)$. Then the Euler-Lagrange equations are (we set $\kappa=2$ for simplicity)

$$
\begin{align*}
F_{\mu \nu} & =\frac{1}{2} \epsilon_{\mu \nu \alpha} I^{\alpha} \tag{1.2a}\\
D_{\mu} D^{\mu} \phi & =-\phi V^{\prime}\left(|\phi|^{2}\right) . \tag{1.2b}
\end{align*}
$$

The system has the positive conserved energy given by

$$
\mathcal{E}=\int_{\mathbb{R}^{2}} \sum_{\mu=0}^{2}\left|D_{\mu} \phi\right|^{2}+V\left(|\phi|^{2}\right) d x
$$

We are interested in the so-called 'non-topological' case in which $|\phi| \rightarrow 0$ as $|x| \rightarrow$ $+\infty$. For the sake of simplicity we follow [10, 11] and set $V=0$. It will be clear from our proof that for various classes of V^{\prime} s the term $\phi V^{\prime}\left(|\phi|^{2}\right)$ can easily be handled.

Under the Lorentz gauge condition $\partial^{\mu} A_{\mu}=0$ the Euler-Lagrange equations 1.2 become

$$
\begin{gather*}
\partial_{0} A_{j}=\partial_{j} A_{0}+\frac{1}{2} \epsilon_{i j} I_{i} \tag{1.3a}\\
\partial_{1} A_{2}=\partial_{2} A_{1}+\frac{1}{2} I_{0} \tag{1.3b}\\
\partial_{0} A_{0}=\partial_{1} A_{1}+\partial_{2} A_{2} \tag{1.3c}\\
D_{\mu} D^{\mu} \phi=0 \tag{1.3~d}
\end{gather*}
$$

Alternatively, they can be written as a system of two nonlinear wave equations:

$$
\begin{gather*}
\square A^{\alpha}=\frac{1}{2} \epsilon^{\alpha \beta \gamma} \operatorname{Im}\left(\overline{D_{\gamma} \phi} D_{\beta} \phi-\overline{D_{\beta} \phi} D_{\gamma} \phi\right)+\frac{1}{2} \epsilon^{\alpha \beta \gamma}\left(\partial_{\beta} A_{\gamma}-\partial_{\gamma} A_{\beta}\right)|\phi|^{2} \tag{1.4a}\\
\square \phi=2 i A^{\alpha} \partial_{\alpha} \phi+A^{\alpha} A_{\alpha} \phi . \tag{1.4b}
\end{gather*}
$$

We prescribe initial data in the classical Sobolev spaces $A^{\mu}(0, x)=a_{0}^{\mu}(x) \in H^{a}$, $\partial_{t} A^{\mu}(0, x)=a_{1}^{\mu}(x) \in H^{a-1}, \phi(0, x)=\phi_{0}(x) \in H^{b}, \partial_{t} \phi(0, x)=\phi_{1}(x) \in H^{b-1}$. Dimensional analysis shows that the critical values of a and b are $a_{c r}=0$ and $b_{c r}=\frac{1}{2}$. It is well known that in low space dimensions the Cauchy problem may not be locally well posed for a and b close to the critical values due to lack of decay at infinity. Observe also that ϕ has fractional dimension.

From the point of view of scaling it is natural to take $b=a+\frac{1}{2}$. With this choice it was shown in Huh [10] that the Cauchy problem is locally well posed for $a=\frac{3}{4}+\epsilon$ and $b=\frac{5}{4}+\epsilon$. This was improved in Huh [11] to

$$
\begin{equation*}
a=\frac{3}{4}+\epsilon, \quad b=\frac{9}{8}+\epsilon \tag{1.5}
\end{equation*}
$$

(slightly violating $b=a+\frac{1}{2}$). The proof relies on the null structure of the right hand side of 1.4a. Indeed,

$$
\overline{D_{\gamma} \phi} D_{\beta} \phi-\overline{D_{\beta} \phi} D_{\gamma} \phi=Q_{\gamma \beta}(\bar{\phi}, \phi)+i\left(A_{\gamma} \partial_{\beta}\left(|\phi|^{2}\right)-A_{\beta} \partial_{\gamma}\left(|\phi|^{2}\right)\right) .
$$

On the other hand, since in 1.3 the A_{μ} satisfy first order equations and ϕ satisfies a second order equation it is natural to investigate the case $b=a+1$. It turns out
that this choice allows us to improve on a at the expense of b. It is shown in Huh [11] that we have local well posedness for

$$
\begin{equation*}
a=\frac{1}{2}, \quad b=\frac{3}{2} . \tag{1.6}
\end{equation*}
$$

To prove this result Huh uncovered the null structure in the right hand side of equation 1.4b. Indeed, if we introduce B_{μ} by $\partial_{\mu} B^{\mu}=0$ and $\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}=$ $\epsilon_{\mu \nu \lambda} A^{\lambda}$, then the equations take the form:

$$
\begin{gather*}
\square B^{\gamma}=-\operatorname{Im}\left(\bar{\phi} D^{\gamma} \phi\right)=-\operatorname{Im}\left(\bar{\phi} \partial^{\gamma} \phi\right)+i \epsilon^{\mu \nu \gamma} \partial_{\mu} B_{\nu}|\phi|^{2} \tag{1.7a}\\
\square \phi=i \epsilon^{\alpha \mu \nu} Q_{\mu \alpha}\left(B_{\nu}, \phi\right)+Q_{0}\left(B_{\mu}, B^{\mu}\right) \phi+Q_{\mu \nu}\left(B^{\mu}, B^{\nu}\right) \phi . \tag{1.7b}
\end{gather*}
$$

In this article we shall prove the Theorem stated below which corresponds to exponents $a=\frac{1}{4}+\epsilon$ and $b=\frac{5}{4}+\epsilon$. This improves 1.6) by $\frac{1}{4}-\epsilon$ derivatives in both a and b. Compared to 1.5 , it improves a by $\frac{1}{2}$ derivatives at the expense of $\frac{1}{8}$ derivatives in b.

Theorem 1.1. Let $n=2$ and $\frac{1}{4}<s<\frac{1}{2}$. Consider the Cauchy problem for the system (1.7) with initial data in the following Sobolev spaces:

$$
\begin{align*}
B^{\gamma}(0) & =b_{0}^{\gamma} \in H^{s+1}\left(\mathbb{R}^{2}\right), \tag{1.8a}
\end{align*} \quad \partial_{t} B^{\gamma}(0)=b_{1}^{\gamma} \in H^{s}\left(\mathbb{R}^{2}\right), ~ 子(0)=\phi_{0} \in H^{s+1}\left(\mathbb{R}^{2}\right), \quad \partial_{t} \phi(0)=\phi_{1} \in H^{s}\left(\mathbb{R}^{2}\right) .
$$

Then there exists a $T>0$ and a solution (B, ϕ) of 1.7 - 1.8 in $[0, T] \times \mathbb{R}^{2}$ with

$$
B, \phi \in C^{0}\left([0, T] ; H^{s+1}\left(\mathbb{R}^{2}\right)\right) \cap C^{1}\left([0, T] ; H^{s}\left(\mathbb{R}^{2}\right)\right)
$$

The solution is unique in a subspace of $C^{0}\left([0, T] ; H^{s+1}\left(\mathbb{R}^{2}\right)\right) \cap C^{1}\left([0, T] ; H^{s}\left(\mathbb{R}^{2}\right)\right)$, namely in $\mathcal{H}^{s+1, \theta}$, where $\frac{3}{4}<\theta<s+\frac{1}{2}$ (the definition of $\mathcal{H}^{s+1, \theta}$ is given in the next section).

Finally, we remark that the problem of global existence is much more difficult. We refer the reader to Chae and Chae [4, Chae and Choe [5] and Huh [10, 11].

2. Bilinear Estimates

In this Section we collect the bilinear estimates we need for the proof of Theorem 1.1. We shall work with the spaces $H^{s, \theta}$ and $\mathcal{H}^{s, \theta}$ defined by

$$
\begin{gathered}
H^{s, \theta}=\left\{u \in \mathcal{S}^{\prime}: \Lambda^{s} \Lambda_{-}^{\theta} u \in L^{2}\left(\mathbb{R}^{2+1}\right)\right\}, \\
\mathcal{H}^{s, \theta}=\left\{u \in H^{s, \theta}: \partial_{t} u \in H^{s-1, \theta}\right\}
\end{gathered}
$$

where Λ and Λ_{-}are defined by

$$
\begin{gathered}
\widetilde{\Lambda^{s} u}(\tau, \xi)=\left(1+|\xi|^{2}\right)^{s / 2} \widetilde{u}(\tau, \xi) \\
\widetilde{\Lambda_{-}^{\theta} u}(\tau, \xi)=\left(1+\frac{\left(\tau^{2}-|\xi|^{2}\right)^{2}}{1+\tau^{2}+|\xi|^{2}}\right)^{\theta / 2} \widetilde{u}(\tau, \xi) .
\end{gathered}
$$

Notice that the weight $\left(1+\frac{\left(\tau^{2}-|\xi|^{2}\right)^{2}}{1+\tau^{2}+|\xi|^{2}}\right)^{\theta / 2}$ is equivalent to the weight $w_{-}(\tau, \xi)^{\theta}$, where we define

$$
w_{ \pm}(\tau, \xi)=1+\|\tau| \pm| \xi\| .
$$

We define the norms

$$
\begin{gathered}
\|u\|_{H^{s, \theta}}=\left\|\langle\xi\rangle^{s} w_{-}(\tau, \xi)^{\theta} \widetilde{u}(\tau, \xi)\right\|_{L^{2}\left(\mathbb{R}^{2+1}\right)} \\
\|u\|_{\mathcal{H}^{s, \theta}}=\|u\|_{H^{s, \theta}}+\left\|\partial_{t} u\right\|_{H^{s, \theta}}
\end{gathered}
$$

The last norm is equivalent to

$$
\left\|\langle\xi\rangle^{s-1} w_{+}(\tau, \xi) w_{-}(\tau, \xi)^{\theta} \widetilde{u}(\tau, \xi)\right\|_{L^{2}\left(\mathbb{R}^{2+1}\right)}
$$

We can now state the null form estimate we are going to use in the proof of Theorem 1.1.

Proposition 2.1. Let $n=2, \frac{1}{4}<s<\frac{1}{2}, \frac{3}{4}<\theta<s+\frac{1}{2}$. Let Q denote any of the null forms defined by 1.1). Then for all sufficiently small positive δ we have

$$
\begin{equation*}
\|Q(\phi, \psi)\|_{H^{s, \theta-1+\delta}} \lesssim\|\phi\|_{\mathcal{H}^{s+1, \theta}}\|\psi\|_{\mathcal{H}^{s+1, \theta}} \tag{2.1}
\end{equation*}
$$

If $Q=Q_{0}$ there is a better estimate.
Proposition 2.2. Let $n=2, s>0$ and let θ and δ satisfy

$$
\begin{gathered}
\frac{1}{2}<\theta \leq \min \left\{1, s+\frac{1}{2}\right\} \\
0 \leq \delta \leq \min \left\{1-\theta, s+\frac{1}{2}-\theta\right\} .
\end{gathered}
$$

Then

$$
\begin{equation*}
\left\|Q_{0}(\phi, \psi)\right\|_{H^{s, \theta-1+\delta}} \lesssim\|\phi\|_{\mathcal{H}^{s+1, \theta}}\|\psi\|_{\mathcal{H}^{s+1, \theta}} \tag{2.2}
\end{equation*}
$$

For a proof of the above proposition, see [13, estimate (7.5)].
For $Q=Q_{i j}, Q_{0 j}$ estimate 2.1 should be compared (if we set $\theta=s+\frac{1}{2}$ and $\delta=0)$ to the following estimate of Zhou [19]:

$$
\begin{equation*}
N_{s, s-\frac{1}{2}}\left(Q_{\alpha \beta}(\phi, \psi)\right) \lesssim N_{s+1, s+\frac{1}{2}}(\phi) N_{s+1, s+\frac{1}{2}}(\psi) \tag{2.3}
\end{equation*}
$$

where $\frac{1}{4}<s<\frac{1}{2}$ and

$$
\begin{equation*}
N_{s, \theta}(u)=\left\|w_{+}(\tau, \xi)^{s} w_{-}(\tau, \xi)^{\theta} \widetilde{u}(\tau, \xi)\right\|_{L_{\tau, \xi}^{2}} \tag{2.4}
\end{equation*}
$$

The spaces in estimate (2.1) are different, with ϕ and ψ slightly less regular in the sense that $\|u\|_{\mathcal{H}^{s, \theta}} \leq N_{s, \theta}(u)$. Moreover we have to account for the extra hyperbolic derivative of order δ on the left hand side.

Proof of Proposition 2.1. We only sketch the proof for $Q=Q_{0 j}$. The proof for $Q=Q_{i j}$ is similar. Let

$$
\begin{aligned}
& F(\tau, \xi)=\langle\xi\rangle^{s} w_{+}(\tau, \xi) w_{-}^{\theta}(\tau, \xi) \widetilde{\phi}(\tau, \xi) \\
& G(\tau, \xi)=\langle\xi\rangle^{s} w_{+}(\tau, \xi) w_{-}^{\theta}(\tau, \xi) \widetilde{\psi}(\tau, \xi)
\end{aligned}
$$

Let $H(\tau, \xi)$ be a test function. We may assume $F, G, H \geq 0$. We need to show:

$$
\begin{align*}
& \int \frac{\langle\xi+\eta\rangle^{s} w_{-}^{\theta-1+\delta}(\tau+\lambda, \xi+\eta)\left|\tau \eta_{j}-\lambda \xi_{j}\right|}{\langle\xi\rangle^{s} w_{+}(\tau, \xi) w_{-}^{\theta}(\tau, \xi)\langle\eta\rangle^{s} w_{+}(\lambda, \eta) w_{-}^{\theta}(\lambda, \eta)} \\
& \times F(\tau, \xi) G(\lambda, \eta) H(\tau+\lambda, \xi+\eta) d \tau d \lambda d \xi d \eta \tag{2.5}\\
& \lesssim\|F\|_{L^{2}}\|G\|_{L^{2}}\|H\|_{L^{2}}
\end{align*}
$$

Using

$$
\langle\xi+\eta\rangle^{s} \leq\langle\xi\rangle^{s}+\langle\eta\rangle^{s}
$$

we see that we need to estimate the following integral (and a symmetric one):

$$
\begin{equation*}
\int \frac{w_{-}^{\theta-1+\delta}(\tau+\lambda, \xi+\eta)\left|\tau \eta_{j}-\lambda \xi_{j}\right| F(\tau, \xi) G(\lambda, \eta) H(\tau+\lambda, \xi+\eta)}{w_{+}(\tau, \xi) w_{-}^{\theta}(\tau, \xi)\langle\eta\rangle^{s} w_{+}(\lambda, \eta) w_{-}^{\theta}(\lambda, \eta)} d \tau d \lambda d \xi d \eta \tag{2.6}
\end{equation*}
$$

We restrict our attention to the region where $\tau \geq 0, \lambda \geq 0$. The proof for all other regions is similar. We use

$$
\begin{aligned}
\tau \eta-\lambda \xi & =(|\xi| \eta-|\eta| \xi)+(\tau-|\xi|) \eta-(\lambda-|\eta|) \xi \\
& =(|\xi| \eta-|\eta| \xi)+(|\tau|-|\xi|) \eta-(|\lambda|-|\eta|) \xi
\end{aligned}
$$

to see that, we need to estimate the following three integrals:

$$
\begin{aligned}
R^{+} & =\int \frac{\| \xi|\eta-|\eta| \xi| F(\tau, \xi) G(\lambda, \eta) H(\tau+\lambda, \xi+\eta) d \tau d \lambda d \xi d \eta}{w_{-}^{1-\theta-\delta}(\tau+\lambda, \xi+\eta) w_{+}(\tau, \xi) w_{-}^{\theta}(\tau, \xi)\langle\eta\rangle^{s} w_{+}(\lambda, \eta) w_{-}^{\theta}(\lambda, \eta)}, \\
T^{+} & =\int \frac{\| \tau|-|\xi|| \eta \mid F(\tau, \xi) G(\lambda, \eta) H(\tau+\lambda, \xi+\eta) d \tau d \lambda d \xi d \eta}{w_{-}^{1-\theta-\delta}(\tau+\lambda, \xi+\eta) w_{+}(\tau, \xi) w_{-}^{\theta}(\tau, \xi)\langle\eta\rangle^{s} w_{+}(\lambda, \eta) w_{-}^{\theta}(\lambda, \eta)}, \\
L^{+} & =\int \frac{\| \lambda|-|\eta|||\xi| F(\tau, \xi) G(\lambda, \eta) H(\tau+\lambda, \xi+\eta) d \tau d \lambda d \xi d \eta}{w_{-}^{1-\theta-\delta}(\tau+\lambda, \xi+\eta) w_{+}(\tau, \xi) w_{-}^{\theta}(\tau, \xi)\langle\eta\rangle^{s} w_{+}(\lambda, \eta) w_{-}^{\theta}(\lambda, \eta)} .
\end{aligned}
$$

We start with R^{+}. We have

$$
\begin{align*}
& \| \eta|\xi-|\xi| \eta| \\
& \lesssim|\xi|^{1 / 2}|\eta|^{1 / 2}(|\xi|+|\eta|)^{1 / 2}(\|\tau+\lambda|-|\xi+\eta||+\| \tau|-|\xi||+||\lambda|-|\eta||)^{1 / 2} \tag{2.7}
\end{align*}
$$

Indeed,

$$
\begin{aligned}
\| \eta|\xi-|\xi| \eta|^{2} & =2|\eta||\xi|(|\xi||\eta|-\xi \cdot \eta) \\
& =|\eta||\xi|(|\xi|+|\eta|+|\xi+\eta|)(|\xi|+|\eta|-|\xi+\eta|)
\end{aligned}
$$

We have $|\xi|+|\eta|+|\xi+\eta| \leq 2(|\xi|+|\eta|)$ and

$$
\begin{aligned}
|\xi|+|\eta|-|\xi+\eta| & =(\tau+\lambda-|\xi+\eta|)-(\lambda-|\eta|)-(\tau-|\xi|) \\
& \leq|\tau+\lambda-|\xi+\eta||+|\lambda-|\eta||+|\tau-|\xi||
\end{aligned}
$$

therefore (2.7) follows. Following Zhou [19] we use (2.7) to obtain

$$
\begin{aligned}
\| \eta|\xi-|\xi| \eta|= & \| \eta|\xi-|\xi| \eta|^{2 s}| | \eta|\xi-|\xi| \eta|^{1-2 s} \\
\lesssim & ||\eta| \xi-|\xi| \eta|^{2 s}|\xi|^{1 / 2-s}|\eta|^{1 / 2-s}(|\xi|+|\eta|)^{1 / 2-s}\|\tau+\lambda|-| \xi+\eta\|^{1 / 2-s} \\
& +\left\|\eta|\xi-|\xi| \eta|^{2 s}|\xi|^{1 / 2-s}|\eta|^{1 / 2-s}(|\xi|+|\eta|)^{1 / 2-s}\right\| \tau|-|\xi||^{1 / 2-s} \\
& +\left\|\eta|\xi-|\xi| \eta|^{2 s}|\xi|^{1 / 2-s}|\eta|^{1 / 2-s}(|\xi|+|\eta|)^{1 / 2-s}\right\| \lambda|-| \eta \|^{1 / 2-s} .
\end{aligned}
$$

Therefore,

$$
R^{+} \lesssim R_{1}^{+}+R_{2}^{+}+R_{3}^{+}
$$

where

$$
\begin{aligned}
R_{1}^{+}= & \int \frac{\| \eta|\xi-|\xi| \eta|^{2 s}|\xi|^{1 / 2-s}|\eta|^{1 / 2-s}(|\xi|+|\eta|)^{1 / 2-s}| | \tau+\lambda\left|-|\xi+\eta|^{\frac{1}{2}-s}\right.}{w_{-}^{1-\theta-\delta}(\tau+\lambda, \xi+\eta) w_{+}(\tau, \xi) w_{-}^{\theta}(\tau, \xi)\langle\eta\rangle^{s} w_{+}(\lambda, \eta) w_{-}^{\theta}(\lambda, \eta)} \\
& \times F(\tau, \xi) G(\lambda, \eta) H(\tau+\lambda, \xi+\eta) d \tau d \lambda d \xi d \eta \\
\leq & \int \frac{\| \eta|\xi-|\xi| \eta|^{2 s}(|\xi|+|\eta|)^{1 / 2-s}}{w_{-}^{\theta}(\tau, \xi) w_{-}^{\theta}(\lambda, \eta)|\xi|^{s+1 / 2}|\eta|^{2 s+1 / 2}} \\
& \times F(\tau, \xi) G(\lambda, \eta) H(\tau+\lambda, \xi+\eta) d \tau d \lambda d \xi d \eta
\end{aligned}
$$

(we have used the fact that $w_{-}^{s+\frac{1}{2}-\theta-\delta}(\tau+\lambda, \xi+\eta) \geq 1$. Indeed, $s+\frac{1}{2}-\theta-\delta>0$ for small δ, because $\theta<s+\frac{1}{2}$.)

$$
\begin{aligned}
R_{2}^{+}= & \int \frac{\| \eta|\xi-|\xi| \eta|^{2 s}|\xi|^{1 / 2-s}|\eta|^{1 / 2-s}(|\xi|+|\eta|)^{1 / 2-s}| | \tau|-|\xi||^{1 / 2-s}}{w_{-}^{1-\theta-\delta}(\tau+\lambda, \xi+\eta) w_{+}(\tau, \xi) w_{-}^{\theta}(\tau, \xi)\langle\eta\rangle^{s} w_{+}(\lambda, \eta) w_{-}^{\theta}(\lambda, \eta)} \\
& \times F(\tau, \xi) G(\lambda, \eta) H(\tau+\lambda, \xi+\eta) d \tau d \lambda d \xi d \eta \\
\leq & \int \frac{\| \eta|\xi-|\xi| \eta|^{2 s}(|\xi|+|\eta|)^{1 / 2-s}}{w_{-}^{\theta+s-\frac{1}{2}}(\tau, \xi) w_{-}^{\theta}(\lambda, \eta)|\xi|^{s+1 / 2}|\eta|^{2 s+1 / 2}} \\
& \times F(\tau, \xi) G(\lambda, \eta) H(\tau+\lambda, \xi+\eta) d \tau d \lambda d \xi d \eta
\end{aligned}
$$

(we have used the fact that $w_{-}^{1-\theta-\delta}(\tau+\lambda, \xi+\eta) \geq 1$. Indeed, $1-\theta-\delta \geq 0$ for small δ because $\theta<s+\frac{1}{2}<1$.)

$$
\begin{aligned}
R_{3}^{+}= & \int \frac{\| \eta|\xi-|\xi| \eta|^{2 s}|\xi|^{1 / 2-s}|\eta|^{1 / 2-s}(|\xi|+|\eta|)^{1 / 2-s}| | \lambda|-|\eta||^{1 / 2-s}}{w_{-}^{1-\theta-\delta}(\tau+\lambda, \xi+\eta) w_{+}(\tau, \xi) w_{-}^{\theta}(\tau, \xi)\langle\eta\rangle^{s} w_{+}(\lambda, \eta) w_{-}^{\theta}(\lambda, \eta)} \\
& \times F(\tau, \xi) G(\lambda, \eta) H(\tau+\lambda, \xi+\eta) d \tau d \lambda d \xi d \eta \\
\leq & \int \frac{\| \eta|\xi-|\xi| \eta|^{2 s}(|\xi|+|\eta|)^{1 / 2-s}}{w_{-}^{\theta}(\tau, \xi) w_{-}^{\theta+s-\frac{1}{2}}(\lambda, \eta)|\xi|^{s+1 / 2}|\eta|^{2 s+1 / 2}} \\
& \times F(\tau, \xi) G(\lambda, \eta) H(\tau+\lambda, \xi+\eta) d \tau d \lambda d \xi d \eta
\end{aligned}
$$

We present the proof for R_{2}^{+}. The proofs for R_{1}^{+}and R_{3}^{+}are similar. We change variables $\tau \mapsto u:=|\tau|-|\xi|=\tau-|\xi|$ and $\lambda \mapsto v:=|\lambda|-|\eta|=\lambda-|\eta|$ and we use the notation

$$
f_{u}(\xi)=F(u+|\xi|, \xi), g_{v}(\eta)=G(v+|\eta|, \eta), H_{u, v}\left(\tau^{\prime}, \xi^{\prime}\right)=H\left(u+v+\tau^{\prime}, \xi^{\prime}\right)
$$

to get

$$
\begin{aligned}
R_{2}^{+}= & \iint \frac{1}{(1+|u|)^{\theta+s-\frac{1}{2}}(1+|v|)^{\theta}}\left[\iint \frac{\| \eta|\xi-|\xi| \eta|^{2 s}(|\xi|+|\eta|)^{1 / 2-s}}{|\xi|^{s+1 / 2}|\eta|^{2 s+1 / 2}}\right. \\
& \left.\times f_{u}(\xi) g_{v}(\eta) H_{u, v}(|\xi|+|\eta|, \xi+\eta) d \xi d \eta\right] d u d v
\end{aligned}
$$

We have $||\eta| \xi-|\xi| \eta|^{2}=2|\xi||\eta|(|\xi||\eta|-\xi \cdot \eta)$ therefore

$$
\begin{aligned}
{[\cdots] } & \lesssim \iint \frac{(|\xi||\eta|-\xi \cdot \eta)^{s}(|\xi|+|\eta|)^{1 / 2-s}}{|\xi|^{1 / 2}|\eta|^{s+1 / 2}} f_{u}(\xi) g_{v}(\eta) H_{u, v}(|\xi|+|\eta|, \xi+\eta) d \xi d \eta \\
& \leq\left(\iint f_{u}(\xi)^{2} g_{v}(\eta)^{2} d \xi d \eta\right)^{1 / 2} K^{1 / 2} \\
& =\left\|f_{u}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}\left\|g_{v}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} K^{1 / 2}
\end{aligned}
$$

where

$$
\begin{aligned}
K= & \iint \frac{(|\xi||\eta|-\xi \cdot \eta)^{2 s}(|\xi|+|\eta|)^{1-2 s}}{|\xi||\eta|^{2 s+1}} H_{u, v}(|\xi|+|\eta|, \xi+\eta)^{2} d \xi d \eta \\
= & \iint \frac{\left(\left|\xi^{\prime}-\eta\right||\eta|-\left(\xi^{\prime}-\eta\right) \cdot \eta\right)^{2 s}\left(\left|\xi^{\prime}-\eta\right|+|\eta|\right)^{1-2 s}}{\left|\xi^{\prime}-\eta\right||\eta|^{2 s+1}} \\
& \times H_{u, v}\left(\left|\xi^{\prime}-\eta\right|+|\eta|, \xi^{\prime}\right)^{2} d \xi^{\prime} d \eta
\end{aligned}
$$

We use polar coordinates $\eta=\rho \omega$ to get

$$
\begin{aligned}
K \lesssim & \iiint \frac{\left(\left|\xi^{\prime}-\rho \omega\right|+\rho-\xi^{\prime} \cdot \omega\right)^{2 s}\left(\left|\xi^{\prime}-\rho \omega\right|+\rho\right)^{1-2 s}}{\left|\xi^{\prime}-\rho \omega\right|} \\
& \times H_{u, v}\left(\left|\xi^{\prime}-\rho \omega\right|+\rho, \xi^{\prime}\right)^{2} d \xi^{\prime} d \rho d \omega .
\end{aligned}
$$

For fixed ξ^{\prime} and ω, we change variables $\rho \mapsto \tau^{\prime}:=\left|\xi^{\prime}-\rho \omega\right|+\rho$ to get

$$
K \lesssim \iint\left[\tau^{\prime 1-2 s} \int_{S^{1}} \frac{1}{\left(\tau^{\prime}-\xi^{\prime} \cdot \omega\right)^{1-2 s}} d \omega\right] H\left(\tau^{\prime}, \xi^{\prime}\right)^{2} d \xi^{\prime} d \tau^{\prime}
$$

From [19, estimate (3.22)] we know that

$$
\tau^{\prime 1-2 s} \int_{S^{1}} \frac{1}{\left(\tau^{\prime}-\xi^{\prime} \cdot \omega\right)^{1-2 s}} d \omega \lesssim 1
$$

therefore $K \lesssim\|H\|_{\tilde{A}}^{2}$. Putting everything together we get:

$$
R_{2}^{+} \lesssim\left(\int \frac{\left\|f_{u}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}}{(1+|u|)^{\theta+s-\frac{1}{2}}} d u\right)\left(\int \frac{\left\|g_{v}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}}{(1+|v|)^{\theta}} d v\right)\|H\|
$$

Since $2 \theta+2 s-1>2 \cdot \frac{3}{4}+2 \cdot \frac{1}{4}-1=1$ and $2 \theta>2 \cdot \frac{3}{4}>1$ we can use the Cauchy-Schwarz inequality to conclude:

$$
R_{2}^{+} \lesssim\| \| f_{u}\left\|_{L^{2}\left(\mathbb{R}^{2}\right)}\right\|_{L_{u}^{2}}\| \| g_{v}\left\|_{L^{2}\left(\mathbb{R}^{2}\right)}\right\|_{L_{v}^{2}}\|H\|=\|F\|\|G\|_{\tilde{A}}\|H\|_{\tilde{A}}
$$

This completes the estimates for R_{2}^{+}.
Next we estimate T^{+}. We use $\|\tau|-| \xi\| \leq w_{+}(\tau, \xi)^{1-\theta} w_{-}(\tau, \xi)^{\theta}$ to get

$$
\begin{aligned}
T^{+} & =\int \frac{\|\tau|-|\xi| \| \eta| F(\tau, \xi) G(\lambda, \eta) H(\tau+\lambda, \xi+\eta) d \tau d \lambda d \xi d \eta}{w_{-}^{1-\theta-\delta}(\tau+\lambda, \xi+\eta) w_{+}(\tau, \xi) w_{-}^{\theta}(\tau, \xi)\langle\eta\rangle^{s} w_{+}(\lambda, \eta) w_{-}^{\theta}(\lambda, \eta)} \\
& \leq \int \frac{F(\tau, \xi) G(\lambda, \eta) H(\tau+\lambda, \xi+\eta)}{\langle\xi\rangle^{\theta}\langle\eta\rangle^{s} w_{-}^{\theta}(\lambda, \eta)} d \tau d \lambda d \xi d \eta
\end{aligned}
$$

Changing variables $\tau \mapsto u:=|\tau|-|\xi|=\tau-|\xi|$ and $\lambda \mapsto v:=|\lambda|-|\eta|=\lambda-|\eta|$ we have

$$
\begin{aligned}
T^{+} & \lesssim \iint \frac{1}{\langle\xi\rangle^{\theta}\langle\eta\rangle^{s}} \\
& {\left[\iint \frac{F(u+|\xi|, \xi) G(v+|\eta|, \eta) H(u+v+|\xi|+|\eta|, \xi+\eta)}{(1+|v|)^{\theta}} d u d v\right] d \xi d \eta }
\end{aligned}
$$

For fixed ξ and η we apply [19, Lemma A] in the (u, v)-variables to get

$$
\begin{aligned}
T^{+} & \lesssim \iint \frac{1}{\langle\xi\rangle^{\theta}\langle\eta\rangle^{s}}\|F(u+|\xi|, \xi)\|_{L_{u}^{2}}\|G(v+|\eta|, \eta)\|_{L_{v}^{2}} \\
& \times\|H(w+|\xi|+|\eta|, \xi+\eta)\|_{L_{w}^{2}} d \xi d \eta \\
= & \iint \frac{1}{\langle\xi\rangle^{\theta}\langle\eta\rangle^{s}}\|F(\cdot, \xi)\|_{L^{2}(\mathbb{R})}\|G(\cdot, \eta)\|_{L^{2}(\mathbb{R})}\|H(\cdot, \xi+\eta)\|_{L^{2}(\mathbb{R})} d \xi d \eta
\end{aligned}
$$

Now we do the same in the (ξ, η)-variables to get

$$
\begin{aligned}
T^{+} & \lesssim\left\|\|F(\cdot, \xi)\|_{L^{2}(\mathbb{R})}\right\|_{L_{\xi}^{2}}\| \| G(\cdot, \eta)\left\|_{L^{2}(\mathbb{R})}\right\|_{L_{\eta}^{2}}\| \| H\left(\cdot, \xi^{\prime}\right)\left\|_{L^{2}(\mathbb{R})}\right\|_{L_{\xi^{\prime}}^{2}} \\
& =\|F\|_{\tilde{A}}\|G\|_{\tilde{A}}\|H\|_{\tilde{A}} .
\end{aligned}
$$

The proof for L^{+}is similar.
We are also going to need the following 'product rules' in $H^{s, \theta}$ spaces.

Proposition 2.3. Let $n=2$. Then

$$
\begin{equation*}
\|u v\|_{H^{-c,-\gamma}} \lesssim\|u\|_{H^{a, \alpha}}\|v\|_{H^{b, \beta}} \tag{2.8}
\end{equation*}
$$

provided that

$$
\begin{gather*}
a+b+c>1 \tag{2.9}\\
a+b \geq 0, \quad b+c \geq 0, \quad a+c \geq 0 \tag{2.10}\\
\alpha+\beta+\gamma>1 / 2 \tag{2.11}\\
\alpha, \beta, \gamma \geq 0 \tag{2.12}
\end{gather*}
$$

Proof. If $a, b, c \geq 0$, the result is contained in [13, Proposition A1]. If not, observe that, due to 2.10, at most one of the a, b, c is negative. We deal with the case $c<0, a, b \geq 0$. All other cases are similar. Observe that

$$
\begin{aligned}
& \langle\xi\rangle^{-c}\langle | \tau|-|\xi|\rangle^{-\gamma}|\widetilde{u v}(\tau, \xi)| \\
& \lesssim\langle | \tau|-|\xi|\rangle^{-\gamma} \iint\langle\xi-\eta\rangle^{-c}|\widetilde{u}(\tau-\lambda, \xi-\eta)||\widetilde{v}(\lambda, \eta)| d \lambda d \eta \\
& \quad+\langle | \tau|-|\xi|\rangle^{-\gamma} \iint|\widetilde{u}(\tau-\lambda, \xi-\eta)|\langle\eta\rangle^{-c}|\widetilde{v}(\lambda, \eta)| d \lambda d \eta
\end{aligned}
$$

therefore

$$
\|u v\|_{H^{-c,-\gamma}} \lesssim\left\|U v^{\prime}\right\|_{H^{0,-\gamma}}+\left\|u^{\prime} V\right\|_{H^{0,-\gamma}}
$$

where

$$
\begin{gathered}
\widetilde{U}(\tau, \xi)=\langle\xi\rangle^{-c}|\widetilde{u}(\tau, \xi)|, \\
\widetilde{u^{\prime}}(\tau, \xi)=|\widetilde{u}(\tau, \xi)|, \\
\widetilde{V}(\tau, \xi)=\langle\xi\rangle^{-c}|\widetilde{v}(\tau, \xi)|, \\
\widetilde{v^{\prime}}(\tau, \xi)=|\widetilde{v}(\tau, \xi)| .
\end{gathered}
$$

Since $a+c \geq 0$, we have

$$
\left\|U v^{\prime}\right\|_{H^{0,-\gamma}} \lesssim\|U\|_{H^{a+c, \alpha}}\left\|v^{\prime}\right\|_{H^{b, \beta}} \lesssim\|u\|_{H^{a, \alpha}}\|v\|_{H^{b, \beta}}
$$

Since $b+c \geq 0$, we have

$$
\left\|u^{\prime} V\right\|_{H^{0,-\gamma}} \lesssim\left\|u^{\prime}\right\|_{H^{a, \alpha}}\|V\|_{H^{b+c, \beta}} \lesssim\|u\|_{H^{a, \alpha}}\|v\|_{H^{b, \beta}} .
$$

The result follows.
Proposition 2.4. Let $n=2$. If $s>1$ and $\frac{1}{2}<\theta \leq s-\frac{1}{2}$, then $H^{s, \theta}$ is an algebra.
For the proof of the above proposition, see [13, Theorem 7.3].
Proposition 2.5. Let $n=2, s>1, \frac{1}{2}<\theta \leq s-\frac{1}{2}$. Assume that

$$
\begin{equation*}
-\theta \leq \alpha \leq 0 \quad-s \leq a<s+\alpha \tag{2.13}
\end{equation*}
$$

Then

$$
\begin{equation*}
H^{a, \alpha} \cdot H^{s, \theta} \hookrightarrow H^{a, \alpha} . \tag{2.14}
\end{equation*}
$$

The proof can be found in [13, Theorem 7.2].

Proof of Theorem 1.1. Theorem 1.1 follows by well known methods from the following a-priori estimates (together with the corresponding estimates for differences): For any space-time functions $B, B^{\prime}, \phi, \phi^{\prime} \in \mathcal{H}^{s+1, \theta}$ and any $\gamma, \mu \in\{0,1,2\}$ we have:

$$
\begin{gather*}
\left\|\phi^{\prime} \partial^{\gamma} \phi\right\|_{H^{s, \theta-1+\delta}} \lesssim\left\|\phi^{\prime}\right\|_{\mathcal{H}^{s+1, \theta}}\|\phi\|_{\mathcal{H}^{s+1, \theta}} \tag{2.15}\\
\left\|\left(\partial^{\mu} B\right) \phi \phi^{\prime}\right\|_{H^{s, \theta-1+\delta}} \lesssim\|B\|_{\mathcal{H}^{s+1, \theta}}\|\phi\|_{\mathcal{H}^{s+1, \theta}}\left\|\phi^{\prime}\right\|_{\mathcal{H}^{s+1, \theta}} \tag{2.16}\\
\left\|Q_{\mu \alpha}(B, \phi)\right\|_{H^{s, \theta-1+\delta}} \lesssim\|B\|_{\mathcal{H}^{s+1, \theta}}\|\phi\|_{\mathcal{H}^{s+1, \theta}} \tag{2.17}\\
\left\|Q_{0}\left(B, B^{\prime}\right) \phi\right\|_{H^{s, \theta-1+\delta}} \lesssim\|B\|_{\mathcal{H}^{s+1, \theta}}\left\|B^{\prime}\right\|_{\mathcal{H}^{s+1, \theta}}\|\phi\|_{\mathcal{H}^{s+1, \theta}} \tag{2.18}\\
\left\|Q_{\mu \nu}\left(B, B^{\prime}\right) \phi\right\|_{H^{s, \theta-1+\delta}} \lesssim\|B\|_{\mathcal{H}^{s+1, \theta}}\left\|B^{\prime}\right\|_{\mathcal{H}^{s+1, \theta}}\|\phi\|_{\mathcal{H}^{s+1, \theta}} \tag{2.19}
\end{gather*}
$$

Here $\frac{1}{4}<s<\frac{1}{2}, \frac{3}{4}<\theta<s+\frac{1}{2}$ and δ is a sufficiently small positive number.
To prove 2.15 we use Proposition 2.3 to get:

$$
\left\|\phi^{\prime} \partial^{\gamma} \phi\right\|_{H^{s, \theta-1+\delta}} \lesssim\left\|\phi^{\prime}\right\|_{H^{s+1, \theta}}\left\|\partial^{\gamma} \phi\right\|_{H^{s, \theta}} \lesssim\left\|\phi^{\prime}\right\|_{\mathcal{H}^{s+1, \theta}}\|\phi\|_{\mathcal{H}^{s+1, \theta}} .
$$

Similarly, for (2.16) we have

$$
\left\|\left(\partial^{\mu} B\right) \phi \phi^{\prime}\right\|_{H^{s, \theta-1+\delta}} \lesssim\left\|\partial^{\mu} B\right\|_{H^{s, \theta}}\left\|\phi \phi^{\prime}\right\|_{H^{s+1, \theta}} \lesssim\|B\|_{\mathcal{H}^{s+1, \theta}}\left\|\phi \phi^{\prime}\right\|_{H^{s+1, \theta}} .
$$

By Proposition 2.4 and our assumptions on s and θ it follows that the space $H^{s+1, \theta}$ is an algebra. Therefore,

$$
\left\|\phi \phi^{\prime}\right\|_{H^{s+1, \theta}} \lesssim\|\phi\|_{H^{s+1, \theta}}\left\|\phi^{\prime}\right\|_{H^{s+1, \theta}},
$$

and estimate $\sqrt{2.16}$ follows.
Estimate (2.17) follows from Proposition 2.1). Finally, we consider estimates (2.18) and 2.19). We use the letter Q to denote any of the null forms $Q_{0}, Q_{\mu \nu}$. We have

$$
\begin{equation*}
\left\|Q\left(B, B^{\prime}\right) \phi\right\|_{H^{s, \theta-1+\delta}} \lesssim\left\|Q\left(B, B^{\prime}\right)\right\|_{H^{s, \theta-1+\delta}}\|\phi\|_{H^{s+1, \theta}} \tag{2.20}
\end{equation*}
$$

This follows from Proposition 2.5 with s replaced by $s+1$ and α replaced by $\theta-1+\delta$. Next, by (2.1),

$$
\begin{equation*}
\left\|Q\left(B, B^{\prime}\right)\right\|_{H^{s, \theta-1+\delta}} \lesssim\|B\|_{\mathcal{H}^{s+1, \theta}}\left\|B^{\prime}\right\|_{\mathcal{H}^{s+1, \theta}} \tag{2.21}
\end{equation*}
$$

therefore 2.18 and 2.19 follow.

References

[1] Bournaveas, N.; Low regularity solutions of the Dirac Klein-Gordon equations in two space dimensions. Comm. Partial Differential Equations 26 (2001), no. 7-8, 1345-1366.
[2] Bournaveas, N.; Local existence of energy class solutions for the Dirac-Klein-Gordon equations. Comm. Partial Differential Equations 24 (1999), no. 7-8, 1167-1193. (Reviewer: ShuXing Chen) 35Q53 (35L70)
[3] Bournaveas, N.; Local existence for the Maxwell-Dirac equations in three space dimensions. Comm. Partial Differential Equations 21 (1996), no. 5-6, 693-720.
[4] Chae, D., ; Chae, M.; The global existence in the Cauchy problem of the Maxwell-Chern-Simons-Higgs system. J. Math. Phys. 43 (2002), no. 11, 5470-5482.
[5] Chae, D., ; Choe, K.; Global existence in the Cauchy problem of the relativistic Chern-Simons-Higgs theory. Nonlinearity 15 (2002), no. 3, 747-758.
[6] D'Ancona, P., Foschi, D., Selberg, S.; Local well-posedness below the charge norm for the Dirac-Klein-Gordon system in two space dimensions. J. Hyperbolic Differ. Equ. 4 (2007), no. 2, 295-330.
[7] D'Ancona, P., Foschi, D., Selberg, S.; Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system. J. Eur. Math. Soc. 9 (2007), no. 4, 877-899.
[8] Foschi, D., Klainerman, S.; Bilinear space-time estimates for homogeneous wave equations. Ann. Sci. Ecole Norm. Sup. (4) 33 (2000), no. 2, 211-274.
[9] Hong, J., Kim, Y., Pac, P. Y. ; Multivortex solutions of the abelian Chern-Simons-Higgs theory. Phys. Rev. Lett. 64 (1990), no. 19, 2230-2233.
[10] Huh, H.; Low regularity solutions of the Chern-Simons-Higgs equations. Nonlinearity 18 (2005), no. 6, 2581-2589.
[11] Huh, H.; Local and global solutions of the Chern-Simons-Higgs system. J. Funct. Anal. 242 (2007), no. 2, 526-549.
[12] Jackiw, R. Weinberg, E. J.; Self-dual Chern-Simons vortices. Phys. Rev. Lett. 64 (1990), no. 19, 2234-2237.
[13] Klainerman, S., Selberg, S.; Bilinear estimates and applications to nonlinear wave equations. Commun. Contemp. Math. 4 (2002), no. 2, 223-295.
[14] Machihara, S.; The Cauchy problem for the 1-D Dirac-Klein-Gordon equation. NoDEA Nonlinear Differential Equations Appl. 14 (2007), no. 5-6, 625-641.
[15] Machihara, S.; Small data global solutions for Dirac-Klein-Gordon equation. Differential Integral Equations 15 (2002), no. 12, 1511-1517.
[16] Machihara, S., Nakamura, M., Nakanishi, K., Ozawa, T.; Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation. J. Funct. Anal. 219 (2005), no. 1, 1-20
[17] Selberg, S., Tesfahun, A.; Low regularity well-posedness of the Dirac-Klein-Gordon equations in one space dimension. Commun. Contemp. Math. 10 (2008), no. 2, 181-194.
[18] Tesfahun, A.; Low regularity and local well-posedness for the $1+3$ dimensional Dirac-KleinGordon system. Electron. J. Differential Equations 2007, No. 162, 26 pp.
[19] Zhou, Yi; Local existence with minimal regularity for nonlinear wave equations. Amer. J. Math. 119 (1997), no. 3, 671-703.

Nikolaos Bournaveas
University of Edinburgh, School of Mathematics, James Clerk Maxwell Building, King's
Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK
E-mail address: n.bournaveas@ed.ac.uk

[^0]: 2000 Mathematics Subject Classification. 35L15, 35L70, 35Q40.
 Key words and phrases. Chern-Simons-Higgs equations; Lorentz gauge; null-form estimates; low regularity solutions.
 (C) 2009 Texas State University - San Marcos.

 Submitted February 22, 2009. Published September 12, 2009.

