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UNBOUNDED UPPER AND LOWER SOLUTION METHOD FOR
THIRD-ORDER BOUNDARY-VALUE PROBLEMS ON THE

HALF-LINE

CHUANZHI BAI, CHUNHONG LI

Abstract. In this article, we prove the existence of unbounded upper and

lower solutions of third-order boundary-value problems on the half-line. Here

the Nagumo conditions play an important role in the nonlinear term involved
in the second-order derivatives.

1. Introduction

Boundary-value problems on the half-line arise naturally in the study of radially
symmetric solutions of nonlinear elliptic equations and various physical phenomena,
see [2, 3, 4, 5, 13, 14], such as the theory of drain flows, plasma physics, unsteady
flow of gas through a semi-infinite porous media, in determining the electrical po-
tential in an isolated neutral atom.

Recently an increasing interest in studying the existence of solutions and positive
solutions to boundary-value problems for second-order differential equations on the
half-line is observed; see for example [6, 9, 10, 13, 16, 17, 19, 20, 21]. However,
to the best knowledge of the authors, no work has been done for the third-order
boundary-value problems on the half-line. It is well known that the study of third-
order boundary-value problems is very important. For finite interval, there are
many results, see [8, 11, 12]. So it is necessary to discuss the existence of the
three-order boundary-value problems on the half-line.

In this paper, we are concerned with the existence of solutions for the following
boundary-value problem on the half-line for the third-order differential equation

u′′′(t) + a(t)f(t, u(t), u′(t), u′′(t)) = 0, t ∈ (0,+∞),

u(0) = u′(0) = 0, lim
t→+∞

u′′(t) =: u′′(+∞) = 0,
(1.1)

where a : (0,+∞) → (0,+∞), f : [0 +∞)× R3 → R are continuous. By using the
upper and lower solutions method, the authors present sufficient conditions for the
existence of unbounded solutions to (1.1).

This paper is organized as follows. In section 2, some definitions and lemmas
are given. We establish an upper and lower solution theory for (1.1) in section 3.
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Sufficient conditions are given for the existence of solutions. In section 4, we give
an example to demonstrate our main results.

2. Preliminaries

In this section, we introduce some necessary definitions and preliminary results
that will be used to prove our main results. Let

E =
{
x ∈ C2[0,+∞) : sup

0≤t<+∞

|x(t)|
(1 + t)2

< +∞, sup
0≤t<+∞

|x′(t)| < +∞,

lim
t→+∞

x′′(t) exists
}
,

with the norm ‖x‖ = max{‖x‖1, ‖x′‖∞, ‖x′′‖∞}, where ‖x‖1 = supt∈[0,+∞) |
x(t)

(1+t)2 |,
‖x′‖∞ = supt∈[0,+∞) |x′(t)|, ‖x′′‖∞ = supt∈[0,+∞) |x′′(t)|. By standard arguments,
we can prove that (E, ‖ · ‖) is a Banach space.

Definition 2.1. A function α ∈ E ∩ C3(0,+∞) is called a lower solution of (1.1)
if

α′′′(t) + a(t)f(t, α(t), α′(t), α′′(t)) ≥ 0, t ∈ (0,+∞),

α(0) ≤ 0, α′(0) ≤ 0, α′′(+∞) ≤ 0.

Similarly we define an upper solution β ∈ E ∩C3(0,+∞) of (1.1) by reversing the
above inequalities.

Remark 2.2. If
α′(t) ≤ β′(t), for every t ∈ [0,+∞), (2.1)

then by integrating (2.1) and using the boundary conditions of Definition 2.1, we
can easily obtain that α(t) ≤ β(t) for all t ∈ [0,+∞).

Definition 2.3. Given a pair of upper and lower solutions β, α ∈ E∩C3(0,+∞) of
(1.1) satisfying α′(t) ≤ β′(t), t ∈ [0,+∞). A continuous function f : [0,+∞)×R3 →
R is said to satisfy the Nagumo condition with respect to the pair of functions α, β, if
there exists a nonnegative function φ ∈ C[0,+∞) and a positive one h ∈ C[0,+∞)
such that

|f(t, x, y, z)| ≤ φ(t)h(|z|), (2.2)

for all 0 ≤ t < +∞, α(t) ≤ x ≤ β(t), α′(t) ≤ y ≤ β′(t), z ∈ R and∫ +∞

0

s

h(s)
ds = +∞. (2.3)

The above Nagumo conditions provide a priori estimate for the second-order
derivative u′′ of a class of the solutions of problem (1.1).

Now we consider the following boundary-value problem for third-order differen-
tial equation on the half-line:

u′′′(t) + σ(t) = 0, t ∈ (0,+∞),

u(0) = u′(0) = 0, u′′(+∞) = 0,
(2.4)

where σ ∈ C[0,+∞).



EJDE-2009/119 UNBOUNDED UPPER AND LOWER SOLUTION METHOD 3

Lemma 2.4. Let σ ∈ C[0,+∞) and
∫∞
0

σ(t)dt < ∞. Then u ∈ C2[0,+∞) ∩
C3(0,+∞) is a solution of (2.4) if and only if u is a solution of the following
integral equation:

u(t) =
∫ ∞

0

G(t, s)σ(s)ds, t ∈ [0,+∞), (2.5)

where

G(t, s) =

{
1
2s(2t− s), 0 ≤ s ≤ t,
1
2 t2, t ≤ s < ∞.

Proof. It is easy to show that the general solution for the equation in boundary-
value problem (2.4) is

u(t) = −1
2

∫ t

0

(t− s)2σ(s)ds + At2 + Bt + C, t ∈ [0,+∞), (2.6)

where A,B, C are constants. By the boundary condition of (2.4), we get A =
1
2

∫∞
0

σ(s)ds, B = C = 0. Substituting the expressions of A,B and C into (2.6),
we know that (2.5) holds. �

Let Cl := {y ∈ C[0,+∞) : limt→+∞ y(t) exists }. For y ∈ Cl, define ‖y‖ :=
supt∈[0,+∞) |y(t)|. Then Cl is a Banach space (see [1]).

Lemma 2.5 ([7, 18]). Let M ⊂ Cl. Then M is relatively compact if the following
conditions hold:

(a) M is bounded in Cl;
(b) the functions belonging to M are locally equicontinuous on [0,+∞);
(c) the functions from M are equiconvergent; that is, given ε > 0, there corre-

sponds T (ε) > 0 such that |x(t)− x(+∞)| < ε for all t > T (ε) and x ∈ M .

By Lemma 2.5, similar to the proof of [17, Theorem 2.2], we easily obtain the
following result.

Lemma 2.6. Let M ⊂ E. Then M is relatively compact if the following conditions
hold:

(i) M is bounded in E;
(ii) the functions belonging to {y : y = x

(1+t)2 , x ∈ M}, {z : z = x′(t), x ∈ M},
and {w : w = x′′(t), x ∈ M} are locally equicontinuous on [0,+∞);

(iii) the functions from {y : y = x
(1+t)2 , x ∈ M}, {z : z = x′(t), x ∈ M}, and

{w : w = x′′(t), x ∈ M} are equiconvergent at +∞.

3. Main result

In this section, we study the existence of solution to (1.1).

Theorem 3.1. Assume that there are α, β ∈ E ∩ C3(0,+∞) lower and upper
solutions of (1.1), respectively, such that (2.1) holds. Let f : [0,+∞)×R3 → R be
a continuous function satisfying the Nagumo condition with respect to the pair of
functions α, β, and verifying

f(t, α(t), y, z) ≤ f(t, x, y, z) ≤ f(t, β(t), y, z), (3.1)
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for (t, x, y, z) ∈ [0,+∞)× [α(t), β(t)]× R2. If∫ +∞

0

max{s, 1}a(s)ds < +∞,

∫ +∞

0

max{s, 1}a(s)φ(s)ds < +∞, (3.2)

then (1.1) has at least one solution u ∈ E ∩ C3(0,+∞) satisfying

α(t) ≤ u(t) ≤ β(t), α′(t) ≤ u′(t) ≤ β′(t), |u′′(t)| ≤ N for all t ∈ [0,+∞),

where N is a constant dependent only on α, β, a and φ.

Proof. Define the auxiliary functions

ω0(t, x) =


α(t), x < α(t),
x(t), α(t) ≤ x ≤ β(t),
β(t), x > β(t);

ω1(t, y) =


α′(t), y < α′(t),
y(t), α′(t) ≤ y ≤ β′(t),
β′(t), y > β′(t).

Consider the boundary-value problem

u′′′(t) + a(t)f∗(t, u(t), u′(t), u′′(t)) = 0, t ∈ (0,+∞),

u(0) = u′(0) = 0, lim
t→+∞

u′′(t) = 0,
(3.3)

where

f∗(t, x, y, z) = f(t, ω0(t, x), ω1(t, y), z) +
ω1(t, y)− y

1 + |ω1(t, y)− y|
. (3.4)

For each u ∈ E, we have by (2.2), (3.2) and (3.4) that∣∣ ∫ ∞

0

a(s)f∗(s, u(s), u′(s), u′′(s))ds
∣∣

≤
∫ ∞

0

a(s)[φ(s)h(|u′′(s)|) + 1]ds

≤
∫ ∞

0

a(s)(H0φ(s) + 1)ds

≤
∫ ∞

0

max{s, 1}a(s)(H0φ(s) + 1)ds < +∞,

(3.5)

where H0 = max0≤t≤‖u′′‖∞ h(t). From (3.5) and Lemma 2.4, we know that u is a
solution of (3.3) if and only if u solves the operator equation u = Tu. Here, the
operator T is defined by

(Tu)(t) =
∫ ∞

0

G(t, s)a(s)f∗(s, u(s), u′(s), u′′(s))ds, u ∈ E, t ∈ [0,+∞). (3.6)

We claim that T : E → E is completely continuous.
Step 1: T : E → E is well defined. For u ∈ E, we get by (3.5) that∫ ∞

1

sa(s)(H0φ(s) + 1)ds ≤
∫ ∞

0

max{s, 1}a(s)(H0φ(s) + 1)ds < +∞, (3.7)

which implies
lim

t→+∞
ta(t)(H0φ(t) + 1) = 0. (3.8)

Since ∫ ∞

t

a(s)(H0φ(s) + 1)ds ≤
∫ ∞

t

sa(s)(H0φ(s) + 1)ds, t ≥ 1, (3.9)
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by (3.7) and (3.9), we have

lim
t→∞

∫ ∞

t

a(s)(H0φ(s) + 1)ds = 0. (3.10)

By the Lebesgue dominated convergence theorem, (3.8) and (3.10), we obtain

lim
t→+∞

|(Tu)(t)|
(1 + t)2

≤ lim
t→+∞

∫ ∞

0

G(t, s)
(1 + t)2

a(s)(H0φ(s) + 1)ds

= lim
t→+∞

[ ∫ t

0

1
2s(2t− s)
(1 + t)2

a(s)(H0φ(s) + 1)ds +
∫ ∞

t

1
2 t2

(1 + t)2
a(s)(H0φ(s) + 1)ds

]
= lim

t→+∞

∫ t

0
sa(s)(H0φ(s) + 1)ds + t2

2 a(t)(H0φ(t) + 1)
2(1 + t)

+ lim
t→+∞

t
∫∞

t
a(s)(H0φ(s) + 1)ds− t2

2 a(t)(H0φ(t) + 1)
2(1 + t)

(L’Hopital’s rule)

= lim
t→+∞

1
2
ta(t)(H0φ(t) + 1) +

1
4

lim
t→+∞

t

1 + t
ta(t)(H0φ(t) + 1)

+ lim
t→+∞

1
2

[ ∫ ∞

t

a(s)(H0φ(s) + 1)ds + ta(t)(H0φ(t) + 1)
]

(L’Hopital’s rule)

− 1
4

lim
t→+∞

t

1 + t
ta(t)(H0φ(t) + 1)

=
1
2

lim
t→+∞

∫ ∞

t

a(s)(H0φ(s) + 1)ds = 0;

that is,

lim
t→+∞

(Tu)(t)
(1 + t)2

= 0, (3.11)

which implies

sup
0≤t<+∞

|(Tu)(t)|
(1 + t)2

< +∞.

By (3.5), we get

sup
0≤t<+∞

|(Tu)′(t)| = sup
0≤t<+∞

∣∣ ∫ ∞

0

∂G(t, s)
∂t

a(s)f∗(s, u(s), u′(s), u′′(s))ds
∣∣

= sup
0≤t<+∞

∣∣ ∫ t

0

sa(s)f∗(s, u(s), u′(s), u′′(s))ds

+
∫ ∞

t

ta(s)f∗(s, u(s), u′(s), u′′(s))ds
∣∣

≤ sup
0≤t<+∞

[ ∫ t

0

sa(s)(H0φ(s) + 1)ds +
∫ ∞

t

ta(s)(H0φ(s) + 1)ds
]

≤
∫ ∞

0

sa(s)(H0φ(s) + 1)ds

≤
∫ ∞

0

max{s, 1}a(s)(H0φ(s) + 1)ds < +∞.
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From (3.10), we have∣∣ ∫ ∞

t

a(s)f∗(s, u(s), u′(s), u′′(s))ds
∣∣ ≤ ∫ ∞

t

a(s)(H0φ(s) + 1)ds → 0, t → +∞.

Therefore,

lim
t→+∞

(Tu)′′(t) = lim
t→+∞

∫ ∞

t

a(s)f∗(s, u(s), u′(s), u′′(s))ds = 0. (3.12)

So Tu ∈ E.
Step 2: T : E → E is continuous. For any convergent sequence un → u in E,

we have

un(t) → u(t), u′n(t) → u′(t), u′′n(t) → u′′(t), n → +∞, t ∈ [0,+∞).

Now the continuity of f∗ implies

|f∗(s, un(s), u′n(s), u′′n(s))−f∗(s, u(s), u′(s), u′′(s))| → 0, n → +∞, ∀t ∈ [0,+∞).

Since un → u, we have supn∈N ‖u′′n‖∞ < +∞. Let

Hp = max
0≤t≤max{‖u′′‖∞, supn∈N ‖u′′n‖∞}

h(t).

Then ∫ ∞

0

sa(s)|f∗(s, un(s), u′n(s), u′′n(s))− f∗(s, u(s), u′(s), u′′(s))|ds

≤ 2
∫ ∞

0

sa(s)(Hpφ(s) + 1)ds < +∞.

(3.13)

Hence, from the Lebesgue dominated convergence theorem and (3.13), we have

‖Tun − Tu‖1

= sup
t∈R+

|(Tun)(t)− (Tu)(t)|
(1 + t)2

= sup
t∈R+

∣∣∣ ∫ ∞

0

G(t, s)
(1 + t)2

a(s)(f∗(s, un(s), u′n(s), u′′n(s))− f∗(s, u(s), u′(s), u′′(s))ds
∣∣∣

≤ sup
t∈R+

[ ∫ t

0

1
2s(2t− s)
(1 + t)2

a(s)|f∗(s, un(s), u′n(s), u′′n(s))− f∗(s, u(s), u′(s), u′′(s))|ds

+
∫ ∞

t

1
2 t2

(1 + t)2
a(s)|f∗(s, un(s), u′n(s), u′′n(s))− f∗(s, u(s), u′(s), u′′(s))|ds

]
≤ sup

t∈R+

[ ∫ t

0

sa(s)|f∗(s, un(s), u′n(s), u′′n(s))− f∗(s, u(s), u′(s), u′′(s))|ds

+
∫ ∞

t

1
2
sa(s)|f∗(s, un(s), u′n(s), u′′n(s))− f∗(s, u(s), u′(s), u′′(s))|ds

]
≤

∫ ∞

0

sa(s)|f∗(s, un(s), u′n(s), u′′n(s))− f∗(s, u(s), u′(s), u′′(s))|ds

(3.14)



EJDE-2009/119 UNBOUNDED UPPER AND LOWER SOLUTION METHOD 7

which approaches zero as as n →∞. Also
‖(Tun)′ − (Tu)′‖∞
= sup

t∈R+
|(Tun)′(t)− (Tu)′(t)|

= sup
t∈R+

∣∣∣ ∫ t

0

sa(s)(f∗(s, un(s), u′n(s), u′′n(s))− f∗(s, u(s), u′(s), u′′(s)))ds

+
∫ ∞

t

ta(s)(f∗(s, un(s), u′n(s), u′′n(s))− f∗(s, u(s), u′(s), u′′(s)))ds
∣∣∣

≤ sup
t∈R+

[ ∫ t

0

sa(s)|f∗(s, un(s), u′n(s), u′′n(s))− f∗(s, u(s), u′(s), u′′(s))|ds

+
∫ ∞

t

sa(s)|f∗(s, un(s), u′n(s), u′′n(s))− f∗(s, u(s), u′(s), u′′(s))|ds
]

=
∫ ∞

0

sa(s)|f∗(s, un(s), u′n(s), u′′n(s))− f∗(s, u(s), u′(s), u′′(s))|ds

(3.15)

which approaches zero as n →∞. From (3.13), we easily show that∫ ∞

0

a(s)|f∗(s, un(s), u′n(s), u′′n(s))− f∗(s, u(s), u′(s), u′′(s))|ds < +∞. (3.16)

From the above inequality, we obtain
‖(Tun)′′ − (Tu)′′‖∞
= sup

t∈R+
|(Tun)′′(t)− (Tu)′′(t)|

= sup
t∈R+

∣∣∣ ∫ ∞

t

a(s)(f∗(s, un(s), u′n(s), u′′n(s))− f∗(s, u(s), u′(s), u′′(s)))ds
∣∣∣

≤
∫ ∞

0

a(s)|f∗(s, un(s), u′n(s), u′′n(s))− f∗(s, u(s), u′(s), u′′(s))|ds

(3.17)

which approaches zero as n →∞. Therefore, by (3.14), (3.15) and (3.17), it follows
that ‖Tun − Tu‖ → 0, as n → +∞; so T : E → E is continuous.

Step 3: T : E → E is compact. Let A be any bounded subset of E, then for
u ∈ A, let Hq = sup0≤t≤‖u′′‖∞,u∈A h(t) < +∞, similar to the proof of (3.14), (3.15)
and (3.17), by (2.2) and (3.2) one has

‖Tu‖1 = sup
t∈R+

|(Tu)(t)|
(1 + t)2

≤ sup
t∈R+

∫ ∞

0

G(t, s)
(1 + t)2

a(s)|f∗(s, u(s), u′(s), u′′(s))|ds

≤
∫ ∞

0

sa(s)|f∗(s, u(s), u′(s), u′′(s))|ds

≤
∫ ∞

0

sa(s)(Hqφ(s) + 1)ds < +∞,

‖(Tu)′‖∞ ≤
∫ ∞

0

sa(s)|f∗(s, u(s), u′(s), u′′(s))|ds

≤
∫ ∞

0

sa(s)(Hqφ(s) + 1)ds < +∞,
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and

‖(Tu)′′‖∞ ≤
∫ ∞

0

a(s)|f∗(s, u(s), u′(s), u′′(s))|ds

≤
∫ ∞

0

a(s)(Hqφ(s) + 1)ds < +∞,

which implies that ‖Tu‖ < +∞. Thus TA is uniformly bounded. Meanwhile, for
any B > 0, if t1, t2 ∈ [0, B], we have∣∣ (Tu)(t1)

(1 + t1)2
− (Tu)(t2)

(1 + t2)2
∣∣

=
∣∣ ∫ ∞

0

( G(t1, s)
(1 + t1)2

− G(t2, s)
(1 + t2)2

)
a(s)f∗(s, u(s), u′(s), u′′(s))ds

∣∣
≤

∫ ∞

0

∣∣ G(t1, s)
(1 + t1)2

− G(t2, s)
(1 + t2)2

∣∣a(s)(Hqφ(s) + 1)ds

which approaches zero as t1 → t2. Also

|(Tu)′(t1)− (Tu)′(t2)|

=
∣∣∣ ∫ t1

0

sa(s)f∗(s, u(s), u′(s), u′′(s))ds +
∫ ∞

t1

t1a(s)f∗(s, u(s), u′(s), u′′(s))ds

−
∫ t2

0

sa(s)f∗(s, u(s), u′(s), u′′(s))ds−
∫ ∞

t2

t2a(s)f∗(s, u(s), u′(s), u′′(s))ds
∣∣∣

≤
∣∣∣ ∫ t2

t1

sa(s)f∗(s, u(s), u′(s), u′′(s))ds
∣∣∣ +

∣∣∣t1 ∫ t2

t1

a(s)f∗(s, u(s), u′(s), u′′(s))ds
∣∣∣

+
∣∣(t2 − t1)

∫ ∞

t2

a(s)f∗(s, u(s), u′(s), u′′(s))ds
∣∣

≤
∫ t2

t1

sa(s)(Hqφ(s) + 1)ds + t1

∫ t2

t1

a(s)(Hqφ(s) + 1)ds

+ |t2 − t1|
∫ ∞

t2

a(s)(Hqφ(s) + 1)ds

which approaches zero as t1 → t2. Also

|(Tu)′′(t1)− (Tu)′′(t2)| =
∣∣ ∫ t2

t1

a(s)f∗(s, u(s), u′(s), u′′(s))ds
∣∣

≤
∫ t2

t1

a(s)(Hqφ(s) + 1)ds

which approaches zero as t1 → t2. As a result, TA is equicontinuous. From (3.11),
we get ∣∣∣ (Tu)(t)

(1 + t)2
− lim

t→+∞

(Tu)(t)
(1 + t)2

∣∣∣ =
∣∣∣ (Tu)(t)
(1 + t)2

∣∣∣ → 0, as t → +∞.

Since ∣∣∣ ∫ ∞

t

ta(s)f∗(s, u(s), u′(s), u′′(s))ds
∣∣∣ ≤ ∫ ∞

t

ta(s)(H0φ(s) + 1)ds

≤
∫ ∞

t

sa(s)(H0φ(s) + 1)ds
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which approaches zero as t → +∞, we have

lim
t→+∞

(Tu)′(t) = lim
t→+∞

[ ∫ t

0

sa(s)f∗(s, u(s), u′(s), u′′(s)))ds

+
∫ ∞

t

ta(s)f∗(s, u(s), u′(s), u′′(s)))ds
]

=
∫ ∞

0

sa(s)f∗(s, u(s), u′(s), u′′(s)))ds.

Thus,

|(Tu)′(t)− lim
t→+∞

(Tu)′(t)|

=
∣∣∣ ∫ ∞

t

ta(s)f∗(s, u(s), u′(s), u′′(s)))ds−
∫ ∞

t

sa(s)f∗(s, u(s), u′(s), u′′(s)))ds
∣∣∣

which approaches zero as t → +∞. Moreover, by (3.12), we have∣∣(Tu)′′(t)− lim
t→+∞

(Tu)′′(t)
∣∣ = |(Tu)′′(t)|

=
∣∣∣ ∫ ∞

t

a(s)f∗(s, u(s), u′(s), u′′(s)))ds
∣∣∣

which approaches zero as t → +∞. That is, TA is equiconvergent at infinity. Then
TA is relatively compact. Hence, T : E → E is completely continuous. �

By the Schauder fixed point theorem, we can easily obtain that T has at least
one fixed point u ∈ E. Thus u is a solution of (3.3).

Next, we show that u satisfies the inequalities

α(t) ≤ u(t) ≤ β(t), α′(t) ≤ u′(t) ≤ β′(t), ∀t ∈ R+,

which implies that u is a solution of (1.1). First, we show that u′(t) ≤ β′(t) for all
t ∈ [0,+∞). Suppose not, then

sup
0≤t<+∞

(u′(t)− β′(t)) > 0.

Since limt→+∞(u′′(t)− β′′(t)) < 0, there are two cases.
Case 1. There exists a t0 ∈ (0,∞) such that

u′(t0)− β′(t0) = sup
t∈R+

(u′(t)− β′(t)) > 0.

So we have u′′(t0) = β′′(t0) and

u′′′(t0) ≤ β′′′(t0). (3.18)

By (3.1), (3.3) and (3.4), we get

u′′′(t0) = −a(t0)
[
f(t0, ω0(t0, u), ω1(t0, u′), u′′(t0)) +

ω1(t0, u′)− u′(t0)
1 + |ω1(t0, u′)− u′(t0)|

]
= −a(t0)

[
f(t0, ω0(t0, u(t0)), β′(t0)), β′′(t0)) +

β′(t0)− u′(t0)
1 + |β′(t0)− u′(t0)|

]
≥ −a(t0)f(t0, β(t0), β′(t0)), β′′(t0)) + a(t0)

u′(t0)− β′(t0)
1 + |u′(t0)− β′(t0)|

> −a(t0)f(t0, β(t0), β′(t0)), β′′(t0)) ≥ β′′′(t0),

which is a contradiction.
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Case 2. u′(0)− β′(0) = limt→0+(u′(t)− β′(t)) = supt∈R+(u′(t)− β′(t)) > 0. By
the boundary condition, we have the contradiction u′(0)−β′(0) ≤ 0. Consequently,
u′(t) ≤ β′(t) holds for all t ∈ [0,+∞). Using an analogous technique, we prove that
α′(t) ≤ u′(t), for all t ∈ [0,+∞). By integration,

α(t) ≤ u(t) ≤ β(t), ∀t ∈ [0,+∞).

Let σ > 0 and choose

r ≥ max
{

sup
t∈[σ,+∞)

β′(t)− α′(0)
t

, sup
t∈[σ,+∞)

β′(0)− α′(t)
t

}
(3.19)

and N > r, such that∫ N

r

s

h(s)
ds ≥ m

(
sup

0≤t<+∞
β′(t)− inf

0≤t≤+∞
α′(t)

)
, (3.20)

where m = supt∈[0,+∞) a(t)φ(t) < +∞.

Remark 3.2. By condition (3.2), it is easy to know that
∫ +∞
0

a(s)φ(s)ds < +∞.
Thus we have m < +∞.

Finally, we show that |u′′(t)| < N for t ∈ [0,+∞). If |u′′(t)| ≤ r, for every
t ∈ [0,+∞) then we have |u′′(t)| < N . If u′′(t) > r, for all t ∈ [0,+∞), then for
any R ≥ σ, by (3.19) we have

β′(R)− α′(0)
R

≥ u′(R)− u′(0)
R

=

∫ R

0
u′′(s)ds

R
> r ≥ β′(R)− α′(0)

R
,

which is a contradiction. If u′′(t) < −r, for every t ∈ [0,+∞), a similar contradic-
tion can be obtained. So, there exists t0 ∈ [0,+∞) such that |u′′(t0)| ≤ r. Hence,
there exists [t1, t2] ⊂ [0,+∞) such that |u′′(t1)| = r, |u′′(t)| > r, t ∈ (t1, t2] or
|u′′(t2)| = r, |u′′(t)| > r, t ∈ [t1, t2). Without loss of generality, we suppose that
u′′(t1) = r, u′′(t) > r, t ∈ (t1, t2]. Then, by a convenient change of variable and
applying assumptions (2.2) and (3.20), we have∫ u′′(t2)

u′′(t1)

s

h(s)
ds =

∫ t2

t1

u′′(t)
h(u′′(t))

u′′′(t)dt

=
∫ t2

t1

−a(t)f(t, u(t), u′(t), u′′(t))u′′(t)
h(u′′(t))

dt

≤
∫ t2

t1

a(t)φ(t)u′′(t)dt

≤ m

∫ t2

t1

u′′(t)dt = m(u′(t2)− u′(t1))

≤ m
(

sup
t∈[0,+∞)

β′(t)− inf
t∈[0,+∞)

α′(t)
)

≤
∫ N

r

s

h(s)
ds,

which concludes that u′′(t2) ≤ N . Since t2 can be arbitrarily as long as u′′(t) > r
we can conclude that, for every t ∈ [0,+∞) such that u′′(t) > r, we have u′′(t) ≤ N .
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By a similar way, we can also obtain that if u′(t1) = −r, u′(t) < −r, t ∈ (t1, t2],
then u′(t) > −N , t ∈ [0,+∞). Hence,

u′′′(t) = −a(t)f∗(t, u(t), u′(t), u′′(t)) = −a(t)f(t, u(t), u′(t), u′′(t));

that is, u is a solution of (1.1).

4. An example

In this section, we give an example to illustrate our main result. Consider the
boundary-value problem

u′′′(t) + e−γt(t3 + u3(t))(1− u′(t))(1 + arctan((u′′(t))2) = 0, t ∈ (0,+∞),

u(0) = u′(0) = 0, u′′(+∞) = 0,

(4.1)
where γ is a positive constant. Set

a(t) = e−γt, f(t, x, y, z) = (t3 + x3)(1− y)(1 + arctan(z2)).

According to Definition 2.1, it is easy to check that α(t) = −t, β(t) = t are a pair
of lower and upper solutions of (4.1). Moreover, we have α, β ∈ E, α(t) ≤ β(t),
t ∈ [0,+∞).

Obviously, f is continuous on [0,+∞) × R3 and increasing in x when α(t) ≤
x(t) ≤ β(t), t ∈ [0,+∞). Meanwhile, when 0 ≤ t < +∞, −t ≤ x ≤ t, −1 ≤ y ≤ 1,
it holds

|f(t, x, y, z)| ≤ φ(t)h(|z|),

where φ(t) = 4(1 + t3) and h(z) = 1 + z2. Since∫ +∞

0

s

h(s)
ds =

∫ +∞

0

s

1 + s2
ds = +∞,

f satisfies the Nagumo condition with respect to −t, t. Furthermore, we have∫ +∞

0

max{s, 1}a(s)ds =
∫ 1

0

e−γsds +
∫ +∞

1

se−γsds < +∞

and∫ +∞

0

max{s, 1}a(s)φ(s) =
∫ 1

0

4(1 + s3)e−γsds +
∫ +∞

1

4s(1 + s3)e−γsds < +∞;

that is, (3.2) holds. Therefore, by Theorem 3.1, there exists at least one solution
u(t) for (4.1) such that

−t ≤ u(t) ≤ t, −1 ≤ u′(t) ≤ 1, t ∈ [0,+∞).
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