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LINKING METHOD FOR PERIODIC NON-AUTONOMOUS
FOURTH-ORDER DIFFERENTIAL EQUATIONS WITH

SUPERQUADRATIC POTENTIALS

CHENGYUE LI, CHANGHUA SHI

Abstract. By means of the Schechter’s Linking method, we study the ex-
istence of 2T -periodic solutions of the non-autonomous fourth-order ordinary

differential equation

u′′′′ −Au′′ −Bu− Vu(t, u) = 0

where A > 0, B > 0, V (t, u) ∈ C1(R × R, R) is 2T -periodic in t and satisfies

either 0 < θV (t, u) ≤ uVu(t, u) with θ > 2, or uVu(t, u) − 2V (t, u) ≥ d3|u|r
with r ≥ 1.

1. Introduction

Pulse propagation through optical fibers involving a fourth-order negative dis-
persion term leads to a generalized nonlinear Schrodinger equation [1, 4]. After an
appropriate scaling of the variables this equation takes the form

i
∂w

∂x
+

∂2w

∂t2
− ∂4w

∂t4
+ |w|2w = 0. (1.1)

Considering harmonic spatial dependence w(t, x) = u(t)eikx with k < 0, one obtains

u(4) − u′′ + ku− u3 = 0. (1.2)
Motivated by (1.2), we shall discuss the more general equation

u(4) −Au′′ −Bu− Vu(t, u) = 0, (1.3)

where A > 0, B > 0, the potential V (t, u) ∈ C1(R× R, R), Vu(t, u) = ∂V (t, u)/∂u.
Indeed, many other types of fourth-order differential equation models in physical,

chemical or biological systems have been studied for recent years. We give some
examples as follows:

(i) The equation u(4) − γu′′ − u + u3 = 0 serves as a model in studies of pattern
formation and phase transitions near Lifshitz points. If γ > 0, it is the Extended
Fisher-Kolmogorov equation proposed by Dee and Saarloos van in [6]. If γ < 0, it
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is the Swift-Hohenberg equation which has been proposed by Swift and Hohenberg
[12]. For the existence of its periodic solutions, we refer the readers to [8].

(ii) In the theory of shallow water waves driven by gravity and capillarity, the
equation u(4) + pu′′ + u − u2 = 0 has been studied with p < 0 [2], which was
extensively considered by Buffoni [3].

(iii) Chen and McKenna [5] studied the equation u(4)+c2u′′+V ′(u) = 0 under the
assumptions that V ∈ C2(R) is a potential such that V ′(u) = (u+1)+−1+g(u) with
|g′′(u)| ≤ K for some K > 0 .This result was improved by Smets and Van den Berg
[11] for almost every c ∈ [−

√
4α,
√

4α], assuming that lim supu→∞ V (u)/|u|2 = 0.
(iv) Tersian and Chaparova [13] studied the equation u(4)+pu′′+a(x)u−b(x)u2−

c(x)u3 = 0 where a(x), b(x), c(x) are periodic, and 0 < a1 ≤ a(x), 0 < c1 ≤ c(x).
They obtained the existence of periodic solutions of the equation for p 6= 0.

(v) Gyulov and Tersian [7] discussed the equation u(4) + au′′ + bu + Vu(t, u) = 0
where V (t, u) ≥ c|u|p with p > 2, and obtained the existence and nonexistence of
nontrival periodic solutions of the equation by Brezis-Nirenberg’s linking Theorem
and minimizing methods.

In the present paper, we shall study the existence of periodic solutions of the
non-autonomous fourth-order equation (1.3). Our main results are as follows:

Theorem 1.1. Let A > 0, B > 0. Assume that V (t, u) ∈ C1(R × R, R) satisfies
the assumptions:

(V1) V (t, u) = V (t + 2T, u), V (t, u) = V (t,−u), for all t ∈ R, u ∈ R;
(V2) V (t, u) = o(|u|2), as u→ 0 uniformly in t ∈ R;
(V3) There exists a constant θ > 2 such that

0 < θV (t, u) ≤ uVu(t, u), ∀t ∈ R, u ∈ R \ {0}.

Then (1.3) has at least one nontrivial 2T -periodic solution, provided that T
T1

/∈ N
with T1 = π

√
2/

√
−A +

√
A2 + 4B.

Theorem 1.2. Let A > 0, B > 0. Suppose that V (t, u) ∈ C1(R × R, R) satisfies
that (V1), (V2) and the following conditions:

(V3’) V (t, u)/|u|2 →∞, as |u| → ∞ uniformly in t ∈ R;
(V4) There are constants µ, d1, d2 > 0 such that |Vu(t, u)| ≤ d1|u|µ + d2, for all

t ∈ R, u ∈ R;
(V5) There are constants h, d3 > 0, r ≥ max{1, µ} such that

uVu(t, u)− 2V (t, u) ≥ d3|u|r, ∀t ∈ R, |u| > h.

Then the conclusion of Theorem 1.1 holds.

Remark 1.3. Hypothesis (V3) is so-called Ambrosetti-Rabinowitz superquadratic
condition which implies that there exist constants r1 > 0, r2 > 0 such that

V (t, u) ≥ r1|u|µ − r2, ∀t ∈ R, u ∈ R. (1.4)

By direct computation we notice that, for example, V (t, u) = u2 ln(1 + u2i) ln(1 +
2u2j) or V (t, u) = u2 ln(1 + u2i) (i, j ∈ N) satisfies (V3’), (V4), and (V5), but does
not satisfy (1.4). Therefore, Theorems 1.1 and 1.2 study two types of superquadratic
nonlinearities.
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2. Preliminaries

To study the existence of 2T -periodic solutions of (1.3), we first consider the
solvability of the two-point boundary problem

u(4) −Au′′ −Bu− Vu(t, u) = 0, 0 < t < T ;

u(0) = u(T ) = 0, u′′(0) = u′′(T ) = 0.
(2.1)

We shall obtain 2T -periodic solutions of (1.3) which are antisymmetric with respect
to t = 0 and t = T taking the 2T -periodic extension of the odd extension

ū(t) =

{
u(t), 0 ≤ t ≤ T ;
−u(−t), −T ≤ t ≤ 0

(2.2)

of the solution u(t) for problem (2.1).
Assume X = H2([0, T ]) ∩H1

0 ([0, T ]) be a Hilbert space with the inner product

(u, v) =
∫ T

0

(u′′(t)v′′(t) + u′(t)v′(t) + u(t)v(t))dt, (2.3)

which corresponds the norm

‖u‖X =
( ∫ T

0

(|u′′(t)|2 + |u′(t)|2 + |u(t)|2)dt
)1/2

.

From the Poincare inequality∫ T

0

|u(t)|2dt ≤ T 2

π2

∫ T

0

|u′(t)|2dt,

∫ T

0

|u(t)|2dt ≤ T 4

π4

∫ T

0

|u′′(t)|2dt, (2.4)

we know that ‖u‖X ,

‖u‖ = (
∫ T

0

(|u′′(t)|2dt)1/2, (2.5)

‖u‖∗ = (
∫ T

0

(|u′′(t)|2 + A|u′(t)|2)dt)1/2, (2.6)

are equivalent norms in X(T ). In addition, an important fact in X(T ) is that the
set of functions {sinkπt

T }
∞
k=1is a complete orthogonal basis [7].

A function u ∈ X(T ) is said to be a weak solution of (2.1), if∫ T

0

(u′′(t)v′′(t) + Au′(t)v′(t)−Bu(t)v(t))dt−
∫ T

0

Vu(t, u)vdt = 0, ∀v ∈ X(T ).

Define the pertinent functional

I(u;T ) =
∫ T

0

1
2
(u′′2 + Au′2 −Bu2)dt−

∫ T

0

V (t, u)dt, ∀u ∈ X(T ). (2.7)

Under the assumption of V (t, u) ∈ C1(R × R, R), we easily show that I(u;T ) ∈
C1(X(T ), R) and

I ′(u;T )v =
∫ T

0

(u′′v′′ + Au′v′ −Buv)dt−
∫ T

0

Vu(t, u)vdt = 0, ∀u, v ∈ X(T ).

(2.8)
So weak solutions of (2.1) are critical points of I(u;T ). In fact, by the standard
way, weak solutions of (2.1) are exactly its classical solutions.
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For u ∈ X(T ), using Fourier series, we have

u =
∞∑

k=1

ck sin(
kπt

T
), (2.9)

I(u;T ) =
T

4

∞∑
k=1

c2
kPk(T )−

∫ T

0

V (t, u)dt, (2.10)

where Pk(T ) = P (kπ
T ) with P (ξ) = ξ4 + Aξ2 −B, ξ ∈ R. Clearly for every T > 0,

P1(T ) < P2(T ) < P3(T ) < · · · < Pn(T )) < . . . . (2.11)

For every n ∈ N, the equation Pn(T ) = 0 has the unique solution

Tn = nT1, T1 = π
√

2/

√
−A +

√
A2 + 4B, (2.12)

and Pn(T ) > 0, if T < nT1; Pn(T ) < 0, if T > nT1.
To prove Theorems 1.1 and 1.2, we shall use linking method due to Schechter. For

that, we start recalling the definition of linking sets in the sense of homeomorphisms
[9].

Let E be a real Banach space and let Φ be the set of all continuous maps Γ = Γ(t)
from E× [0, 1] to E such that (i) Γ(0) = I, the identity map. (ii) For each t ∈ [0, 1),
Γ(t) is a homeomorphism of E into E and Γ−1(t) ∈ C(E × [0, 1], E). (iii) Γ(1)E
is a single point in E and Γ(t)A converges uniformly to Γ(1)E as t → 1 for each
bounded set A ⊂ E. (iv) For each t0 ∈ [0, 1) and each bounded set Y ⊂ E,
sup0≤t≤t0,u∈Y {‖Γ(t)u‖+ ‖Γ−1(t)u‖} <∞.

We say that Y links Z if Y and Z are subsets of E such that Y ∩ Z = φ and,
for each Γ ∈ Φ, there is a t ∈ (0, 1] such that Γ(t)Y ∩ Z 6= φ. Many examples of
linking sets are presented in [9]. A typical one is as follows:

Example. [9, Example 3, P.38]. Let M and N be closed subspaces of Banach
space E such that dim N <∞ and E = M ⊕N . Let w0 6= 0 be an element of M ,
0 < ρ < R, and take

Y = {v ∈ N : ‖v‖ ≤ R} ∪ {v + λw0 : v ∈ N,λ ≥ 0, ‖v + λw0‖ = R},
Z = ∂Bρ(0) ∩M.

Then Y links Z.
It was shown in [9] that with the aid of linking method a deformation theorem

was obtained and then, using standard minimax arguments, the following result
was proved by Schechter:

Theorem 2.1 (Linking Theorem 2.1.1 and Corollary 2.8.2 in [9]). Assume that E
is a real Banach space, the functional ϕ ∈ C1(E, R). Y and Z are subsets of E such
that Y is compact and Y links Z, and satisfies that a0 := supY ϕ ≤ b0 := infZϕ.
If a = infΓ∈Φsup0≤s≤1,u∈Y ϕ(Γ(s)u) is finite, then there is a sequence (um) ⊂ E
such that ϕ(um) → a ≥ b0, (1 + ‖um‖)ϕ′(um) → 0. Furthermore, if a = b0, then
dist(um, Z)→ 0.

In addition, we also recall the limit case of Rabinowitz’s Mountain Pass Lemma,
which shall be employed in the section 3 and section 4.

Theorem 2.2 ([14]). Let E be a real Banach space and ϕ ∈ C1(E, R) satisfying
the (PS) condition, ϕ(0) = 0. If ϕ satisfies
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(a) There is an open neighborhood Y of the origin 0 such that ϕ|∂Y ≥ 0;
(b) There is e /∈ Y such that ϕ(e) ≤ 0,

then ϕ possesses a critical value b ≥ 0 at the level characterized by

b = sup
Z∈W

inf
u∈∂Z

ϕ(u),

where W = {Z ⊂ E : Z is open 0 ∈ Z and e /∈ Z}. Moreover, if b = 0, there is a
critical point of ϕ on ∂Y .

3. Proof of Theorem 1.1

Lemma 3.1. Under the assumptions of Theorem 1.1, the (PS) condition holds for
I(u;T ). Namely, if (um) ⊂ X(T ) satisfies that

|I(um;T )| ≤M1, |I ′(um;T )| → 0, (3.1)

for some constant M1 > 0,then there is a subsequence of (um) converging to a limit
u0 ∈ X(T ).

Proof. Choose θ∗ ∈ (2, θ). By (V3), (1.4) and (3.1), we have

M1 + ‖um‖ ≥ I(um;T )− 1
θ∗

I ′(um;T )um

=
1
2

∫ T

0

(u
′′2
m + Au

′2
m −Bu2

m)dt−
∫ T

0

V (t, um)dt

− 1
θ∗

( ∫ T

0

(u
′′2
m + Au

′2
m −Bu2

m)dt−
∫ T

0

Vu(t, um)umdt
)

= (
1
2
− 1

θ∗
)
∫ T

0

(u
′′2
m + Au

′2
m)dt− (

1
2
− 1

θ∗
)
∫ T

0

Bu2
mdt

+
∫ T

0

(
Vu(t, um)um

θ∗
− V (t, um))dt

≤ (
1
2
− 1

θ∗
)
∫ T

0

(u
′′2
m + Au

′2
m)dt− (

1
2
− 1

θ∗
)
∫ T

0

Bu2
mdt

+
θ − θ∗

θ∗

∫ T

0

V (t, um)dt

≤ (
1
2
− 1

θ∗
)
∫ T

0

(u
′′2
m + Au

′2
m)dt− (

1
2
− 1

θ∗
)
∫ T

0

Bu2
mdt

+ r1
θ − θ∗

θ∗
‖um‖θLθ − Tr2

θ − θ∗

θ∗

≤ (
1
2
− 1

θ∗
)
∫ T

0

(u
′′2
m + Au

′2
m)dt− (

1
2
− 1

θ∗
)B‖um‖2L2

+ r3‖um‖θL2 − Tr2
θ − θ∗

θ∗

(3.2)

with r3 > 0. We claim that ‖um‖L2 is bounded. Otherwise, ‖um‖L2 →∞, ‖um‖ →
∞. Thus, since θ > 2, for m sufficiently large, we have

−(
1
2
− 1

θ∗
)B‖um‖2L2 + r3‖um‖θL2 − Tr2

θ − θ∗

θ∗
> 0. (3.3)
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Consequently, by (3.2) and (3.3), we deduce that

M1 + ‖um‖ ≥ (
1
2
− 1

θ∗
)
∫ T

0

(u
′′2
m + Au

′2
m)dt ≥ (

1
2
− 1

θ∗
)‖um‖2,

which contradicts ‖um‖ → ∞. So ‖um‖L2 is bounded. Therefore, by (3.2), there
exists M2 > 0 such that

M1 + ‖um‖ ≥ (
1
2
− 1

θ∗
)
∫ T

0

u
′′2
m dt + M2 = (

1
2
− 1

θ∗
)‖um‖2 + M2, (3.4)

This inequality implies ‖um‖ is bounded in X(T ). Then we can assume that,
without loss of generation,

um ⇀ u0 ∈ X(T ), um → u0 ∈ C([0, T ]). (3.5)

So, by (2.8) and (3.5), we have

‖um − u0‖2 + A

∫ T

0

|u′m − u′0|2dt

= B

∫ T

0

|um − u0|2dt + (I ′(um)− I ′(u0))(um − u0)

+
∫ T

0

(Vu(t, um)− Vu(t, u0))(um − u0)dt→ 0,

(3.6)

namely, um → u0 in X(T ). �

Lemma 3.2. Under the assumptions of Theorem 1.1, if T > T1 and T
T1

/∈ N, then
the functional I(u;T ) possesses a nontrivial critical point in X(T ).

Proof. There exists n ∈ N such that nT1 < T < (n + 1)T1. Define

En = span{sinπt

T
, sin

2πt

T
. . . sin

nπt

T
}, (3.7)

Y = {v ∈ En : ‖v‖ ≤ R} ∪ {v + λe : v ∈ En, λ ≥ 0, ‖v + λe‖ = R}, (3.8)

Z = ∂Bρ(0) ∩ E⊥
n . (3.9)

where e ∈ E⊥
n , ‖e‖ = 1 and 0 < ρ < R. By the typical example in section 2, Y

links with Z. We shall verify for R sufficiently large and ρ sufficiently small, that
the following inequality holds:

sup
Y

T (u;T ) ≤ 0 ≤ inf
Z

I(u;T ). (3.10)

Firstly, for every v ∈ En, v(t) =
∑n

k=1 ck sin(kπt
T ), since

P1(T ) < P2(T ) < P3(T ) < . . . Pn(T ) < 0, (3.11)

we have

I(v;T ) =
T

4

n∑
k=1

Pk(T )c2
k −

∫ T

0

V (t, v(t))dt ≤ 0. (3.12)

Secondly, we take e = cn+1 sin (n+1)πt
T ∈ E⊥

n with cn+1 such that ‖e‖ = 1, and let

w = u + λe =
n∑

k=1

ck sin(
kπt

T
) + λe, λ ≥ 0.
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Then ‖w‖ = ‖u‖+ ‖λe‖ = ‖u‖+ λ. There exist r4, r
′
4 such that r′4‖w‖Lθ ≤ ‖w‖ ≤

r4‖w‖Lθ , for all w ∈ En+1. Therefore, by (1.4), we conclude that

I(w;T ) =
∫ T

0

1
2
((w

′′2 + Aw
′2 −Bw2))dt−

∫ T

0

V (t, w)dt

=
T

4

n∑
k=1

Pk(T )c2
k +

T

4
Pn+1(T )λ2c2

n+1 −
∫ T

0

V (t, w)dt

≤ T

4
Pn+1(T )λ2c2

n+1 −
∫ T

0

V (t, w)dt

≤ T

4
Pn+1(T )c2

n+1‖w‖2 − r1r
−θ
4 ‖w‖θ + r2T ≤ 0

(3.13)

for ‖w‖ = R large enough. Finally, by (V2) for each ε > 0, there is δ ∈ (0, 1) such
that

|V (t, u)| ≤ ε|u|2 if |u| ≤ δ and t ∈ [0, T ].

By the Sobolev embedding Theorem, there exists a constant r5 > 0 such that

‖u‖C([0,T ]) = ‖u‖L∞[0,T ] ≤ r5‖u‖, ∀u ∈ X(T ). (3.14)

Let 0 < ρ < min{δ/r5, R} and ‖u‖ = ρ, then |u(t)| ≤ δ for all t ∈ [0, T ]. Therefore,∫ T

0

V (t, u(t))dt ≤ ε‖u‖2L2 .

Noticing 0 < pn+1(T ) < pn+2(T ) . . . for u ∈ E⊥
n ∩ Bρ(0), u =

∑∞
k=n+1 ck sin(kπt

T ),
we have

I(u;T ) =
T

4

∞∑
k=n+1

Pk(T )c2
k −

∫ T

0

V (t, u(t))dt,

≤ Pn+1(T )‖u‖2L2 − ε

∫ T

0

|u(t)|2dt,

≤ 1
2
Pn+1(T )‖u‖2L2 ≥ 0

(3.15)

if 0 < ε < 1
2Pn+1(T ). Then (3.12), (3.13) and (3.15) imply that (3.10) holds. Thus,

by Theorem 2.1, there exists a sequence (um) ⊂ X(T ) satisfies that

I(um;T )→ d0 ≥ 0, (3.16)

(1 + ‖um‖)I ′(um;T )→ 0. (3.17)

By Lemma 3.1, we may assume that um → u0 ∈ X(T ). And, by (3.17), we can
show that u0 is a critical point of I(u;T ). If d0 > 0, then u0 6= 0. If d0 = 0, then
dist(um, Z) → 0 by Theorem 2.1. Hence there is a sequence (vm) ⊂ Z such that
um − vm → 0 in X(T ), so vm → u0, thus ‖u0‖ = limm→∞ ‖vm‖ = ρ 6= 0. �

Lemma 3.3. Under the assumptions of Theorem 1.1, if 0 < T < T1, then the
functional I(u;T ) possesses a nontrivial critical point in X(T ).

Proof. We shall use Theorem 2.2 to prove the existence of the critical point of
I(u;T ). Under the condition 0 < T < T1, we have

0 < P1(T ) < P2(T ) < P3(T ) < . . . Pn(T ) < . . . . (3.18)
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Similar to Lemma 3.2, for 0 < ε < 1
2P1(T ), there exists δ ∈ (0, 1) such that

V (t, u) ≤ ε|u|2 if |u| ≤ δ and t ∈ [0, T ]. Then for every u =
∑∞

k=1 ck sin(kπt
T ) ∈

X(T ) such that ‖u‖ = ρ < δ/r5, where r5 is defined in (3.14), we have

I(u;T ) =
T

4

∞∑
k=1

Pk(T )c2
k −

∫ T

0

(V (t, u(t))dt,

≤ P1(T )‖u‖2L2 − ε

∫ T

0

|u(t)|2dt,

≤ 1
2
P1(T )‖u‖2L2

(3.19)

which is non-negative. Next, for some u ∈ E\{0} and all σ > 0, we have

I(σu;T ) =
σ2

2

∫ T

0

(u
′′2 + Au

′2 −Bu2)dt−
∫ T

0

V (t, σu)dt

≤ σ2

2
(
∫ T

0

(u
′′2 + Au

′2 −Bu2))dt− r1σ
θ

∫ T

0

|u|θdt + r2T.

(3.20)

Then I(σu;T ) → −∞ as σ → ∞. Hence, by Lemma 3.1 and Theorem 2.2, the
functional I(u;T ) has at least one nontrivial critical point in X(T ). �

The proof of Theorem 1.1 follows from combining Lemmas 3.1, 3.2 and 3.3.

4. Proof of Theorem 1.1

Lemma 4.1. Under the assumptions of Theorem 1.2, if T > T1 and T
T1

/∈ N, then
the functional I(u;T ) possesses a nontrivial critical point in X(T ).

Proof. In the same way as (3.7)-(3.9), we define En, Y and Z. Under the assump-
tions of Theorem 1.2, we can verify that (3.12), (3.13) and (3.15) still hold, whose
proofs are similar to that of Lemma 3.1 with the exception of the inequality (3.13)
resulting from (V3). In its place we proceed as follows

Still take e = cn+1 sin
( (n+1)πt

T

)
∈ E⊥

n with cn+1 such that ‖e‖ = 1, and let

w = u + λe =
n∑

k=1

ck sin(
kπt

T
) + λe, λ ≥ 0.

Then ‖w‖ = ‖u‖ + ‖λe‖ = ‖u‖ + λ. There exist r6, r
′
6 > 0 such that r′6‖w‖L2 ≤

‖w‖ ≤ r6‖w‖L2 , for all w ∈ En+1.
By (V3’), there exists r7 > 0 such that

V (t;u) ≥ (
T

4
Pn+1(T )c2

n+1r
2
6 + 1)|u|2 − r7, ∀t ∈ R, u ∈ R. (4.1)

Therefore,

I(w;T ) =
1
2

∫ T

0

(w
′′2 + Aw

′2 −Bw2))dt−
∫ T

0

V (t, w)dt

=
T

4

n∑
k=1

c2
kPk(T ) +

T

4
λ2Pn+1(T )c2

n+1 −
∫ T

0

V (t, w)dt

≤ T

4
λ2Pn+1(T )c2

n+1 −
∫ T

0

V (t, w)dt
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≤ T

4
Pn+1(T )c2

n+1r
2
6‖w‖2L2 − (

T

4
Pn+1(T )c2

n+1r
2
6 + 1)‖w‖2L2 + r7T

= −‖w‖2L2 + r7T

≤ −r−2
6 ‖w‖2 + r7T → −∞ (as ‖w‖ → ∞).

Hence, under the assumptions of Theorem 1.2, Y links Z, so, by Theorem 2.1, there
exists a sequence (um) ⊂ X(T ) such that (3.16) and (3.17) hold. We shall prove
that (um) is bounded in X(T ). If not, we may assume that ‖um‖ → ∞. From (V5),
we get

2I(um;T )− I ′(um;T )um =
∫ T

0

(um(t)Vu(t, um(t))− 2V (t, um(t)))dt,

≤ d3

∫
|um(t)|≥h

|um(t)|rdt + d4.

(4.2)

with d4 being a constant. By (3.16), (3.17) and (4.2), we obtain
1
‖um‖

∫
|um(t)|≥h

|um(t)|rdt→ 0. (4.3)

On the other hand, in view of (V4), we have

I ′(um;T )um

=
∫ T

0

(u
′′2
m + Au

′2
m −Bu2

m)dt−
∫ T

0

um(t)Vu(t, um)dt

≤
∫ T

0

(u
′′2
m + Au

′2
m −Bu2

m)dt− d1

∫ T

0

|um(t)|µ+1dt− d2

∫ T

0

|um(t)|dt

=
∫ T

0

(u
′′2
m + Au

′2
m −Bu2

m)dt− d1(
∫
|um(t)|≥h

|um(t)|µ+1dt

+
∫
|um(t)|≤h

|um(t)|µ+1dt)− d2

∫ T

0

|um(t)|dt

≤
∫ T

0

(u
′′2
m + Au

′2
m −Bu2

m)dt− d1‖um‖L∞
∫
|um(t)|≥h

|um(t)|µdt

− d2‖um‖L1 − d5

≤
∫ T

0

(u
′′2
m + Au

′2
m −Bu2

m)dt− d6‖um‖
∫
|um(t)|≥h

|um(t)|µdt

− d7‖um‖ − d5

≤
∫ T

0

(u
′′2
m + Au

′2
m −Bu2

m)dt− d6h
µ−r‖um‖

∫
|um(t)|≥h

|um(t)|rdt

− d7‖um‖ − d5,

(4.4)

with d5, d6, d7 being positive constants. The two sides of (4.4) are divided by ‖um‖2,
by (2.6), we have

I ′(um;T )um

‖um‖2
≥ ‖um‖2∗
‖um‖2

−B

∫ T

0

(
um

‖um‖
)2dt

− d6h
µ−r

∫
|um(t)|≥h

|um(t)|rdt

‖um‖
− d7‖um‖+ d5

‖um‖2
.

(4.5)
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Set ũm(t) = um(t)
‖um‖ , then ũm(t) = 1. We may assume that ũm(t) ⇀ χ ∈ X(T ) and

ũm(t)→ χ in C([0, T ]), and ‖um‖∗
‖um‖ → τ > 0. Letting m→∞ in (4.5), and by (4.2),

we have B
∫ T

0
(χ(t))2dt ≥ τ2 > 0, which implies the measure of Ω := {t ∈ [0, T ] :

χ(t)) 6= 0} is positive. For every t ∈ Ω, we have |um(t)| = ‖um‖|ũm(t)| → ∞, so by
(3.16), (3.17) and (V5), we have

2d0 ← 2I(um;T )− I ′(um;T )um

=
∫ T

0

(um(t)Vu(t, um(t))− 2V (t, um(t)))dt,

=
∫

Ω

(um(t)Vu(t, um(t))− 2V (t, um(t)))dt

+
∫

[0,T ]\Ω
(um(t)Vu(t, um(t))− 2V (t, um(t)))dt,

≤ d3

∫
Ω

|um(t)|rdt + a bounded term→∞,

(4.6)

which is a contradiction. Therefore, (um) is bounded in X(T ). Referring to (3.5)-
(3.6), we can show that um converges to some critical point u0 of I(u;T ) in X(T ).
Following the proof of Lemma 3.2, we also have u0 6= 0. �

Lemma 4.2. Under the assumptions of Theorem 1.2, if 0 < T < T1, then the
functional I(u;T ) possesses a nontrivial critical point in X(T ).

The proof of the above lemma is simple, so we omit it; see also Lemma 3.3.
The Proof of Theorem 1.2 follows from Lemma 4.1 and (4.2).

Acknowledgements. The authors would like to thank the anonymous referee for
the valuable suggestions.
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