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TWO COMPONENT REGULARITY FOR THE NAVIER-STOKES
EQUATIONS

JISHAN FAN, HONGJUN GAO

Abstract. We consider the regularity of weak solutions to the Navier-Stokes

equations in R3. Let u := (u1, u2, u3) be a weak solution and eu := (u1, u2, 0).
We prove that u is strong solution if ∇eu satisfy Serrin’s type criterion.

1. Introduction

In this article we study the regularity of the weak solutions of the Navier-Stokes
equations:

ut + u · ∇u+∇p−∆u = 0, (1.1)

div u = 0 in (0,∞)× R3, (1.2)

u|t=0 = u0, div u0 = 0 in R3 (1.3)

where u := (u1, u2, u3) represents the velocity and p represents the pressure.
The existence of global weak solutions for any initial data with finite energy is

known since the work of Leray [9]. The smoothness of Leray’s weak solution is not
known. While the existence of a regular solution is still an open problem, there are
many interesting sufficient conditions which guarantee that a given weak solution is
smooth. A well-known condition states that if u ∈ Lr(0, T ;Ls(R3)) with 2

r + 3
s = 1

and s ∈ [3,∞], then the solution u is actually regular [4, 5, 6, 12, 13, 14, 15]. A
similar condition ω = curlu ∈ Lr(0, T ;Ls(R3)) with 2

r + 3
s = 2 where 3

2 ≤ s ≤ ∞
also implies the regularity as shown by Beião da Veiga [2]. Chae and Choe [3] proved
that if ω̃ = (ω1, ω2, 0) ∈ Lr(0, T ;Ls(R3)) with 2

r + 3
s = 2 and 3

2 ≤ s <∞, then the
solution is regular. Kozono and Yatsu [7] showed that if ω̃ ∈ L1(0, T ;BMO), then
the solution remains smooth. Zhang and Chen [17] proved that u is regular if ω̃ ∈
L1(0, T ; Ḃ0

∞,∞). Bae and Choe [1] proved that u is strong if ũ ∈ Lr(0, T ;Ls(R3))
with 2

r + 3
s = 1 with s > 3. In [3], the authors also proved that u is strong if

∇ũ ∈ Lr(0, T ;Ls) with 2
r + 3

s ≤ 1, 2 ≤ r ≤ ∞ and 3 ≤ s ≤ ∞, which is not optimal
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from the scaling argument. Here we would like to improve the regularity criterion
on ∇ũ in such a way that it undergoes the correct scaling.

There have been many efforts to show that analogous conditions on only one
component of the velocity or the gradient of velocity imply the regularity of solutions
but all the results are partial, see [8], citez2, z3 and the references there in.

We say that a function belongs to the multiplier spaces M(Ḣr, L2) if it maps,
by point-wise multiplication, Ḣr in L2:

Ẋr := M(Ḣr, L2) := {f ∈ S ′, ‖fφ‖L2 ≤ C‖φ‖Ḣr}. (1.4)

Similarly we can define Ẏ1+r := M(Ḣr, Ḣ−1) and Ẏ
(0)
2 denotes the closure of the

Schwartz class S in Ẏ2. We denote Λ := (−∆)
1
2 , then Ẏ2 = Λ2BMO [10], Ẋr and

Ẏ1+r have been characterized in [10, 11].
Now we are in a position to state the main result in this paper.

Theorem 1.1. Let u0 ∈ H1. Assume that one of the following four conditions
holds:

∇ũ ∈ L
2

2−r (0, T ; Ẋr) for some r ∈ [0, 1), (1.5)

∇ũ ∈ L
2

1−r (0, T ; Ẏ1+r) for some r ∈ [0, 1), (1.6)

∇ũ ∈ C([0, T ]; Ẏ (0)
2 ), (1.7)

∇ũ ∈ L1(0, T ; Ḃ0
∞,∞). (1.8)

Then
u ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2). (1.9)

Here and thereafter, Ḃs
p,q stands for the homogeneous Besov space, see below for

the definition.

Remark 1.2. Since L∞ ( BMO ( Ḃ0
∞,∞, L

3
r ⊂ L

3
r ,∞ ⊂ Ẋr and L

3
1+r ⊂

L
3

1+r ,∞ ⊂ Ẏ1+r, our results improve that given in [3].

2. Preliminaries

We introduce the Littlewood-Paley decomposition. Let S(R3) be the Schwartz
class of rapidly decreasing function. Given f ∈ S(R3), its Fourier transform Ff =
f̂ is defined by

f̂(ξ) =
∫

R3
e−ixξf(x)dx,

and its inverse Fourier transform F−1f = f∨ is defined by

f∨(x) = (2π)−3

∫
R3
eixξf(ξ)dξ.

Let us choose a nonnegative radial function φ ∈ S(R3) such that

0 ≤ φ̂(ξ) ≤ 1, φ̂(ξ) =

{
1, if |ξ| ≤ 1,
0, if |ξ| ≥ 2,

and let

ψ(x) = φ(x)− 2−3φ
(x
2
)
, φj(x) = 23jφ(2jx), ψj(x) = 23jψ(2jx), j ∈ Z.
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For j ∈ Z, the Littlewood-Paley projection operators Sj and ∆j are, respectively,
defined by

Sjf = φj ∗ f, (2.1)

∆jf = ψj ∗ f. (2.2)

Observe that ∆j = Sj − Sj−1. Also, if f is an L2 function, then Sjf → 0 in
L2 as j → −∞ and Sjf → f in L2 as j → +∞ (this is an easy consequence of
Parseval’s theorem). By telescoping the series, we thus have the Littlewood-Paley
decomposition

f =
+∞∑

j=−∞
∆jf, (2.3)

for all f ∈ L2, where the summation is in the L2 sense. Notice that

∆jf =
j+2∑

l=j−2

∆l(∆jf) =
j+2∑

l=j−2

ψl ∗ ψj ∗ f,

then from the Young inequality, it follows that

‖∆jf‖Lq ≤ C23j( 1
p−

1
q )‖∆jf‖Lp , (2.4)

where 1 ≤ p ≤ q ≤ ∞, C is a constant independent of f, j.
Let s ∈ R, p, q ∈ [1,∞], the homogeneous Besov space Ḃs

p,q is defined by the
full-dyadic decomposition such as

Ḃs
p,q = {f ∈ Z ′(R3) : ‖f‖Ḃs

p,q
<∞},

where

‖f‖Ḃs
p,q

=
( +∞∑

j=−∞
2jsq‖∆jf‖q

Lp

)1/q

and Z ′(R3) denotes the dual space of Z(R3) = {f ∈ S(R3) : Dαf̂(0) = 0;∀α ∈ N3}.
We refer to [16] for more detailed properties.

3. Proof of Theorem 1.1

We set
|∇u|2 =

∑
i,k

|∂kui|2, |∇2u|2 =
∑
i,j,k

|∂k∂jui|2.

Differentiating both sides of equation (1.1) with respect to xk, taking the scalar
product with ∂ku, adding over k and, finally, integrating by parts over Rn, we show
that

1
2
d

dt

∫
|∇u|2dx+

∫
|∇2u|2dx = −

∫
∇[(u · ∇)u] · ∇udx

=
∑
i,j,k

∫
∂kui · ∂iuj · ∂kujdx.

Following [1], we consider separately the three cases i 6= 3; i = 3 and j 6= 3;
i = j = 3. We only need to deal with the case i = j = 3. Since ∂3u3 = −∂1u1−∂2u2,



4 J. FAN, H. GAO EJDE-2009/121

it readily follows that∫
∂kui · ∂iuj · ∂kujdx = −

∫
∂ku3 · (∂1u1 + ∂2u2) · ∂ku3dx

≤ 2
∫
|∇ũ| · |∇u|2dx.

And thus we get

1
2
d

dt

∫
|∇u|2dx+

∫
|∇2u|2dx ≤ 2

∫
|∇ũ| · |∇u|2dx =: I. (3.1)

Now we assume that (1.5) holds. Then

I ≤ 2‖∇u‖L2 · ‖ |∇ũ| · |∇u| ‖L2

≤ 2‖∇u‖L2 · ‖∇ũ‖Ẋr
‖∇u‖Ḣr

≤ C‖∇u‖L2 · ‖∇ũ‖Ẋr
‖∇u‖1−r

L2 ‖∇2u‖r
L2

by the interpolation inequality

‖w‖Ḣr ≤ C‖w‖1−r
L2 ‖∇w‖r

L2 , (3.2)

whence
I ≤ ε‖∇2u‖2L2 + C‖∇ũ‖

2
2−r

Ẋr
‖∇u‖2L2 ,

for any ε > 0 by Young’s inequality. Inserting the above estimates into (3.1) and
taking ε small enough and the Gronwall’s inequality yield (1.9).

Next we assume that (1.6) holds. Then

I ≤ 2‖∇u‖Ḣ1‖ |∇ũ| · |∇u| ‖Ḣ−1

≤ C‖∇u‖Ḣ1‖∇ũ‖Ẏ1+r
‖∇u‖Ḣr

≤ C‖∇2u‖L2‖∇ũ‖Ẏ1+r
‖∇u‖1−r

L2 ‖∇2u‖r
L2 (by (3.2))

≤ ε‖∇u‖2L2 + C‖∇ũ‖
2

1−r

Ẏ1+r
‖∇u‖2L2

for any ε > 0 by Young’s inequality. Inserting the above estimates into (3.1) and
taking ε small enough and the Gronwall’s inequality give (1.9).

Now we assume that (1.7) holds. For any ε > 0, then there exist α and β such
that ∇ũ = α+ β, ‖α‖L∞(0,T ;Y2) ≤ ε and β ∈ L∞((0, T )× R3),

I ≤ 2
∫
|α| · |∇u|2dx+ 2‖β‖L∞‖∇u‖2L2

≤ 2‖∇u‖Ḣ1‖| α| · ∇u‖Ḣ−1 + C‖∇u‖2L2

≤ 2‖∇u‖Ḣ1‖α‖Ẏ2
‖∇u‖Ḣ1 + C‖∇u‖2L2

≤ 2ε‖∇2u‖2L2 + C‖∇u‖2L2 .

Inserting the above estimates into (3.1) and taking ε small enough and then the
Gronwall’s inequality show (1.9).

Finally we assume that (1.8) holds. Then using the Littlewood-Paley decompo-
sition (2.3), we decompose ∇ũ as follows:

∇ũ =
+∞∑

`=−∞

∆`(∇ũ) =
∑

`<−N

∆`(∇ũ) +
N∑

`=−N

∆`(∇ũ) +
∑
`>N

∆`(∇ũ).
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Here N is a positive integer to be chosen later. Substituting this into I, we have

I ≤ 2
∑

`<−N

∫
|∆`(∇ũ)| |∇u|2dx+ 2

N∑
`=−N

∫
|∆`(∇ũ)| |∇u|2dx

+ 2
∑
`>N

∫
|∆`(∇ũ)| |∇u|2dx

=: I1 + I2 + I3.

(3.3)

For I1, from the Hölder inequality and (2.4), it follows that

I1 ≤ 2
∑

`<−N

‖∆`(∇ũ)‖L∞‖∇u‖2L2

≤ 2‖∇u‖2L2

∑
`<−N

2
3
2 `‖∆`(∇ũ)‖L2

≤ C2−
3
2 N‖∇u‖2L2‖∇ũ‖L2 ≤ C2−

3
2 N‖∇u‖3L2 .

For I2, from the Hölder inequality, it follows that

I2 ≤ 2‖∇u‖2L2

N∑
`=−N

‖∆`(∇ũ)‖L∞

≤ C‖∇u‖2L2 ·N‖∇ũ‖Ḃ0
∞,∞

= CN‖∇u‖2L2‖∇ũ‖Ḃ0
∞,∞

.

For I3, from the Hölder inequality and (2.4), it follows that

I3 ≤ 2‖∇u‖2L3

∑
`>N

‖∆`(∇ũ)‖L3

≤ C‖∇u‖2L3

∑
`>N

2
`
2 ‖∆`(∇ũ)‖L2

≤ C‖∇u‖2L3

( ∑
`>N

2−`
)1/2( ∑

`>N

22`‖∆`(∇ũ)‖2L2

)1/2

≤ C‖∇u‖2L32−
N
2 ‖∇2ũ‖L2

≤ C2−
N
2 ‖∇u‖2L3‖∇2u‖L2

≤ C2−
N
2 ‖∇u‖L2‖∇2u‖2L2

by the Gagliardo-Nirenberg inequality

‖∇u‖2L3 ≤ C‖∇u‖L2‖∇2u‖L2 .

Inserting the above estimates into (3.3), we find that

I ≤ C2−
3
2 N‖∇u‖3L2 + CN‖∇ũ‖Ḃ0

∞,∞
‖∇u‖2L2 + C2−

N
2 ‖∇u‖L2‖∇2u‖2L2 .

Now we choose N so that C2−
N
2 ‖∇u‖L2 ≤ 1

2 ; i.e.,

N ≥ 2 +
2 log+(2C‖∇u‖L2)

log 2
.

Then
I ≤ C + C‖∇u‖2L2 + C‖∇u‖2L2 log(e+ ‖∇u‖L2) +

1
2
‖∇2u‖2L2 .
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Insetting the above estimates into (3.1) and the Gronwall’s inequality give (1.9).
This completes the proof.
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