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INFINITE MULTIPLICITY OF POSITIVE SOLUTIONS FOR
SINGULAR NONLINEAR ELLIPTIC EQUATIONS WITH
CONVECTION TERM AND RELATED SUPERCRITICAL

PROBLEMS

CARLOS C. ARANDA

Abstract. In this article, we consider the singular nonlinear elliptic problem

−∆u = g(u) + h(∇u) + f(u) in Ω,

u = 0 on ∂Ω.

Under suitable assumptions on g , h, f and Ω that allow a singularity of g at

the origin, we obtain infinite multiplicity results. Moreover, we state infinite
multiplicity results for related boundary blow up supercritical problems and

for supercritical elliptic problems with Dirichlet boundary condition.

1. Introduction and statement of main results

In 1869, Lane [19] introduced the equation

−∆u = up (1.1)

for p a nonnegative real number and u > 0 in a Ball of radius R in R3, with Dirichlet
boundary conditions. Lane was interested in computing both the temperature and
the density of mass on the surface of the sun. Today the problem (1.1) is named
Lane-Emden-Fowler equation [9, 11]. Singular Lane-Emden-Fowler equations (p <
0) has been considered in a remarkable pioneering paper by Fulks and Maybe [12].
Nonlinear singular elliptic equations arise in applications, for example in glacial
advance [26], ecology [13], in transport of coal slurries down conveyor belts [7],
micro-electromechanical system device [10] etc.

Nonlinear singular elliptic equations have been studied intensively during the last
40 years, for a detailed review out of our scope in this article, see Hernández and
Mancebo [21], and the recent book by Ghergu and Rădulescu [17]. Multiplicity is a
question with few results. Apparently, the first multiplicity result for the problem

−∆u = K(x)u−p + uq in Ω,

u = 0 on ∂Ω,
(1.2)
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where Ω is smooth bounded domain and

0 < p < 1 < q ≤ N + 2
N − 2

,

was obtained by Yijing et al. [27] using variational methods. Similar results con-
cerning the existence of at least two solutions K(x) ≡ λ, it can be encountered in
[20, 23, 28] with similar restrictions on p, q. A related multiplicity result is stated
by Adimurthi and Giacomoni [1] for singular critical problems in domains of R2,
allowing 0 < p < 3. In dimension N = 1 results on multiplicity can be found,
for example, in Agarwal and O’Reagan [5]. For strong singularities, Aranda and
Godoy [3] stated the following theorem.

Theorem 1.1 ([3]). Let Ω be a smooth bounded domain in RN , N ≥ 3. Suppose
the following conditions hold:

(1) g : (0,∞) → (0,∞) is non increasing locally Hölder continuous function
(that may be singular at the origin) ;

(2) f is locally Hölder continuous, infs>0 f(s)/s > 0 and lims→∞ f(s)/sp < ∞
for some p ∈ (1, N

N−2 ];
(3) Ω is a strictly convex domain in RN .

Then the problem

−∆u = g(u) + λf(u) in Ω,

u = 0 on ∂Ω,

has at least two positive solutions for λ positive and small enough and that λ = 0
is a bifurcation point from infinity for this problem.

Our first result in this article is as follows.

Theorem 1.2. Let Ω be a smooth bounded domain in RN , N ≥ 3. Suppose the
following conditions hold:

(1) g : (0,∞) → (0,∞) is non increasing locally Hölder continuous function
(that may be singular at the origin);

(2) f is continuous, nonnegative and non decreasing function with f(0) = 0;
(3) f(ξi) ≥ βξi, f(ηi) ≤ αηi with

ξ1 < η1 < · · · < ξi < ηi < ξi+1 < · · · < ξm, m ≤ ∞;

(4) βC(Ω)(
∫

K
ϕ1)ϕ1 ≥ 1, on K ⊂ Ω compact where ϕ1, λ1 are the principal

eigenfunction an principal eigenvalue of the operator −∆ (−∆ϕ1 = λ1ϕ1)
with Dirichlet boundary conditions;

(5) v + αηie ≤ ηi, where

−∆v = g(v) in Ω,

v = 0 on ∂Ω,

and

−∆e = 1 in Ω,

e = 0 on ∂Ω.

Then the problem
−∆u = g(u) + f(u) in Ω,

u = 0 on ∂Ω,
(1.3)
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has m ≤ ∞ nonnegative classical solutions. Moreover the problem

−∆u = g(u) + f(u) in Ω,

u = ε on ∂Ω,
(1.4)

has 2m− 1 ≤ ∞ nonnegative classical solutions for all ε > 0.

The behavior of the function f in Theorem 1.2 is closely related to a similar non-
linearity studied by Kielhöfer and Maier in [24]. Under our best knowledge this is
the first result on infinite multiplicity for nonlinear singular equations. Hernández,
Mancebo and Vega obtained the following theorem.

Theorem 1.3 ([22]). Let Ω be a smooth bounded domain in RN , N ≥ 3. Suppose
the following conditions hold: −1 < q < 1, p < q and λ > 0. Then the problem

−∆u = λu−q − u−p in Ω,

u = 0 on ∂Ω,
(1.5)

has a unique nonnegative classical solution.

Our second Theorem is related to multiplicity of a nonlinear eigenvalue problem.

Theorem 1.4. Let Ω be a smooth bounded domain in RN , N ≥ 3. Suppose the
following conditions hold:

(1) 0 < p < q;
(2) f is continuous, nonnegative and non decreasing function with f(0) = 0;
(3) f(ξi) ≥ βξi, f(ηi) ≤ αηi with

ξ1 < η1 < · · · < ξi < ηi < ξi+1 < · · · < ξm ≤
(qλ

p

) 1
q−p

(4) βC(Ω)(
∫

K
ϕ1)ϕ1 ≥ 1, on K ⊂ Ω compact;

(5) λ
1

q+1 v + αηie ≤ ηi, where

−∆v = v−q in Ω,

v = 0 on ∂Ω,

and

−∆e = 1 in Ω,

e = 0 on ∂Ω.

(6) λ
1

1+q ‖v‖∞ ≤
(

qλ
p

) 1
q−p .

Then the problem
−∆u = λu−q − u−p + f(u) in Ω,

u = 0 on ∂Ω,
(1.6)

has m nonnegative classical solutions. Moreover the problem

−∆u = λu−q − u−p + f(u) in Ω,

u = ε on ∂Ω,
(1.7)

has 2m− 1 nonnegative classical solutions for all ε > 0 small enough.
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Existence and nonexistence results for singular nonlinear elliptic equations with
convection term have been stated by Zhang [29], Zhang and Yu [30], Ghergu and
Rădulescu [15, 16]. Multiplicity for singular Lane-Emden-Fowler equation with
convection term is a topic essentially open. A result was stated by Aranda and
Lami Dozo in [4]:

Theorem 1.5 ([4]). Let Ω be a smooth bounded domain in RN , N ≥ 3. Suppose
the following conditions hold:

(1) 0 < p < 1
N , 1 < q < N+1

N−1 and 0 < s < 2
N ;

(2) w ∈ L∞(Ω), w > 0;

(3) 0 ≤ ν < C
{ R

Ω wϕ1dx
R
Ω ϕ2

1dxR
Ω ϕ1dx

}p−1 where ϕ1, λ1 are the principal eigenfunc-
tion an principal eigenvalue of the operator −∆ (−∆ϕ1 = λ1ϕ1) with
Dirichlet boundary conditions and C is a constant depending only in Ω,
q, λ1.

Then there exist 0 < λ∗∗ ≤ λ∗ < ∞ such that for all λ ∈ (0, λ∗∗), the problem

−∆u = u−p + λ(uq + ν|∇u|s) + w(x) in Ω,

u = 0 on ∂Ω,

admits at least two solutions and no solutions for λ > λ∗. Furthermore there is
bifurcation at infinity at λ = 0.

Our third result in this article, it is concerned with infinite multiplicity for non-
linear elliptic equations with strong singularity and convection term.

Theorem 1.6. Let Ω be a smooth bounded domain in RN , N ≥ 3. Suppose the
following conditions hold:

(1) g and f satisfies conditions (1)–(4) of Theorem 1.2;
(2) h is a locally Hölder continuous function on RN and 0 ≤ h(∇u) ≤ b1|∇u|s+

b0, 0 < s < 1;
(3) ηi ≥ b1

(
ηi‖∇e‖L∞(Ω)

)s + b0 + g(ε) + αηi for all i, where

−∆e = 1 in Ω,

e = ε on ∂Ω.

(4) ε + exp(d(Ω)) ≤ 2 where d(Ω) is the distance between two parallel planes
containing Ω.

Then the problem
−∆u = g(u) + h(∇u) + f(u) in Ω,

u = 0 on ∂Ω,
(1.8)

has m ≤ ∞ nonnegative classical solutions.

Remark 1.7. Condition (4) indicates a deep relation between the domain, the
convection term and multiplicity.

The existence of at least three solutions, for singular nonlinear elliptic problems,
using variational methods is a difficult task. Next, we apply a classical compen-
sated compactness technique from the calculus of variations, for derive our fourth
Theorem.

Theorem 1.8. Let Ω be a smooth bounded domain in RN , N ≥ 3 and 0 < p < 1.
Suppose the following conditions hold:
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Figure 1. Double resonance of f

(1) f is continuous, nonnegative and non decreasing function with f(0) = 0;
(2) f(ξi) ≥ βξi, f(ηi) ≤ αηi with

ξ1 < η1 < · · · < ξi < ηi < ξi+1 < · · · < ξm;

(3) With κ, we denote the indicator function of a compact set K ⊂ Ω. We
assume that the problem

−∆u + u|∇u|2 = βξiκ in Ω,

u = 0 on ∂Ω,

has at least a solution u ∈ W2,r(Ω), r > N with u ≥ ξiκ;
(4) v(x) + αηie(x) < ηi for all x ∈ Ω, where

−∆v = v−p in Ω,

v = 0 on ∂Ω,

and

−∆e = 1 in Ω,

e = 0 on ∂Ω.

Then the problem

−∆u + u|∇u|2 = u−p + f(u) in Ω,

u = 0 on ∂Ω,
(1.9)

has m solutions in H1,2
0 (Ω).

Remark 1.9. Condition (3) indicates again a complex relation between domain,
convection term and multiplicity.

For large solutions Ghergu et al. stated the following result.

Theorem 1.10 ([14]). Let Ω be a smooth bounded domain in RN , N ≥ 3. Suppose
the following conditions hold:
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(1) f ∈ C1[0,∞), f ′ ≥ 0, f(0) = 0 and f > 0 on (0,∞);
(2)

∫∞
1

[F (t)]−2/a
dt < ∞, where

(3) F (t)
f2/a → 0 as t → 0;

(4) p, q ∈ C0,γ(Ω) are nonnegative functions such that for every x0 ∈ Ω with
p(x0) = 0, there exists a domain Ω0 3 x0 such that Ω0 ⊂ Ω and p > 0 on
∂Ω0;

(5) 0 < a < 2.
Then the problem

∆u + q(x)|∇u|a = p(x)f(u) in Ω,

u = ∞ on ∂Ω,
(1.10)

has a nonnegative solution.

Related to the above Theorem, we have our fifth result:

Theorem 1.11. Let Ω be a smooth bounded domain in RN , N ≥ 3. Suppose:
f(s) = s2f̃( 1

s ), satisfies (2)–(5) of Theorem 1.2 with g(u) = u2−p, p > 2. Then the
problem

∆v =
2
v
|∇v|2 + vp + f̃(u) in Ω,

u = ∞ on ∂Ω,
(1.11)

has m ≤ ∞ nonnegative classical solutions. Moreover the problem

∆v =
2
v
|∇v|2 + vp + f̃(u) in Ω,

u = M on ∂Ω,
(1.12)

has 2m− 1 ≤ ∞ nonnegative classical solutions for all M > 0 big enough.

Theorem 1.12. Let Ω be a smooth bounded domain in RN , N ≥ 3. Suppose the
following conditions hold:

(1) f(s) = s2f̃( 1
s ) satisfies (2)–(4) of Theorem 1.2;

(2) 2 < q < p;

(3) 0 < ε ≤
(

q−2
p−2

) 1
p−q ;

(4) v + αηie ≤ ηi, where

−∆e = 1 in Ω,

e =
1
ε

on ∂Ω,

and

−∆v = v2−q − v2−p in Ω,

v =
1
ε

on ∂Ω.

Then the problem

−∆z +
2
z
|∇z|2 + f̃(z) + zq = zp in Ω,

z = ε on ∂Ω,
(1.13)

has 2m− 1 ≤ ∞ nonnegative classical solutions.
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2. Preliminaries

It is our purpose in this section to prove some preliminary results. Let us start
with some known facts about the Laplacian operator and solution properties of
nonlinear singular elliptic equations.

Lemma 2.1 ([8, 6, Uniform Hopf maximum principle.]). Let Ω be a smooth and
bounded domain in RN , N ≥ 3. Suppose that

−∆u = h on Ω,

u = 0 in ∂Ω,

with u ∈ W1,1
0 (Ω) and h ≥ 0, h ∈ L1(Ω). Then

u ≥ C
( ∫

Ω

hϕ1

)
ϕ1,

where C = C(Ω) depends only on Ω and

−∆ϕ1 = λ1ϕ1 in Ω,

ϕ1 > 0 in Ω,

ϕ1 = 0 on ∂Ω.

Remark 2.2. The proof of Lemma 2.1 given by Brezis and Cabre in [6] relies on
the superharmonicity of the laplacian operator.

Theorem 2.3 ([3]). Let P be the positive cone in L∞(Ω). Let Sε : P → P be the
solution operator for the problem

−∆u = g(u) + w in Ω,

u = ε on ∂Ω,

gives Sε(w) = u where ε ≥ 0 and g : (0,∞) → (0,∞) is nonincreasing locally Hölder
continuous function (that may be singular at the origin). Then Sε : P → P is a
continuous, non decreasing and compact map with Sε0(w) ≤ Sε1(w) for ε0 < ε1.

Lemma 2.4. Let Ω be a smooth bounded domain in RN , N ≥ 3. Let u, v ∈
C2(Ω) ∩ C(Ω) be solutions of the problem

−∆u− g(u)− h(∇u) ≥ −∆v − g(v)− h(∇v) in Ω,

u ≥ v ≥ 0 on ∂Ω.

Then u ≥ v on Ω.

Proof. Indeed suppose v > u somewhere and consider the non empty open set

Ωδ = {x ∈ Ω|v(x) > u(x) + δ, δ > 0}.

Since u, v ∈ C2(Ω), we have

−∆(u + δ)− h(∇(u + δ)) = g(u) + q

≥ g(v) + r

= −∆v − h(∇v) on Ωδ,

with q, r ∈ C(Ωδ) and Ωδ ⊂ Ω. Also u + δ = v on ∂Ωδ and so the comparison
Theorem 10.1 [18] implies u + δ ≥ v on Ωδ. It follows Ωδ = ∅ a contradiction. �
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Lemma 2.5. Let Ω be a smooth bounded domain in RN , N ≥ 3. Suppose the
following conditions hold:

(1) g : (0,∞) → (0,∞) is non increasing locally Hölder continuous function
(that may be singular at the origin);

(2) h is locally Hölder continuous function on RN with 0 ≤ h(∇u) ≤ b1|∇u|s +
b0, 0 < s < 1;

(3) w is a nonnegative locally Hölder continuous function on Ω.
Then the problem

−∆u = g(u) + h(∇u) + w(x) in Ω,

u = ε ≥ 0 on ∂Ω,
(2.1)

has a unique solution u ∈ C2(Ω) ∩ C(Ω).

Proof. Let gj : R → R be a non increasing and locally Hölder continuous function
defined by

gj(s) =

{
g(s) if s ≥ 1

j ,

Cj if s ≤ 1
j+1 .

Using [18, Theorem 15.11], the problem

−∆u = gj(u) + h(∇u) + w(x) on Ω,

u = ε > 0 in ∂Ω,

has a classical solution. From

∆uj−1 + gj(uj−1) + h(∇uj−1) + w(x) ≥ ∆uj−1 + gj−1(uj−1) + h(∇uj−1) + w(x)
= 0

= ∆uj + gj(uj) + h(∇uj) + w(x) in Ω,

uj−1 = uj = ε on ∂Ω, using [18, Theorem 10.1], we infer uj−1 ≤ uj in Ω. Therefore
for j big enough there exists an unique uε = uj solution of

−∆uε = g(uε) + h(∇uε) + w(x) in Ω,

uε = ε on ∂Ω.

If ε0 < ε1, for j big enough, we have

∆uε0 + gj(uε0) + h(∇uε0) + w(x) = ∆uε1 + gj(uε1) + h(∇uε1) + w(x),

on Ω, uε0 < uε1 in ∂Ω, using Theorem 10.1 [18], we deduce uε0 < uε1 on Ω. From
the inequalities

−∆uε = g(uε) + h(∇uε) + w(x)

≥ g(u1)
= −∆M in Ω,

uε = ε > 0 = M on ∂Ω,

we obtain uε > r on Ω. [18, Theorem 15.8] implies

−∆uε = g(uε) + h(∇uε) + w(x) ≤ g(M) + C,

on Ω′ ⊂ Ω. Using [18, Theorem 9.11], we have

‖uε‖W2,r(Ω′) ≤ C(‖uε‖Lr(Ω′) + C) ≤ C(‖u1‖Lr(Ω′) + C),



EJDE-2009/124 INFINITE MULTIPLICITY 9

with r > N . By the Sobolev imbedding [18, Theorem 7.26] uε → u, in C1,γ(Ω′). A
standard bootstrap argument implies that u ∈ C2(Ω)∩C(Ω) is a classical solution
of problem (2.1). The unicity follows from Lemma 2.4. �

Lemma 2.6. Let Ω be a smooth bounded domain in RN , N ≥ 3. Suppose the
following conditions hold:

(1) g : (0,∞) → (0,∞) is non increasing locally Hölder continuous function
(that may be singular at the origin);

(2) h is locally Hölder continuous function on RN with 0 ≤ h(∇u) ≤ b1|∇u|s +
b0, 0 < s < 1;

(3) w is a nonnegative locally Hölder continuous function on Ω and continuous
on Ω.

Then the problem

−∆u = g(u) + h(∇u) + w(x) in Ω,

u = ε ≥ 0 on ∂Ω,
(2.2)

has a unique solution uε ∈ C2(Ω) ∩ C(Ω). Moreover if 0 < ε then u0 < uε.

Proof. Let wϑ : Ω → R+ be a nonnegative locally Hölder continuous function on Ω
defined by

wϑ(x) =

{
w(x) if d(x, ∂Ω) ≥ ϑ,

0 if d(x, ∂Ω) ≤ ϑ
2 .

Let us consider the problems

−∆uϑ = g(uϑ) + h(∇uϑ) + wϑ(x) in Ω,

uϑ = 0 on ∂Ω,

and

−∆uε,ϑ = g(uϑ) + h(∇uϑ) + wϑ(x) in Ω,

uε,ϑ = ε on ∂Ω.

Let us suppose that wϑ1 < wϑ0 if ϑ0 < ϑ1. Using Lemma 2.4, we obtain uε,ϑ1 <
uε,ϑ0 and uϑ1 < uϑ0 on Ω. By construction, we know that uϑ ≤ uε,ϑ. By Lemma
2.5, the problem

−∆vε = g(vε) + h(∇vε) + ‖w‖L∞(Ω) on Ω,

vε = ε in ∂Ω,

has a unique classical solution vε. Using the comparison [18, Theorem 10.1], we
conclude that uε,ϑ ≤ vε. It follows that uϑ(x) ↗ u0(x) ≤ vε(x) for all x ∈ Ω and
for ϑ ↘ 0.

Using [18, Theorem 15.8], the standard bootstrap argument and Lemma 2.4, we
infer that the problem (2.2) with ε = 0 has a unique solution u0 ∈ C2(Ω) ∩ C(Ω).

Similar arguments also yield uε,ϑ(x) ↗ uε(x) ≤ vε(x), for all x ∈ Ω and for ϑ ↘
0. Therefore, we get that the problem (2.2) has a unique solution uε ∈ C2(Ω)∩C(Ω),
for ε > 0. �
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Lemma 2.7. Let Ω be a smooth bounded domain in RN , N ≥ 3. Suppose that
0 < p < 1, 0 < δ and 0 ≤ w(x) ∈ L∞(Ω). Then the problem

−∆uε,δ +
uε,δ|∇uj,ε,δ|2

1 + δuε,δ|uε,δ|2
= u−p

ε,δ + w(x) in Ω,

uε,δ = ε on ∂Ω,

(2.3)

has a unique solution uε,δ ∈ W2,r(Ω) ∩ C(Ω) for all r > 1, satisfying:
(a) Let P be the positive cone in L∞(Ω). Let Sε,δ : P → P be the solution

operator for the problem (2.3), gives Sε,δ(w) = uε,δ. Then Sε,δ : P → P is
continuous, compact and non decreasing map.

(b) If ε0 < ε1, then Sε0,δ(w) ≤ Sε1,δ(w).
(c) If δ0 < δ1, then Sε,δ0(w) ≤ Sε,δ1(w).
(d) infΩ′ uε,δ ≥ C, Ω

′ ⊂ Ω, where C = C(p, Ω′, w(x)) is a constant independent
of ε, δ and C(α, Ω′, 0) > 0.

(e) For 0 < ε, δ < 1, we have ‖uε,δ − ε‖H1,2
0 (Ω) ≤ C, where C is a constant

independent of ε and δ.

Remark 2.8. Items (a)–(c) contain the monotone and compactness properties of
approximate solutions. Item (d) is a uniform Harnack inequality. Item (e) contains
a uniform bound necessary for the compensated compactness technique.

Proof of Lemma 2.7. Let gj : R → R be a non increasing and locally Hölder con-
tinuous function defined by

gj(s) =

{
s−p if s ≥ 1

j ,

Cj if s ≤ 1
j+1 .

Using a standard argument involving Lr estimates [18, Theorem 9.10], Sobolev
imbedding [18, Theorem 7.26], [18, Theorem 10.1] and the Schauder fixed point
Theorem, we deduce that the problem

−∆uj,ε,δ +
uj,ε,δ|∇uj,ε,δ|2

1 + δuj,ε,δ|∇uj,ε,δ|2
= gj(uj,ε,δ) + w(x) in Ω,

uj,ε,δ = ε on ∂Ω,

has a unique solution uj,ε,δ ∈ W2,r(Ω) ∩ C(Ω) for all r > 1. If w ∈ Lr(Ω), r > N ,
then by [18, Theorem 7.26], uj,ε,δ ∈ W2,r(Ω) ↪→ C1,γ(Ω) for some γ > 0. Calling

bδ(u,∇u) =
u|∇u|2

1 + δu|∇u|2
,

we deduce

−∆uj,ε,δ + bδ(uj,ε,δ,∇uj,ε,δ)− gj+1(uj,ε,δ)

≤ −∆uj,ε,δ + bδ(uj,ε,δ,∇uj,ε,δ)− gj(uj,ε,δ)

= w(x)

= −∆uj+1,ε,δ + bδ(uj+1,ε,δ,∇uj+1,ε,δ)− gj+1(uj+1,ε,δ)

in Ω and uj+1,ε,δ = uj,ε,δ = ε on ∂Ω. Using Theorem 10.1 [18], we obtain that
uj+1,ε,δ > uj,ε,δ in Ω. Moreover from

−∆uj,ε,δ + bδ(uj+1,ε,δ,∇uj+1,ε,δ) = gj(uj,ε,δ) + w(x) ≥ −∆ε + bδ(ε,∇ε) in Ω,
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and uj,ε,δ = ε on ∂Ω, using again [18, Theorem 10.1], we conclude uj,ε,δ > ε on Ω.
Letting uε,δ = limj→∞ uj,ε,δ, we have

−∆uε,δ + bδ(uε,δ,∇uε,δ) = u−p
ε,δ + w(x) in Ω,

uε,δ = ε on ∂Ω.

Using standard Nemytskii mappings properties and Sobolev Imbedding Theorems,
we demonstrate the continuity and compacity of the map Sδ,ε. This states (a).

Comparison [18, Theorem 10.1] implies if ε0 < ε1 then Sε0,δ(w) = uε0,δ < uε1,δ =
Sε1,δ(w) in Ω. This establishes (b).

We demonstrate now (c). We suppose that the set

Ω̂ = {x ∈ Ω : Sε,δ1(w(x)) < Sε,δ0(w(x))},

is nonempty for δ1 > δ0 > 0. It follows that

−∆Sε,δ1(w) +
Sε,δ1(w)|∇Sε,δ1(w)|2

1 + δ0Sε,δ1(w)|∇Sε,δ1(w)|2

≥ −∆Sε,δ1(w) +
Sε,δ1(w)|∇Sε,δ1(w)|2

1 + δ1Sε,δ1(w)|∇Sε,δ1(w)|2

= (Sε,δ1(w))−p + w(x)

≥ (Sε,δ0(w))−p + w(x)

= −∆Sε,δ0(w) +
Sε,δ0(w)|∇Sε,δ0(w)|2

1 + δ0Sε,δ0(w)|∇Sε,δ0(w)|2
on Ω̂,

and Sε,δ1(w(x)) = Sε,δ0(w(x)) on ∂Ω̂. Using Theorem 10.1 [18], we infer Sε,δ1(w) >

Sε,δ0(w) on Ω̂. This contradiction implies Sε,δ1(w) ≤ Sε,δ0(w). We also have

−∆uε,δ + bδ(uε,δ,∇uε,δ) ≥ −∆uε,δ + bδ(uε,δ,∇uε,δ)− w(x)

= u−p
ε,δ

≥ u−p
1,δ

= −∆ωδ + bδ(ωδ,∇ωδ) in Ω,

and uε,δ = ε > 0 = ωδ on ∂Ω. Therefore uε,δ > ωδ on Ω. By definition

−∆u1,δ + bδ(u1,δ,∇u1,δ) = u−p
1,δ + w(x) in Ω

u1,δ = 1 on ∂Ω.

So, we have

−∆u1,δ − u−p
1,δ ≤ w(x) = −∆u1 − u−p

1 in Ω

u1,δ = 1 = u1 on ∂Ω.

Therefore, u1,δ ≤ u1 in Ω. Similarly

−∆ωδ + bδ(ωδ,∇ωδ) = u−p
1,δ

≥ u−p
1

= −∆Oδ + bδ(Oδ,∇Oδ) in Ω,

and ωδ ≥ Oδ in ∂Ω. Then, we obtain ωδ ≥ Oδ. For a ∈ Ω, we define

V(x) = C(C − |x− a|2).
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It follows that, for C small enough

−∆Oδ + bδ(Oδ,∇Oδ) = g(u1)
≥ C1

≥ −∆V + V|∇V|2

≥ −∆V +
V|∇V|2

1 + δV|∇V|2
= −∆V + bδ(V,∇V) in B√C(a) ⊂ Ω,

and Oδ ≥ 0 = V on ∂B√C(a). Therefore, we deduce Oδ ≥ V in B√C(a). We
conclude

uε,δ ≥ ωδ ≥ Oδ ≥ V in B√C(a) ⊂ Ω.

This states (d).
Now we consider (e):

‖uε,δ − ε‖2
H1,2

0
=

∫
Ω

|∇(uε,δ − ε)|2dx

≤
∫

Ω

u−p
ε,δ (uε,δ − ε)dx +

∫
Ω

w(uε,δ − ε)dx

≤
∫

Ω

(uε,δ − ε)−p(uε,δ − ε)dx + ‖w‖H−1‖uε,δ − ε‖H1,2
0

≤
∫

Ω

(S1,1(w)− ε)1−pdx + ‖w‖H−1‖uε,δ − ε‖H1,2
0

.

This states (e). �

3. Proofs of mains results

Proof of Theorem 1.2. Let P be the positive cone in L∞(Ω). Let A : P → P be
the solution operator for the problem

−∆z = g(z) + f(u) in Ω,

z = 0 on ∂Ω,

gives A(u) = z. Using Theorem 2.3, we infer that A : P → P is a well defined,
continuous, non decreasing and compact map. Let us to denote with κ the indicator
function of the set K. Using hypothesis (3◦), we get

−∆A(ξiκ) = g(A(ξiκ)) + f(ξiκ) ≥ βξiκ.

We will denote by u = (−∆)−1h the solution operator of the problem −∆u = h in
Ω and u = 0 on ∂Ω. It follows that

−∆(A(ξiκ)− (−∆)−1βξiκ) ≥ 0 in Ω,

A(ξiκ)− (−∆)−1βξiκ = 0 on ∂Ω.

From the maximum principle, Lemma 2.1 and (4), we infer

A(ξiκ) ≥ (−∆)−1βξiκ ≥ βξiC(Ω)
( ∫

Ω

κϕ1

)
ϕ1 ≥ ξiκ.
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Now A(0) < A(ηi) and so, simple calculation yields

−∆A(ηi) = g(A(ηi)) + f(ηi)

≤ g(A(0)) + αηi

≤ −∆(A(0) + αηi(−∆)−11).

It now follows from maximum principle that

A(ηi) ≤ A(0) + αηi(−∆)−11,

so that from hypothesis (5), A(0) + αηi(−∆)−11 ≤ ηi. Then A(ηi) ≤ ηi, and hence
A[ξiκ, ηi] ⊂ [ξiκ, ηi]. Thus, there are a solution ui ∈ [ξiκ, ηi] of the fixed point
equation A(ui) = ui. Now by Amann’s “three solution Theorem” [2], problem
(1.4) has 2m− 1 solutions. �

Proof of Theorem 1.4. Let us to define the function

g0(s) =

{
λs−q − s−p if s < ( qλ

p )
1

q−p

λ( qλ
p )

−q
q−p − ( q

p )
−p

q−p if s ≥ ( qλ
p )

1
q−p .

If v is a solution of

−∆v = v−q in Ω,

v = 0 on ∂Ω.

Then z = λ
1

1+q v, solves

−∆z = λz−q in Ω,

z = 0 on ∂Ω.

From λ
1

1+q ‖v‖∞ ≤ ( qλ
p )

1
q−p , it follows that

−∆z − λz−q + z−p ≥ 0 = −∆u0 − g0(u0) in Ω,

z = 0 = u0 in ∂Ω;

therefore, z ≥ u0 on Ω. Observe that, we can apply Theorem 1.2 for

−∆u = g0(u) + f(u) in Ω,

u = 0 in ∂Ω,

�

Proof of Theorem 1.6. Let P the positive cone in the space Cγ
loc(Ω) ∩ C(Ω). Let

Hε : P → P be solution operator of the problem

−∆z = g(z) + h(∇z) + f(u) in Ω,

z = ε on ∂Ω,

gives Hε(u) = z. Now we use the operator A introduced in the proof of Theorem
1.2. By Lemma 2.6, A2(ξiκ) belongs to the domain of H0. Moreover

−∆H0(A2(ξiκ))− g(H0(A2(ξiκ))) = h(∇H0(A2(ξiκ))) + f(A2(ξiκ))

≥ f(A(ξiκ))

= −∆A2(ξiκ)− g(A2(ξiκ)),

in Ω and H0(A2(ξiκ)) = A2(ξiκ) = 0 on ∂Ω. It follows from Lemma 2.4 with h ≡ 0,

H0(A2(ξiκ)) ≥ A2(ξiκ).
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In particular, Lemma 2.6 implies H0(ηi) ≤ Hε(ηi). Then by hypothesis (1) we have

−∆Hε(ηi)− h(∇Hε(ηi)) = g(Hε(ηi)) + f(ηi)

≤ g(ε) + αηi

= −∆vε − h(∇vε) in Ω,

and Hε(ηi) = vε = ε on ∂Ω. Using the [18, Theorem 10.1], we obtain

Hε(ηi) ≤ vε on Ω.

Consider the auxiliary problem

−∆e = 1 in Ω,

e = ε on ∂Ω.

Moreover, by hypothesis (3),

−∆ηie = ηi

≥ b1(ηi‖∇e‖L∞(Ω))s + b0 + g(ε) + αηi

≥ h(ηi∇e) + g(ε) + αηi on Ω,

and so, one obtains

−∆vε − h(∇vε) ≤ −∆ηie− h(ηi∇e) in Ω,

vε ≤ ηie on ∂Ω.

Using again [18, Theorem 10.1], we get vε ≤ ηie. From [18, Theorem 3.7] and
hypothesis (4) it follows that

sup
Ω

e ≤ ε + exp(d(Ω))− 1 ≤ 1.

Then we obtain
H0(ηi) ≤ Hε(ηi) ≤ vε ≤ ηie ≤ ηi.

Now we consider the non decreasing sequence {uk} ⊂ C2,γ
loc (Ω) ∩ C(Ω), defined by

uk = Hk
0 (A2(ξiκ)). We deduce

A2(ξiκ) ≤ Hk
0 (A2(ξiκ)) ≤ H0(ηi), (3.1)

and by definition

−∆uk = g(uk) + h(∇uk) + f(uk−1) in Ω,

uk = 0 on ∂Ω.

On the other hand, by (3.1) there holds

‖uk‖L∞(Ω′) ≤ C, ‖g(uk)‖L∞(Ω′) ≤ C,

where Ω
′ ⊂ Ω and C is a constant independent of k. [18, Theorem 15.8] implies

‖∇uk‖L∞(Ω′) ≤ C.

where C is a constant independent of k. By [18, Theorem 9.11],

‖uk‖W2,r(Ω′) ≤ C(‖uk‖Lr(Ω′) + C) ≤ C,

with r > N . By the Sobolev imbedding [18, Theorem 7.26], uk → u in C1,γ(Ω′). A
standard bootstrap argument implies that u ∈ C2(Ω)∩C(Ω) is a classical solution
of problem (1.8) in the interval [A2(ξiκ), ηi]. �
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Proof of Theorem 1.8. Let P the positive cone in the space L∞(Ω). LetHε : P → P
be the solution operator of the problem

−∆z = z−p + f(u) in Ω,

z = ε on ∂Ω,

gives Hε(u) = z. Using Theorem 2.3, we deduce that Hε : P → P is a well defined,
continuous, non increasing and compact map with Hε0(u) ≤ Hε1(u) for ε0 < ε1.

Let Tε : P → P be the solution operator of the problem

−∆z +
z|∇z|2

1 + εz|∇z|2
= z−p + f(u) in Ω,

z = ε on ∂Ω,

gives Tε(u) = z. By Lemma 2.7, we infer that Tε : P → P is a well defined,
continuous, non increasing and compact map with Tε0(u) ≤ Tε1(u) for ε0 < ε1.
From

−∆Tε(u) ≤ −∆T ε(u) +
Tε(u)|∇Tε(u)|2

1 + εTε(u)|∇Tε(u)|2

= u−p + f(u)

= −∆Hε(u) in Ω,

and Tε(u) = Hε(u) on ∂Ω implies Tε(u) ≤ Hε(u) in P .

−∆(Hε(ηi)) = (Hε(ηi))−p + f(ηi)

≤ (Hε(0))−p + αηi

= −∆(Hε(0) + αηi(−∆)−11) in Ω.

From −∆(−∆)−11 = 1 in Ω and (−∆)−11 = 0 on ∂Ω, we implies Hε(ηi) = Hε(0)+
αηi(−∆)−11 on ∂Ω. Therefore, Hε(ηi) ≤ Hε(0) + αηi(−∆)−11 in Ω. By condition
(4), for ε small enough

Hε(ηi) < ηi (3.2)
By hypothesis (3), we have

−∆u + u|∇u|2 = βξiκ

= −∆v +
v|∇v|2

1 + εv|∇v|2

≤ −∆v + v|∇v|2 in Ω,

and u = 0 < ε = v on ∂Ω. Therefore [18, Theorem 10.1] implies v ≥ u ≥ ξiκ. From

−∆Tε(ξiκ) +
Tε(ξiκ)|∇Tε(ξiκ)|2

1 + εTε(ξiκ)|∇Tε(ξiκ)|2
= (Tε(ξiκ))−p + f(ξiκ)

≥ βξiκ

= −∆v +
v|∇v|2

1 + εv|∇v|2
in Ω,

and Tε(ξiκ) = ε = v on ∂Ω implies Tε(ξiκ) ≥ v ≥ u ≥ ξiκ. It follows that
Tε[ξiκ, ηi] ⊂ [ξiκ, ηi], and so there exists a fixed point ui,ε of Tε in [ξiκ, ηi] for ε
small enough. By a compensated compactness method, the “Murat’s lemma”, the
“Fatou lemma technique” of Freshe (see [25, Theorem 3.4]) and Lemma 2.7, letting
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ui = limε↘0 ui,ε, we have ui ∈ [ξiκ, ηi] belongs to H1,2
0 (Ω). Moreover, ui solves

problem (1.9). �

Proof of Theorem 1.11. Using the identity

∆(
1
u

) =
2
u3
|∇u|2 − 1

u2
∆u

If u solves the equation

−∆u = u2−p + f(u) in Ω,

u = 0 on ∂Ω.

Then

∆(
1
u

) = u
2
u4
|∇u|2 + u−p +

1
u2

f(u)

Calling z = 1
u , we conclude

−∆z =
2
z
|∇z|2 + zp + z2f(

1
z
) in Ω,

z = ∞ on ∂Ω.

Using the hypothesis of Theorem 1.2, we conclude the proof. �

Proof of Theorem 1.12. Let us to define the function

g0(s) =

{
s2−q − s2−p if s > ( q−2

p−2 )
1

q−p(
q−2
p−2

)2−q −
(

q−2
p−2

)2−p if s ≤ ( q−2
p−2 )

1
q−p

Using Lemma 2.3 with g(u) = g0(u + 1
ε ), we can define the solution operator

z = H1/ε(h) of the problem

−∆z = g0(z) + h in Ω,

z =
1
ε

on ∂Ω.

Moreover, this operator is well defined H1/ε : {h ∈ L∞(Ω)|h ≥ 0} → {z ∈ C(Ω)|z ≥
0}, it is continuous, non decreasing and compact. Therefore, we can define z =
A1/ε(u) : {u ∈ L∞(Ω)|h ≥ 0} → {z ∈ C(Ω)|z ≥ 0}, the continuous, increasing and
compact solution operator of the problem

−∆z = g0(z) + f(u) in Ω

z =
1
ε

on ∂Ω.

If κ is the indicator function of the set K, as in the proof of Theorem 1.2, we deduce

A1/ε(ξiκ) ≥ ξiκ .

From A1/ε(0) < A1/ε(ηi), we get g(A1/ε(ηi)) < g(A1/ε(0)). Therefore,

−∆A1/ε(ηi) = g
(
A1/ε(ηi)

)
+ f(ηi)

≤ g
(
A1/ε(0)

)
+ αηi

= −∆
(
A1/ε(0) + αηie

)
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Where

−∆e = 1 in Ω,

z =
1
ε

on ∂Ω.

The maximum principle implies

A1/ε(ηi) ≤ A1/ε(0) + αηie

By condition (4), it holds A1/ε(0) + αηie ≤ ηi. Therefore A1/ε[ξiκ, ηi] ⊂ [ξiκ, ηi].
By construction A1/ε : P → P where P is the positive cone in L∞(Ω). The interior
of P is nonempty, so we deduce the existence of 2m − 1 different solutions of the
equation

A1/ε(u) = u (3.3)

If 1
ε ≥ ( q−2

p−2 )
1

q−p , then a solution of equation (3.3), solves the problem

−∆u = u2−q − u2−p + f(u) in Ω,

u =
1
ε

on ∂Ω.

From
∆(

1
u

) =
2
u3
|∇u|2 − 1

u2
∆u,

We infer
∆(

1
u

) = u
2
u4
|∇u|2 + u−q − u−p +

1
u2

f(u).

If we define z = 1
u , we have

∆z =
2
z
|∇z|2 + zq − zp + z2f(

1
z
) in Ω,

z = ε on ∂Ω,

and we complete the proof �
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