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ASYMPTOTIC FORMULAS FOR SOLUTIONS OF
PARAMETER-DEPENDING ELLIPTIC BOUNDARY-VALUE
PROBLEMS IN DOMAINS WITH CONICAL POINTS

NGUYEN THANH ANH, NGUYEN MANH HUNG

ABSTRACT. In this article, we study elliptic boundary-value problems, depend-
ing on a real parameter, in domains with conical points. We present asymptotic
formulas for solutions near singular points, as linear combinations of special
singular functions and regular functions. These functions and the coefficients
of the linear combination are regular with respect to the parameter.

1. INTRODUCTION

Elliptic boundary-value problems in domains with point singularities were thor-
oughly investigated (see, e.g, [3] and the extensive bibliography in this book). We
are concerned with elliptic boundary-value problems depending on a real param-
eter in domains with conical points. These problems arise in considering initial-
boundary-value problems for non-stationary equations with coefficients depending
on time (see, e.g, [B], where the initial-boundary-value problem for strongly hyper-
bolic systems with Dirichlet boundary conditions was considered). We give here as
an example the initial-boundary-value problem for the parabolic equation

us + L(x,t,0;)u = f in Gr, (1.1)
Bj(z,t,0;)u=0, onSp, j=1,...,m, (1.2)
uli=o = ¢ on G, (1.3)

where the sets G, Gr, St, and the operators L, B; are introduced in Section [2} For
this problem we have first dealt with the unique solvability and the regularity of
the generalized solution with respect to the time variable ¢ (see [0]). After that,
to investigate the regularity and the asymptotic of the solution, and are
rewritten in the form

L(z,t,0,)u=f —wu; inGr, (1.4)
Bj(z,t,0;)u=0, onSp, j=1,...,m. (1.5)

Then (1.4), (L.5) can be regarded as a elliptic boundary-value problem depending
on the parameter t. This approach was suggested in [2].
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In the present paper we are concerned with asymptotic behaviour of the solutions
near the singular points. Firstly, applying the results of the analytic perturbation
theory of linear operators ([I]) and the method of linearization of polynomial op-
erator pencils ([10]), we establish the smoothness with respect to the parameter of
the eigenvalues, the eigenvectors of the operator pencils generated by the problems.
After that, applying the well-known results for elliptic boundary-value problems
(without parameter) in the considered domains, we receive the asymptotic formu-
las of the solutions as a sum of a linear combination of special singular functions
and a regular function in which this functions and the coefficients of the linear
combinations are regular with respect to the parameter. The present results will be
applied to deal with the asymptotic behaviour of the solutions of initial-boundary-
value problems for parabolic equations in cylinders with bases containing conical
points in a forthcoming work.

Our paper is organized as follows. In Section we introduce some needed
notation and definitions. We study the spectral properties of the operator pencil
generated by the problem in Section Section [ is devoted to establishing the
asymptotic behaviour of the solutions in a neighborhood of the conical point.

2. PRELIMINARIES

Let G be a bounded domain in R™(n > 2) with the boundary 0G. We suppose
that S = 0G \ {0} is a smooth manifold and G in a neighborhood of the origin 0
coincides with the cone K = {z : z/|z| € Q}, where Q is a smooth domain on the
unit sphere S”~! in R”. Let T be a positive real number or T = +o0. If A is a
subset of R", we set Ar = A x (0,T). For each multi-index @ = (1, ..., ) € N,
set |a| = a1+ -+ a,, and 9% =9y = 09} ... 00,

Let us introduce some functional space used in this paper. Let [ be a nonnegative
integer. We denote by Wi(G) the usual Sobolev space of functions defined in G

with the norm
o 12 1/2
e = ([ 3 105upan) ",

laj<m
and by Wé_% (S) the space of traces of functions from Wi(G) on S with the norm

[l -3 gy = 08 {0 € WH(G) s = ).

We define the weighted Sobolev space V4 (K) (v € R) as the closure of C5°(K\{0})
with respect to the norm

D ine 1/2
vy, = (32 [ 0ot agaar) (21)

o] <l

_1
wherer = |z| = (Y _, xi)l/z. If/ > 1, then Vﬁi 2 (QK) denote the space consisting
of traces of functions from Vy_(K) on the boundary K with the norm

HU||V~i7%(8K) = inf{HvHVQzW(K) (VU E V2177(K),11|3K = u}. (2.2)
It is obvious from the definition that the space V;‘:i  (KC) is continuously imbed-

ded into the space VQIV,Y(K ) for an arbitrary nonnegative integer k. An analogous
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assertion holds for the space V2 The weighted spaces Vi _(G), Vaj_%(S )
are defined similarly as in Wlth K, 0K replaced by G, S, respectively.

Let h be a nonnegative integer and X be a Banach space. Denote by B(X)
the set of all continuous linear operators from X into itself. By W ((0,7); X) we
denote the Sobolev space of X-valued functions defined on (0,T") with

1/2
Hf”w2 ((0,T):X) Z/ dtk HX ) < +00.

For short, we set

W3 ((0,7)) = W5 ((0,7); ), W“h(fm = W (0,7 Wa(D),
Vi (Gr) = WH(0.T): V3 (), Vo (S1) = WR(0.T): V3,2 (S)).

Recall that a X-valued function f(¢) deﬁned on [0, +00) is said to be continuous
or analytic at ¢ = +oo if the function g(t) = f(4) is continuous or analytic, respec-
tively, at ¢ = 0 with a suitable definition of g(0) € X. In these cases we can regard
f(t) as a function defined on [0, +00] with f(400) = g(0). Denote by C*([0,T]; X)
the set of all X-valued functions defined and analytic on [0,T] (recall that T is a
positive real number or T = +o0). It is clear that if f € C%([0,7]; X), then f
together with all its derivatives are bounded on [0, 7.

Let A be a subset of R™ and f(z,t) be a complex-valued function defined on
Ar = A x [0,T]. We will say that f belongs to the class C**(Ar) if and only if
f € C%([0,T]; C'(A)) for all nonnegative integer I.

Let
L=L(xt0:)= Y aa(z,t)0s
|| <2m
be a differential operator of order 2m defined in @ with coefficients belonging to
C>*(Gr) (G = G x [0,T]). Suppose that L(z,t,0,) is elliptic on G uniformly
with respect to ¢ on [0,T7], i.e, there is a positive constant ¢y such that

|L°(,t,€)] > colé*™ (2.3)

for all ¢ € R” and for all (z,t) € Gr. Here L°(x,t,0,) is principal part of the
operator L(x,t,d,); i.e,

L°(x,t,0,) = Z a(z,t)05.
|a|=2m
Let
B; = Bj(z,t,0,) Zb]axtm, 1=1,.
la|<p;

be a system of boundary operators on S with coefficients belonging to C°**(9G x
0,7]), ord Bj = pj <2m —1, j = 1,...,m. Suppose that {B;(z,t,0;)}L; is a
normal system on S uniformly with respect to ¢ on [0,T]; i.e, the two following
conditions are satisfied:

(1) pj # i for j # k,

(ii) there are positive constants ¢; such that

B} (z,t,v(2))| = ¢jyj = 1,...,m, (2.4)

for all (z,t) € Sp. Here B?(x,t,0,) is the principal part of B;(x,t,0,) and
v(x) is the unit outer normal to S at point z.
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In this paper, we consider asymptotic behaviour near the conical point of solu-
tions of the elliptic boundary-value problem depending on the parameter t:

L(z,t,0,)u=f in Gr, (2.5)
Bj(z,t,0;)u=g; onSr,j=1,...,m.

3. SPECTRAL PROPERTIES OF THE PENCIL OPERATOR GENERATED

Let £ = £(t,0:),B; = B, (¢, 0;) be the principal homogenous parts of L(zx, t, 0;),
Bj(x,t,0;) at x = 0; i.e,

L=28(t0) = > aa(0,1)05,
|a]=2m
%j - %j(t,ax) = Z bja(O,t)ﬁg‘“,j = 1,...,m.
lo=p;
It can be directly verified that the derivative 0% has the form

||

0 =r71°1Y " P, p(w, 0)(ror)?, (3.1)
p=0

where P, ,(w,d,,) are differential operators of order < |a| — p with smooth coeffi-

cients on €2, r = |x|, w is an arbitrary local coordinate system on S™~!. Thus we
can write £(t,0;),B;(t,0;) in the form

£(t,0,) = r 2" L(w,t,0,,10,),

B(t,0;) =r *Bj(w,t,0,,r0).
We introduce the operator

U(Mt) = (L (w,t,00,N), Bj(w,t,0,,),\ € C,t€[0,T]
of the parameter-depending elliptic boundary-value problem
L(w,t,0,,Nu=f in Q,
Bi(w,t,0,,)u=yg; ondQ, j=1,...,m
(Here the parameters are A and t). For every fixed A € C,t € [0,T] this operator
continuously maps
X = WHQ) into ¥ = W2 (@) x [[ Wy " *(09) (1 = 2m).
j=1
We can write % (A, t) in the form
U (M t) = Agn (DN + Agp 1 (NPT 4o 4 Ag(),

where Ag(t),k = 2m,2m — 1,...,0 are differential operators in £ of order 2m — k
with coefficients belonging to C°({2r), especially

Agm () = (D aa(0,£)w™,0,...,0). (3.2)
|a|=2m
We mention now some well-known definitions ([3]). Let ¢y € [0,T] fixed. If
Ao € C, pg € X such that g # 0,% (Mo, to)po = 0, then )\ is called an eigen-
value of Z (A tg) and g € X is called an eigenvector corresponding to A\g. A =
dim ker % (Mo, to) is called the geometric multiplicity of the eigenvalue \g.
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If the elements @1, ..., ps of X satisfy the equations

1 dd
Z aw%()\,to)b\:)\ogog_q =0 foro=1,...,s,
q=0
then the ordered collection g, @1, . . ., @s is said to be a Jordan chain corresponding
to the eigenvalue Ao of the length s + 1. The rank of the eigenvector ¢q (rank ¢p)
is the maximal length of the Jordan chains corresponding to the eigenvector .

A canonical system of eigenvectors of % (Ao, tg) corresponding to the eigenvalue
Ao is a system of eigenvectors 19, ..., ¢ 0 such that rank ¢; o is maximal among
the rank of all eigenvectors corresponding to Ag and rank ¢; ¢ is maximal among
the rank of all eigenvectors in any direct complement in ker % (Ao, o) to the linear
span of the vectors ¢1.0,...,¢j-1,0 (j =2,...,A). The number x; = rank ;¢ (j =
1,...,A) are called the partial multiplicities and the sum k = k1 +- - -+ K, is called
the algebraic multiplicity of the eigenvalue Ag.

The eigenvalue of g is called simple if both its geometric multiplicity and the
rank of the corresponding eigenvector equal to one.

For each ¢t € [0,7] fixed the set of all complex number A such that % (A,t) is
not invertible is called the spectrum of % (A,t). It is known that the spectrum of
% (A, t) is an enumerable set of its eigenvalues (see [3, Th. 5.2.1]). Moreover, there
are constants d, R such that % (\,t) is invertible for all ¢ € [0,7] and all A in the
set

D:={XAeC:|Re) <4|Im]|, |\ > R} (3.3)

(see B, Thm. 3.6.1]).
Now we use method of linearization to investigate the smoothness of the eigen-
values and the eigenvectors of % (A, t) with respect to t. Without loss of generality

we can assume that the operator Ag(t) is invertible. Indeed, if Ag is an eigenvalue
of 7 (A, t) for all ¢t € [0,T], then

2m
UNo+ A t) = AN,
k=0

where Ag(t) = % (Ao, t) is invertible for all ¢ € [0,T]. Setting
V(N = Ayt (% (M 1), Di(t) = Ag () Ar(t), k= 1,...,2m,

we have the pencils of continuous operators ¥ (A, t), D(t), k =1,...,2m, from X
into itself, and

Y (A1) = Do (A 4 Doy 1 (N> 4o £ Dy ()N + T, (3.4)

where I is the identical operator in X'. The eigenvalues and the eigenvectors of
¥ (A, t) are defined analogously as of % (\, ).
We can verify directly (or see [10, Le. 12.1]) that

o)
T -\ (t) = CH)EN 1) ! . F\1), (3.5)
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where
—D1 N —D2m71 —D2m I —D1 N —ngfl
I I
o = B (g - )
I I
IS0 DRt SO¥ DRART2 L Doy + Do\
I
&= :
I
I
YA |
F = ,
YA

(in operator matrices all the elements not indicated are assumed to be zero, and the
argument ¢ has been omitted for the sake of brevity) and Z is the identical operator
in X?™. Verifying directly we see that €'(t), &(\,t), Z (), t) are invertible elements
of B(X?™) with

I Dy ... Doy I
I - T
(g—l = ) g\_l = . . ’
7 Al T
I - 221 DpAF=1 — ?22 DX . —(Dam-1+ Do)
I

&1 =
I

It follows from the assumption on the analyticity of coefficients of differential
operators L(x,t,0;) and Bj(z,t,0;), j = 1,...,m, that ¥/ (A, t) is of the class
C([0,T); B(X)) and &7 (t) is of the class C°([0, T]; B(X?*™)).

It is obvious that % (A, t) and ¥ (A, t) have the same eigenvalues with the same
multiplicities and the same corresponding eigenvectors. It follows from that
the spectra except the zero of the pencil ¥'()\, t) and the operator «7(t) coincide for
all t € [0,T]. We now show that for each ¢ € [0,T] all eigenvalues of ¥ (A,t) and
47 (t) are nonzero. It is obvious for these of #'(\, t). Suppose ¢ = (pM), ..., ™)
X2 o # 0 such that o7 (t)¢ = 0 for some ¢ € [0,T]. Then pM) = ... = pm=1) =
and Doy, (t)™ = 0. This implies Ay, (t)p(>™) = 0, but this do not occur since
ker Aoy, (t) = {0} which follows from (3.2).

Now we can apply [10, Le. 12.5, 12.8] to conclude that the complex number X,
is an eigenvalue of the pencil 7 (A, t) (for some ¢ € [0,T]) if and only if og = (Ag) ~*
is an eigenvalue of the operator &7 (t) with the same multiplicities. Hence for each
t € [0,T) the spectrum of the operator &/ (t) is a bounded set consisting nonzero
eigenvalues with finite multiplicities.
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Lemma 3.1. Let v1,72 be real numbers, v1 < 2 such that the lines Re A = y;,j =
1,2, do not contain any eigenvalue of % (\,t) and all eigenvalues of this pencil in
the strip

D;:={AeC:y <Rel <y} (3.6)

are simple for all t € [0,T]. Then there are complez-valued functions \i(t) and
X -valued functions i (t), k =1,..., N, which are analytic on [0,T] such that, for
each t € [0,T), {M(t),...,An(t)} is the set of all eigenvalues of % (A, t) in Dy
and i(t) are eigenvectors corresponding to the eigenvalues Ag(t), k = 1,...,N,
respectively.

Proof. Since the set D defined in does not contains eigenvalues of % (A, t) for
all t € [0,T], the eigenvalues of this pencil in the strip Dy, actually are located
in the bounded domain Dy = (C\ D) N D;. Moreover, the boundary 9Dy of D,
contains no eigenvalues of % (\,t) for all ¢ € [0,T]. Let M be a positive number
such that ||/ (t)|| < M for all t € [0,T]. Put Dy = {o € C: (o)~ € Dy, |o| < M}.
Then Dy is a connected bounded domain in C and for each ¢ € [0, T] the spectrum
of the operator 7 (t) consists a finite set of its simple eigenvalues and does not
intersect with the boundary 9Dj.

Now let ¢ty € [0,T] and o¢ € Dy be a simple eigenvalue of the operator o (ty).
Then according to the results on analytic perturbation of linear operators (see [11]
Th. XII.8]), there exists a complex-valued o(t) defined and analytic on a subinterval
containing to of [0, 7] such that o(¢) is a simple eigenvalue of <7 (t) for all ¢ in such
subinterval. We show now that o(¢) may be continued to be defined on [0, T].

To see this, let Iy be the maximal interval of o(t) considered and suppose that
t1 is the right end of Iy and 0 < ¢; < T. Since o(¢) does not go out of the domain
Do and the spectrum of &7 (t;) consists only a finite set of its eigenvalues, o(t) must
converge to an eigenvalue 09 € Dy of &7(t1) as t T t1 (see [I, VIL3.5]). Thus, o(t)
must coincide with the analytic function & (t) representing eigenvalues of 27 (t) in
a subinterval containing t1, 0(t1) = 09. This implies that o(¢) admits an analytic
continuation beyond t;, contradicting the supposition that t; is the right end of the
maximal interval Iy of o(t).

Treating the other eigenvalues of & (tg) in Dy in the same way, we receive func-
tions o1 (t),...,on(t) analytic on [0,T] such that ox(t), k = 1,..., N, are simple
eigenvalues of <7 (t) for all ¢t € [0,T]. One can also choose X?™-valued functions
nx(t), k =1,..., N, analytic on [0, T] such that 7 (¢) are eigenvectors corresponding
to the eigenvalues oy (t) (see [11, Th. XIL8]). Set A\x(t) = (6x(¢))~ %, k=1,...,N.
Then these functions are analytic functions on [0,7] and {A1(t),..., An(¢)} is the
set of all eigenvalues of % (A, t) in the strip D; for each t € [0, T].

Rewrite the function 7 (t) in the form of column vector (n,il)(t), . ,77,227") (1))
(k=1,...,N). Then X-valued function ¢(t) = n,(fl)(t) is analytic on [0,7] and
wi(t) is an eigenvector of % (A, t) corresponding to eigenvalues Ax(t) for each ¢ €
[0, T]. Remember that X = W.(Q), [ is an arbitrary nonnegative integer. Thus, by
Sobolev imbedding theorem, we have n,il)(t) € C°%(Qr). The proof is complete.

(I

From the assumption on the coefficients of the operators B; and the assumption
(2.4), we have

|B;(0,t,l/(£€))| > |B;((£,t,l/(.’£))| - |B;(0,t,l/(1’)) - B;-’(x,t,z/(x))| >0 (37)
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(j = 1,...,m), for all z € S sufficiently near the origin and for all ¢t € [0,T].
B (t,v(z)) can be regarded as defined on K, and B;(t,v(z)) # 0 for all z € 0K
and for all ¢ € [0,7] since v(z) are the same on each axis of the cone K. Thus,
the system {;(t,0,)}72, is normal on 0K for each ¢t € [0,T]. Therefore, there
are boundary operators B (¢, 9;),ord B,(t,0;) = p; < 2m,j=m+1,...2m, such
that the system {B;(z,t,d;)}37 is a Dirichlet system of order 2m (for definition
see [3], p. 63) on OK for each t € [0,T], and the following classical Green formula

Luvdr + / B.uB’ vds:/u£+vdx+ / B uBvds (3.8
/K Jz::laK]ﬁm K JZ::laKJJr ! (3:8)

holds for u,v € Cg°(K \ {0}) and for each ¢t € [0,T]. Here £* = £¥(¢,0,) is the
formal adjoint operator of £, i.e,

ghy = (—1)*™ Z e (0,)05 u,
|| =2m

and B} = B’(t,0,) are boundary operators of order uj = 2m — 1 — prj i, if
j < m, and of order M;' =2m —1—pj_m if j > m 4+ 1. The coeflicients of
B’ = B(t,0,),j = 1,...,2m, are independent of the variable z and dependent on
t analytically on [0, 7.

The operators £F(t,9,),B’(t,d,) can be written in the form

er(t,0,) =r "L (w,t,0,,70,), (3.9)
B (t,0,) = 171 B (w, t,0,,70,). (3.10)
From the Green formula (3.8) we get the following Green formula

/ ZL(t, Nuvdx + Z/ Bi(t, U, (t, —A+2m — n)vds
Q Pl

= / UL (t, —X+ 2m — n)vdzr + Z/ Bi+m(t, \uF(t, —A+2m — n)vds
Q = Joa

for 4,7 € C°°(Q) and for all t € [0,T] (see [3, p. 206]). Here for the sake of brevity,
we have omitted the arguments w and J,, in the operators of this formula.
We denote by UT (A, t) the operator of the boundary-value problem

LT (w,t,0p,—A+2m—n)v=f inQ, (3.11)

%j(w,t,aw, -A+2m—n)jv=g; ondQ, j=1,...,m. (3.12)

Let Ao(t) be an analytic function on [0, T] such that Ao(¢) be a simple eigenvalue

of % (\,t) for each t € [0,T] and let p € C°%(2r) such that ¢(t) be an eigenvector

of % (A, t) corresponding to the eigenvalue \o(t) for each ¢ € [0,7]. Then \o(t) are

simple eigenvalues of the pencil U™ (A, t) for all ¢ € [0,T] (see [3, 6.1.6]). Moreover,

there exists a function ¢ € C°%(Qr) such that ¥(t) is an eigenvector of Z* (A, t)
[

corresponding to the eigenvalues \o(t) for each ¢ € [0, 7] which is analogous to the
case of the pencil % (), t). We claim that

(LD No(t), t)e(t),(t))a

£ 37 (BD ot), 0p(0), Bl (—Folt) +2m — n,)6(1) 0 20, )

Jj=1
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for all t € [0,T7], where

d d

LD ) = az(A,t),@;.“(A,t) = BN j=1.. m.

We prove this by contradiction. If (3.13) is not true for some ¢y € [0, 7], then one
can solve with respect to u the following elliptic boundary-value problem

U (N to)u = 02/(1)()\’ to)g(to)
— (LD to)plto), BV (M to)lto), . BD (M o) (b)),

This implies that the eigenvalue A\(to) is not simple which is not possible. It follows
from (3.13) that we can choose 1 (t) € C°%(Q2r) such that

(LW (Xo(1), t)e(t), (1)

+y (B (Mo (1), )0(1), By (~Ao(t) + 2m — 0, 1) (2)) 5, = 1 (3.14)
j=1

for all t € [0,T]. Moreover, applying [3, Th. 5.1.1], we assert that there exists a
neighborhood U of the origin O such that in Ur = U x [0, T] the inverse % ~*(\, t)
has the following representation

Poa(t)
A= Xo(t)

where P_1(t) is a 1-dimensional operator from from ) into X depending analytically
on t € [0,T] defined by

P = {{v,9(t) (t), veD, (3.16)

and £ (), t) is a pencil of continuous operators from ) into X depending analytically
on both A € C and ¢ € [0,T]. Here

U O0t) = + PO, (3.15)

<<U7 w(t)>> U(], Z vj’ J+m A(](t) +2m —n, t)w(t))ag
for v = (vg,v1,...,0m) €Y.

4. ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS

In this section we investigate the behaviour of the solutions of the problem (2.5)),
(2.6) in a neighborhood of the conical point. First, let us introduce some needed
lemmas.

Lemma 4.1. Letu € VQl’Ié?(GT) be a solution of the problem

L(t,0)u=f inGr, (4.1)

B,(t,0)u=g; on Sp, j=1,...,m, (4.2)

where f € V2% MGr), g5 € Vo'W T F (ST, liyle > 2m, B — L > By — b
Suppose that the lines Re A = —f3; +l -2 (2 = 1,2) do not contain ezgenvalues of
the pencil % (\,t), and all eigenvalues of this pencil in the strip —fp1 +11 — 2 <

ReA < B2 + 12 — 5 are simple for all t € [0, T which are chosen to be analytic

functions Ay (t), A2(t), ..., An(t) defined on [0,T] as the result of Lemmal[3.1] Then
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there exists a neighborhood V of the origin of R™ such that in Vp the solution u has
representation

N
u(a,t) = ety Dop(w,t) + w(z, ), (4.3)
k=1

where w € VQZ%S(KT), ck(t) € WH((0,T)) and pi, € C°*(Qr) are eigenvectors of
U (A1) corresponding to the eigenvalues A\ (t), k=1,...,N.

Proof. For each k = 1,..., N, let () be eigenvectors the pencil Z T(\,t) corre-
sponding to the eigenvalues A\ (t) (k = 1,..., N) having the properties as in .
Set vy, = r— MM +2m=ny for k=1,...,N.

(i) First, we assume that the function u has the support contained in Ur, where
U is a certain neighborhood of 0 € R™ in which the domain G coincides with
the cone K. By extension by zero to K (respectively, 0Kr) we can regard u, f
(respectively, g;) as functions defined in Kr (respectively, 0Kr).

For each t € [0,T) fixed, according to results for elliptic boundary problem
in a cone (see, e.g, [3, Th. 6.1.4, Th. 6.1.7]), the solution u(x,t) admits the
representation in K with

1 ~
w(zt) = — / AU ) F(w, A, £)dA (4.4)
2mi ReA=—/f2+l2—2
and
er(t) = (Fot)onot)) o + D (950 1), Blymvnls 1)) o
j=1
= () o 0) g + D (950 1), Bmun( 1))
j=1
for k=1,...,N, where F = (15"\1},7%, oy rimg). Here g(w, A\, t) denotes the

Mellin transformation with respect to the variable r of g(w,r,t); i.e,
+oo
gt = [ gt
0

We will prove below that w € VQZ%S(KT), cr(t) € WH((0,7)).

Now we make clear the first one. Since there are no eigenvalues of the operator
pencil 7% (A, t) on the line Re A = —f3; + Iy — 5, from the proof of [3, Th. 3.6.1] we
have the estimate

127 ¥ yian) < C(Ipgm ) + 2T i (4.5)
j=1 2

%(BQ,A))
for all A on the line ReA = —f2 + 1o — 4, t € [0,7], and all U = (T, )
a1
€ Wim(Q) x [T, WQI HE72(99)), where the constant C' is independent of A, t
and V. Here
lullwico,n = lullwi) + A ullzy @),

_1
HU||W2l(aQ,,\) = Hu”wé’%(ag) +IA[2 [ull 2,00
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_1
which are equivalent to the norms in W(2), WQI 2(09), respectively, for arbitrary
fixed complex number .

We will prove by induction on h that

-1 T2 =12 ~ 112
I AT g < CON (g + 2l 0y ) (40
j:

It holds for h = 0 by (4.5). Assume that it holds for A — 1. From the equality
UNOU TN =1,
differentiating both sides of it h (h > 1) times with respect to ¢ we obtain

h—1

> (D U N e ) + 2 A (A1) =0

k=0
Rewrite this equality in the form

h—1
(@)t = =2 N> () U N2 (N 1),

k=0

Then (4.6]) follows from this equality and the inductive assumption. It is well-known
(see [3, Le. 6.1.4]) that the norm (2.1 is equivalent to

1 _ 9 1/2
Il o0= (g [ TG Eand)
eA=— -5

and the norm (2.2)) is equivalent to

1 " 9 1/2
il - —(—./ [N, da)
(9K) 270 JRe x=—p+1-2 W, 2(09,))

Using these with noting
W(w, N\, t) =%~ (/\ HF (AL
(see [3, Le. 6.1.3]) and (4.5)), we get from ) that
Ol

<o i 1T g2
_ 2% N 127 A F A1) iz 0N
< 37 fure sy TG o
+lerwg; ||2 b o, A))dA (4.7)

2m 2 2
<O DIy o +Z||r“vg O 4 )

2,82 —nj

< (MM +Z||gj O ot )
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= (UM + 0O )

Qﬁ

for all t € [0,T]. Here, and sometimes later, for convenience, we denote different
constants by the same symbol C. Integrating the last inequality with respect to t
from 0 to 400, we obtain w € \/;262 (Kr) and

2 2 2
I gy < O, +Z||gj|| b do o)

Differentiating (4.4) h times with respect to ¢ we have

1
wyn (x,t) = —/ )‘Z - tk (A t)}—th K (w, A, t)d.
ReA=—f2+l2—%

211

Now using (4.6) and arguments the same as in we arrive at

s e cz(nftku — +ZH 062 1m0y, ) (49)

2ﬂ2

Hwth

Therefore, w € Vlg’ (Kr) and

2 < ( 2 12 ) )
ol < O+ W8 g ) 649
Now we verify that cg(t) € W2 ((0,T)) for k=1,...,N. For some such k put
o(, t) = p EOF2mng () ). (4.10)

Using formula (3.1)), we have
lex|

Yy =71 —|ef Z 7"87‘ *)\k (t)+2m— np, 'l/)k
(4.11)

_ ||
= p P AROERmER N PN (1) + 2m — )P Po ptk.
p=0
Since Re Ak (t) < —f2 + 1o — 5 for all ¢ € [0,T] and A(t) is analytic on [0,T7], then
there is a real number € > 0 Such that Re Ap(t) < —fa+1lo — § —2¢ forall t € [0,7].
Thus, it follows from (4.11)) that
||
|[pm ez 2mtlalgay (g 1) < Or~ 3t Z | P p i (w, t)]|
p=0
for all (z,t) € G and all multi-index . This implies v(.,t) € Vi 5 1 o 1(G)
and
[oCs O)llvy @ < Clvw( Dllwia
for an arbitrary integer [. Using Faa Di Bruno’s Formula for the higher order
derivatives of composite functions (see, e.g, [7]), we have

P -
U = Z (P) (rfAk(t)Jerfn)tpiq@bk)tq

q=0 4

—vo+lg—2m+l
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_ p |
_ A (t)+2m—n p n. mi+-+mn
r Z(q)zml!...mn!(lnr) 1

q=0
STARNMUINGE
LY
s=1
where the second sum is over all n—tuples (my,...,m,,) satisfying the condition

mi + 2ms + - -+ + nm,, = n.

According to Lemma [3.1] Ax(t) is analytic on [0, T]. Therefore, it together with its
derivatives are bounded on [0,T]. Repeating the arguments as above, we get

p
oo CoBllvg oy S D W)y
q=0

Thus, we have

@ < CZ sup |[(¥e)eallwy(a) < +oo (4.12)

sup |[v[|y1.p
a= 0 t€[0,T]

te[0,T) 2, —vyo+lg—2m+l

for arbitrary nonnegative integers [, p.

Set ¢(t) = (f(.,1),v(.,t))g. For p < h, using (4.12), we have

| [
q
C( ||T52—l2+2mftq H%z(G)) (Z Hr—ﬁ2+l2—2mvtq ‘l%g(G))
0 q=0

q=
p
C’ZHftql l2 2m )

q=0
This implies c(t) € W((0,7T)) and
lellwe o,y < CHfHV;?ﬁ;?m’h(GTy (4.13)
Now set ¢;(t) = (g;, B§+mv)s,j =1,...,m. Then also using (4.12)), we have
[(cj)en (1)]?

ST () (g5)i-a (1), vea (1))

NE

e (8) 2 () (for-a (1), 000 (1))

1M~ "=

P

IN

‘ 2

q=0

(X Mol oy ) (vatqn ——

| /\

Va —Batla—pu;

0
p p )
(Z Ir% = (g | ) (D I (B) e [ )
p

2ﬂ2

P

<O M@l g 0 <h).

q=0 2 Ba (%)
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This implies ¢; € W2((0,T)) and

<C . 4.14
\CJHWh((OT)) 195l 212@% L " (50) ( )

From (4.13) and (4.14)), we can conclude that cx(t) € W2 ((0,T)) and

lenlhwzqomn < C(Ifllyzs; 2mh(GT)+ZngH wodagg) (419)

2[3

(ii) Now we consider the case u € Vzlfél (Gr) is arbitrary. Let n be an infinitely
differential function with support in U, equal to one in a neighborhood V of the
origin. Denote by & the set of all subdomain G’ of G with the smooth boundary
such that GN U\ V C G'. We will show that u € W."(GY) for all G’ € &. To
this end, we will prove by induction on A that

upe € WPP(GY) fork=0,...,hand G’ € &. (4.16)

According to the results on the regularity of solutlons of elhptlc boundary problems
in smooth domains, we can conclude from (4.1, (4.2) that u(.,t) € Wi (G") for each
t €10,7] and

Hu(‘vt)||w2l2(gl) < C(”“('?t)uwll (G") + ”f('vt)”WzQ*z""(G//)

+Z ||gj l2 Hi— Z(SﬂaG”))

where G” € & such that G’ C SUG” and C is a constant independent of u, f, g; and

t. Integrating this inequality with respect to ¢ from 0 to T we get u € W. lz’ (Gh).
Thus 1_’ holds for h = 0. Assume that it holds for h — 1. leferentlatlng

equalities (4.1)), (4.2)) with respect to ¢t h times and using the inductive assumption,
we have
el
Lug = fpn =Y (k> Lyn—ruge € W22m0(GlY,
k=0

— P §
B; jUh = gj Z < ) th EUk € Wzl?ﬁ;’«; 270(ST N aGljlw),

where G/,G" € &, G’ ¢ SUG". Applying the arguments above for u;., we get
upn € W2(Gh).
From (4.1]) we have
L(nu) = nf + [£,nlu in Gr, (4.17)

where [£,7] = £ — n£ is the commutator of £ and 7. Noting that u € W2 (G%,)
for all G’ € & and [£, 1] is a differential expression (acting on ) of order < 2m —1
with coefficients having the supports contained in U \ V, we have [£,n]u is in
Wéfﬂsz’h(GT). So is the right-hand side of lb Similarly, we have

B (nu) = ng; + By, nlu € Wy'i V" M(S)(j =1,...,m). (4.18)

Applying the the part (i) above for the function nu, we conclude from (4.17) and
(4.18]) that u admits the decomposition (4.3]) in V. The theorem is proved. |



EJDE-2009/125 ASYMPTOTIC FORMULAS FOR SOLUTIONS 15

Lemma 4.2. Let

— pro(t)— QmZ lnr )7 foos (4.19)
RNy - :
g] — r)\o(t) 125} Z ;(lnr) gj7s_o_, ] = 17 coe,m, (420)
o=0

where f, € Wi2™"(Qr), gjo € Wl Hime (6QT), c0=0,...,5,7=1,...,m and
Ao(t) be a complex-valued function deﬁned on [0,T). Suppose that if Ao(t) is an
eigenvalue of % (A, t) for some t, then A\o(t) are simple eigenvalues of % (A, t) for
all t € [0,T). Then there exists a solution u of , which has the form

s+kK
o(t) Z lnr ) Ustr—o (4.21)
where uy € WE'(Qr),0=0,...,s+k. Here k =1 or k = 0 according as \o(t) are

simple eigenvalues of % (A, t) or not.
Proof. According to (3.15)), the inverse of % (A, t) admits the representation

+00
=Y PO(x - 2o@)",

k=—k
where P_1(t) is defined in (3.16)) for the case k = 1, and
1ok
for k = 0,1,.... It is obvious that Py(t), k = —k,—k + 1,..., are continuous
operators from ) into X depending analytically on ¢ on [0,7]. From the equality
“+o00 IiJrk
wONOU -y (Z D O0(t), ) Peyg (1) A = 2o(t)* = 1
k=—r q=0
it follows that
/-chk
Z %(q) )\() )Pk,q(t) = 5k,07 k= —K,—K + 1, ey (423)

where Jy,; is Kronecker symbol. Let u be the function given in (4.21)). Then
stk

1
U (1, tyu = 1% \o(t) +70,,1) Y = (In7) usn o
o ag.
2m 1 stk 1
Y a%@(Ao(t), D)"Y —(07) U
q=0 o=0
s+K 1 St+r—0o
:T)\O(t)z lnr Z %(q) )\0 ) )u\s+ry o—q

o= 0
Setting v = (fo, 91,65+ -s9m,0), 0 =0,...,s, and
min(k,s)
Z Pii—p@®vpk=1,...,8+k,

p=0



16 N. T. ANH, N. M. HUNG EJDE-2009/125

we get uy, € Wzl "(Qr),k=0,...,5+ k. Using the equality 1b we have

U (roy,t)u
stk SHk—c min(s+k—o—gq,s)
)\O(t)z (Inr)? Z % o(t),1) Z Ps—o—q—p(t)vp
p=0
sk mln(s+n70’,8) stk—o—p
Ao(t)z lnr)” Z Z 7%(1;)()\0() ) Ps—g—p—q(t)vp
— — q!
p=0 q=0
s stk—p str—o—p
=0 S S (N D000y o))y
p=0 =0 ! q=0 ¢
s s+Kr—p
_TAO(t)Z Z lnf/‘ 6+K—0—P70UP
p=0 o=0 !

_ 7”)‘0 (t) Z

Rewrite this equality in the form

lnr . pvp—r’\o(t) E lnr Vg e
p= 0

L(w,t, 00,00 )u =1"f in Gr,
Bi(w,t,0,,r0 ) u=r"g; onSp, j=1,....m

This implies « is a solution of (4.1)), (4.2]), and the lemma is proved. O
Lemma 4.3. Let u € VQZZ(GT) 1be a solution of Problem (2.5)), (2.6]), where f €
‘/;Eirg+37h(?T)h € Vllﬁfsﬁsfg’h(ST), l,s,h are nonnegative integers, | > 2m.
Then u € VZ;j-s (Gr) and
||U||Vz+sh (||f||vz s +Z ||9J||2z1 wyremtn ) (4.24)
2 B+s (S )

with the constant C independent of u, f and g;.

Proof. 1t is only needed to show that wu,x € V;’gig (Gr) and

et 1210y < CUIZ +Z||gj||%1 et (429

2 ,B+s

for kK =0,...,h, where C' is a constant independent of u, f and g;. We will prove
this by induction on h.

First, we fix some ¢ € [0,7] and consider , as an elliptic boundary-
value problem (without parameter). Applying Corollary 6.3.2 of [3], we conclude

that u(.,t) € V;EiS(G) and

e )Ilvuss <C(lr(, )IIVz 2t +Z||9; Hzll prap o) (4:26)

2B+s ( )
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where C' is a constant independent of «, f, g; and ¢ € [0, T]. Integrating both sides
of this inequality with respect to ¢ from 0 to T we get

IIUHVHoo (||f||vz 2ma.0( +Z||g]”211 witamo g ))~ (4.27)

2 B+s (

Thus (4.25) holds for A = 0.
Now suppose that it is true for h — 1 (h > 1). Differentiating both sides of (2.5)
with respect to t h times and using the inductive assumption, we get

h—1
h l—2m+s,0
Lugp = fn — I;O (k> Lyn—ruge € Vy 3n%(Gr). (4.28)

Similarly, we have

k—1

k li—pj+s—1.0

Bjutlc - (g_])tk - Z (p) (Bj)tk—pU/t:D S ‘/v21ﬁ+l; + 2 (ST) (429)
p=0

for j = 1,...,m. It is the same as, we get from ) and ([£.29) that

Ugk € V;;ZS (GT) and the estimate -| holds. The proof is complete

Now let us give the main result of the present paper.

Theorem 4.4. Letu € Vll’h(GT) be a solution of Problem (2.5), (2.6, where f €

Vzl?ﬁ_sz’h(GT) g; € V2llﬁ hi= (ST), l1,12, h are nonnegative integers, l1,ls > 2m,

Iy — By <ly — By. Suppose that there are real numbers dg, 62, ...,y such that
do=p1+1lo—1,0p =02, 0<63—1—-64<1, d=1,..., M,

and the lines ReA = =g + 12 — 5, d = 0,..., M, do not contain eigenvalues of
the pencil % (A, t). Furthermore, suppose that all eigenvalues of this pencil in the
strip —6g + 1o — 5 < ReX < =dp + Iz — § are simple for all t € [0,T] which are
chosen to be analytic functions A1 (t), Aa(t), ..., An(t) defined on [0,T) as the result
of Lemma . If Aj(to) = Ag(to) + s for some j,k € {1,..., N}, for some integer
s and tg € [0,TY], then let \j(t) = Ax(t) + s for allt € [0,T]. Then the solution u
admits the decomposition

N Yl
=> Z O+ P (In7) + (4.30)
k=17=0

where w € Vl"” (Gr), Py r are polynomials with coefficients belonging to W@y,
by, is the mzmmal integer greater than —dpr — Ap(t) — 14 1lo — & for allt € [0,T7.

Proof. According to Lemma u € VQZ)Q(S’ZL(GT). Suppose, by renumbering if
necessary, ReA1(t) < ReXa(t) < -+ < ReAn(t) for all t € [0,7]. For each
d € {1,...,M} denote by Ny the maximal integer in {0,1,..., N} such that
A1(t), Aa(t), ..., An,(t) belong to the strip —dp +1lo — § < Red < =g+ 1o — §
and by /4 the minimal integer greater than —dq — Ax(t) — 1+ Iy — § for all
tel0,T).
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We will prove by induction on d (1 < d < M) that the function u can be
represented in the form

Ng fk.a

u= Z Z r)‘k(tHTP,gflT) (Inr) + uq, (4.31)
k=171=0

where P,EdT) are polynomials with coefficients belonging to W2l2’h(QT) and ug €

Vzl,}?d (Gr). Then ‘) for d = M proves the theorem.
We rewrite (2.5, (2.6) in the form

Lu=f+(EL—-Lu=f+Lu inGr, (4.32)
Bju=g;+ (B —BjJu=g; +Bu onSr,j=1,...,m. (4.33)
We write
Lu= Y (aa(0,t) = aa(z,t)0%u+ > aal(2,t)0% = Liu+ Lou.
|| =2m o] <2m—1

Since |aq(z,t) — aq(0,t)] < Cr, and u € V;i;:(GT), we have Liju € VQli;EET’h(GT).
Otherwise, Lou € ‘/2l725;2m+1’h(GT) C V;is;z?’h(GT). Since dp +1 > §; and
Vyi 2 M(Gr) € V% 2™ (Gr). Therefore, f + L'u € V,% 2™ (Gr). Similarly,

ki
gj + Biu € Vzlisl ks 2’h(ST). Now we can apply Lemma to conclude that
N
u= Z O e () or 4 ua, (4.34)
k=1

where ¢ (t) € WH((0,7T)), uy € Vzlis’lh(GT). Thus lb holds for d = 1 with
P (Inr) = ep(t
k(7)) = ci(t)@r.

We assume now (4.31)) is true for some d (1 <d < M —1). Then we can rewrite
(2.5), (2.6) in the form

Lug=f+(£—Lug— Lz in Gr, (4.35)
B,ug=g; + (B; — Bj)uqa— Bjz on Sr,j=1,...,m, (4.36)
where
Nd ek,d
z = Z Z r)"“(t)JrTP,gfiT) (Inr).
k=17=0

Since the coefficients a,,|a| < 2m, belong to the class C°*®(Gr), then, for an
arbitrary nonnegative integer k, they admit representation

k
Ao = ag(w,r,t) = Zr‘saff) (w,t) + L aF+D (W, r 1) (4.37)
5=0

where ag;) € C>%(Qr) for 6 = 0,...,k, and agc“) € C>~%(Gr). Thus, we can
write the operator L in the form
Li,dt1
L= Z r2mH0 OV b, 10,) + T i ket pEanat (ot 9, 10,)

6=0
(4.38)
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where £ (w, t,0,,,79,),0 =0,... i da+1, and L a1ty r t,9,,70,) are poly-
nomials of ,, and rdr of order not greater than 2m with coefficients in C°*°(Q7)
and C°*%(Gr), respectively.

Li,d

L( Z r)"“(t)JrTP,gjiT) (In 7"))
=0
Ci,a+1 Lr,d
= Z Zr‘2m+’\’“(t)+7+5$(5) (W, t, 0y Ai(t) + T + 70, ) (ln T)
6=0 7=0
L,d
£ O a1 st (1 1, 0, () + 7+ 70,) P (Inr).
7=0
(4.39)
Write the first term of the right-hand side of (4.39) in the form
Li,d+1 Li,at+Li,d+1
Z r*2m+)"“(t)+7\1!§jjl)(ln )+ Z 7"*27"“"“(’5)*7\1/;;?:1)(111 r),  (4.40)
7=0 T:ek,d+1+1

where \I',(jjl) are polynomials with coefficients belonging to WQIQ’h(QT). Since

Ek,d—o—l > *5d+1 7)\]@(15) —1+—-2 fOI‘ all t € [0 T] then 2m+)\k( )+€k d+1 +1>
—0at1 + 1z —2m — G for all t € [0 T]. Thus, the final terms in and -
belong to V;52™"(Gr). Hence, 1} can be rewritten in the form

2,0q41

Li,d+1

Li,d
L(Zr’\k(t)J”P,gf?(lnr)) = 3 O ) oy, (441)
7=0 7=0

where wy, € Vj 55:? "(Gr). Analogously, we can write
Li,d Li,dt1
Bj(z PO+ Pl (1 7‘)) = 3 RO ) fay (4.42)
7=0 7=0
for j = 1,...,m, where \If,idrj) are polynomials with coefficients belonging to

wih (8QT) and wg,; € V2 6d+1 (8QT). According to Lemma there are poly-

nomials <I>(d+1) with coefficients belonging to We*" (Q7) such that
£(t, Bx)(rx’“(tHT@(dH)(ln r)) = r_2m+>"‘(t)+7\ll(d+1)(ln r) in Gr, (4.43)

B(t,0,) (PO e (I p) ) = OO D) on Sy, (4.44)

Set
Ny lr,d+1
v=>" 3" MO (1n ), (4.45)
k=1 7=0

Now we rewrite (4.35)), (4.36) in the form
Ng

L(t,0x)(ug +v) = f+ (£ — L)ug + Z wg in Gr, (4.46)
k=1



20 N. T. ANH, N. M. HUNG EJDE-2009/125

Ng
B;(t,0z)(uqg +v) =g; + (B, — Bj) ud—|—2wk,j on St, j=1,...,m. (4.47)

It is the same as in , that (£—L)ug € VQZ 2mh(Gr) and (B; —Bj)uq €

5d+

V2 *=2"(G1). Thus the right-hand sides of (4.46), (4.47) belong to ViS2m(Gr),

75d+1 75d+1
V;gjj . (ST) respectively. Now we can apply Lemma|£|to conclude from ({4.46)),

that

Nay1 lk,d+1

ug+v = Z Z +TT(dH)(lnr) + Uds1, (4.48)

k=1 7=0
where T;jjl) are polynomials with coefficients belonging to W2*"(Qr) and uqy1 €
VQZ%’(ZI(GT). Setting P,ifl:l) = P;Eflf) - @,(C?;H) + T,(jj__l) for k = 1,...,Ng, and

P(d+1) (IHT) — 'I‘](jjl)(ln T) for k = Nd+17 we have

Nay1 €r,at+1
S 3 R )
This implies that (4.31]) holds for d + 1. The proof is complete. O
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