Electronic Journal of Differential Equations, Vol. 2009(2009), No. 127, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

POSITIVE SOLUTIONS FOR A SYSTEM OF NONLINEAR BOUNDARY-VALUE PROBLEMS ON TIME SCALES

A. KAMESWARA RAO

Abstract. We determine the values of a parameter λ for which there exist positive solutions to the system of dynamic equations

$$
\begin{array}{ll}
u^{\Delta \Delta}(t)+\lambda p(t) f(v(\sigma(t)))=0, & t \in[a, b]_{\mathbb{T}}, \\
v^{\Delta \Delta}(t)+\lambda q(t) g(u(\sigma(t)))=0, & t \in[a, b]_{\mathbb{T}},
\end{array}
$$

with the boundary conditions, $\alpha u(a)-\beta u^{\Delta}(a)=0, \gamma u\left(\sigma^{2}(b)\right)+\delta u^{\Delta}(\sigma(b))=0$, $\alpha v(a)-\beta v^{\Delta}(a)=0, \gamma v\left(\sigma^{2}(b)\right)+\delta v^{\Delta}(\sigma(b))=0$, where \mathbb{T} is a time scale. To this end we apply a Guo-Krasnosel'skii fixed point theorem.

1. Introduction

Let \mathbb{T} be a time scale with $a, \sigma^{2}(b) \in \mathbb{T}$. Given an interval J of \mathbb{R}, we will use the interval notation

$$
\begin{equation*}
J_{\mathbb{T}}=J \cap \mathbb{T} \tag{1.1}
\end{equation*}
$$

We are concerned with determining values of λ (eigenvalues) for which there exist positive solutions for the system of dynamic equations

$$
\begin{array}{ll}
u^{\Delta \Delta}(t)+\lambda p(t) f(v(\sigma(t)))=0, & t \in[a, b]_{\mathbb{T}}, \\
v^{\Delta \Delta}(t)+\lambda q(t) g(u(\sigma(t)))=0, & t \in[a, b]_{\mathbb{T}}, \tag{1.2}
\end{array}
$$

satisfying the boundary conditions

$$
\begin{align*}
& \alpha u(a)-\beta u^{\Delta}(a)=0, \quad \gamma u\left(\sigma^{2}(b)\right)+\delta u^{\Delta}(\sigma(b))=0 \\
& \alpha v(a)-\beta v^{\Delta}(a)=0, \quad \gamma v\left(\sigma^{2}(b)\right)+\delta v^{\Delta}(\sigma(b))=0 \tag{1.3}
\end{align*}
$$

We will use the following assumptions:
(A1) $f, g \in C([0, \infty),[0, \infty))$;
(A2) $p, q \in C\left([a, \sigma(b)]_{\mathbb{T}},[0, \infty)\right)$, and each function does not vanish identically on any closed subinterval of $[a, \sigma(b)]_{\mathbb{T}}$;
(A3) the following limits exist as real numbers:

$$
\begin{aligned}
& f_{0}:=\lim _{x \rightarrow 0^{+}} f(x) / x, g_{0}:=\lim _{x \rightarrow 0^{+}} g(x) / x, \\
& f_{\infty}:=\lim _{x \rightarrow \infty} f(x) / x, \text { and } g_{\infty}:=\lim _{x \rightarrow \infty} g(x) / x
\end{aligned}
$$

[^0]There is an ongoing flurry of research activities devoted to positive solutions of dynamic equations on time scales. This work entails an extension of the paper by Chyan and Henderson [7] to eigenvalue problem for system of nonlinear boundary value problems on time scales. Also, in that light, this paper is closely related to the works of Li and Sun [21, 23].

On a larger scale, there has been a great deal of study focused on positive solutions of boundary value problems for ordinary differential equations. Interest in such solutions is high from a theoretical sense [9, 11, 13, 19, 20, and as applications for which only positive solutions are meaningful [2, 10, 16, 25. These considerations are caste primarily for scalar problems, but good attention has been given to boundary value problems for systems of differential equations [14, 15, 17, 18.

The main tool in this paper is an application of the Guo-Krasnoselskii fixed point theorem for operators leaving a Banach space cone invariant [9. A Green function plays a fundamental role in defining an appropriate operator on a suitable cone.

2. Green's Function and Bounds

In this section, we state the well-known Guo-Krasnosel'skii fixed point theorem which we will apply to a completely continuous operator whose kernel, $G(t, s)$ is the Green's function for

$$
\begin{gather*}
-y^{\Delta \Delta}=0 \\
\alpha u(a)-\beta u^{\Delta}(a)=0, \quad \gamma u\left(\sigma^{2}(b)\right)+\delta u^{\Delta}(\sigma(b))=0 \tag{2.1}
\end{gather*}
$$

is given by

$$
G(t, s)=\frac{1}{d} \begin{cases}\{\alpha(t-a)+\beta\}\left\{\gamma\left(\sigma^{2}(b)-\sigma(s)\right)+\delta\right\}: & a \leq t \leq s \leq \sigma^{2}(b) \tag{2.2}\\ \{\alpha(\sigma(s)-a)+\beta\}\left\{\gamma\left(\sigma^{2}(b)-t\right)+\delta\right\}: & a \leq \sigma(s) \leq t \leq \sigma^{2}(b)\end{cases}
$$

where $\alpha, \beta, \gamma, \delta \geq 0$ and

$$
d:=\gamma \beta+\alpha \delta+\alpha \gamma\left(\sigma^{2}(b)-a\right)>0
$$

One can easily check that

$$
\begin{equation*}
G(t, s)>0, \quad(t, s) \in\left(a, \sigma^{2}(b)\right)_{\mathbb{T}} \times(a, \sigma(b))_{\mathbb{T}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
G(t, s) \leq G(\sigma(s), s)=\frac{[\alpha(\sigma(s)-a)+\beta]\left[\gamma\left(\sigma^{2}(b)-\sigma(s)\right)+\delta\right]}{d} \tag{2.4}
\end{equation*}
$$

for $t \in\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}, s \in[a, \sigma(b)]_{\mathbb{T}}$. Let $I=\left[\frac{3 a+\sigma^{2}(b)}{4}, \frac{a+3 \sigma^{2}(b)}{4}\right]_{\mathbb{T}}$. Then

$$
\begin{equation*}
G(t, s) \geq k G(\sigma(s), s)=k \frac{[\alpha(\sigma(s)-a)+\beta]\left[\gamma\left(\sigma^{2}(b)-\sigma(s)\right)+\delta\right]}{d} \tag{2.5}
\end{equation*}
$$

for $t \in I, s \in[a, \sigma(b)]_{\mathbb{T}}$, where

$$
\begin{equation*}
k=\min \left\{\frac{\gamma\left(\sigma^{2}(b)-a\right)+4 \delta}{4\left(\gamma\left(\sigma^{2}(b)-a\right)+\delta\right)}, \frac{\alpha\left(\sigma^{2}(b)-a\right)+4 \beta}{4\left(\alpha\left(\sigma^{2}(b)-a\right)+\beta\right)}\right\} \tag{2.6}
\end{equation*}
$$

We note that a pair $(u(t), v(t))$ is a solution of the eigenvalue problem 1.2, 1.3 if and only if

$$
\begin{gather*}
u(t)=\lambda \int_{a}^{\sigma(b)} G(t, s) p(s) f\left(\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s, a \leq t \leq \sigma^{2}(b) \\
v(t)=\lambda \int_{a}^{\sigma(b)} G(t, s) q(s) g(u(\sigma(s))) \Delta s, \quad a \leq t \leq \sigma^{2}(b) \tag{2.7}
\end{gather*}
$$

Values of λ for which there are positive solutions (positive with respect to a cone) of $1.2,(1.3)$ will be determined via applications of the following fixed point theorem 19.

Theorem 2.1 (Krasnosel'skii). Let \mathcal{B} be a Banach space, and let $\mathcal{P} \subset \mathcal{B}$ be a cone in \mathcal{B}. Assume that Ω_{1} and Ω_{2} are open subsets of \mathcal{B} with $0 \in \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega_{2}$, and let

$$
\begin{equation*}
T: \mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow \mathcal{P} \tag{2.8}
\end{equation*}
$$

be a completely continuous operator such that either
(i) $\|T u\| \leq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|T u\| \geq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{2}$; or
(ii) $\|T u\| \geq\|u\|, u \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|T u\| \leq\|u\|$, $u \in \mathcal{P} \cap \partial \Omega_{2}$.

Then, T has a fixed point in $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

3. Positive Solutions in a Cone

In this section, we apply Theorem 2.1 to obtain solutions in a cone (i.e., positive solutions) of $\left(1.2, \sqrt[1.3]{ }\right.$. Assume throughout that $\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}$ is such that

$$
\begin{align*}
& \xi=\min \left\{t \in \mathbb{T}: t \geq \frac{3 a+\sigma^{2}(b)}{4}\right\} \\
& \omega=\max \left\{t \in \mathbb{T}: t \leq \frac{a+3 \sigma^{2}(b)}{4}\right\} \tag{3.1}
\end{align*}
$$

both exist and satisfy

$$
\begin{equation*}
\frac{3 a+\sigma^{2}(b)}{4} \leq \xi<\omega \leq \frac{a+3 \sigma^{2}(b)}{4} \tag{3.2}
\end{equation*}
$$

Next, let $\tau \in[\xi, \omega]_{\mathbb{T}}$ be defied by

$$
\begin{equation*}
\int_{\xi}^{\omega} G(\tau, s) p(s) \Delta s=\max _{t \in[\xi, \omega]_{\mathrm{T}}} \int_{\xi}^{\omega} G(t, s) p(s) \Delta s . \tag{3.3}
\end{equation*}
$$

Finally, we define

$$
\begin{gather*}
l=\min _{s \in[a, \sigma(b)]_{\mathbb{T}}} \frac{G(\sigma(\omega), s)}{G(\sigma(s), s)}, \tag{3.4}\\
\gamma=\min \{k, l\} . \tag{3.5}
\end{gather*}
$$

For our construction, let $\mathcal{B}=\left\{x:\left[a, \sigma^{2}(b)\right]_{\mathbb{T}} \rightarrow \mathbb{R}\right\}$ with supremum norm $\|x\|=$ $\sup \left\{|x(t)|: t \in\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}\right\}$ and define a cone $\mathcal{P} \subset \mathcal{B}$ by

$$
\begin{equation*}
\mathcal{P}=\left\{x \in \mathcal{B} \mid x(t) \geq 0 \text { on }\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}, \quad \text { and } \quad x(t) \geq \gamma\|x\|, \text { for } t \in[\xi, \omega]_{\mathbb{T}}\right\} . \tag{3.6}
\end{equation*}
$$

For our first result, define positive numbers L_{1} and L_{2}, by

$$
\begin{gathered}
L_{1}:=\max \left\{\left[\gamma \int_{\xi}^{\omega} G(\tau, s) p(s) \Delta s f_{\infty}\right]^{-1},\left[\gamma \int_{\xi}^{\omega} G(\tau, s) q(s) \Delta s g_{\infty}\right]^{-1}\right\}, \\
L_{2}:=\min \left\{\left[\int_{a}^{\sigma(b)} G(\sigma(s), s) p(s) \Delta s f_{0}\right]^{-1},\left[\int_{a}^{\sigma(b)} G(\sigma(s), s) q(s) \Delta s g_{0}\right]^{-1}\right\} .
\end{gathered}
$$

Theorem 3.1. Assume that conditions (A1)-(A3) are satisfied. Then, for each λ satisfying

$$
\begin{equation*}
L_{1}<\lambda<L_{2} \tag{3.7}
\end{equation*}
$$

there exists a pair (u, v) satisfying (1.2, (1.3) such that $u(x)>0$ and $v(x)>0$ on $\left(a, \sigma^{2}(b)\right)_{\mathbb{T}}$.

Proof. Let λ be as in (3.7). And let $\epsilon>0$ be chosen such that

$$
\begin{gathered}
\max \left\{\left[\gamma \int_{\xi}^{\omega} G(\tau, s) p(s) \Delta s\left(f_{\infty}-\epsilon\right)\right]^{-1},\left[\gamma \int_{\xi}^{\omega} G(\tau, s) q(s) \Delta s\left(g_{\infty}-\epsilon\right)\right]^{-1}\right\} \leq \lambda \\
\lambda \leq \min \left\{\left[\int_{a}^{\sigma(b)} G(\sigma(s), s) p(s) \Delta s\left(f_{0}+\epsilon\right)\right]^{-1}\right. \\
\left.\left[\int_{a}^{\sigma(b)} G(\sigma(s), s) q(s) \Delta s\left(g_{0}+\epsilon\right)\right]^{-1}\right\}
\end{gathered}
$$

Define an integral operator $T: \mathcal{P} \rightarrow \mathcal{B}$ by

$$
\begin{equation*}
T u(t)=\lambda \int_{a}^{\sigma(b)} G(t, s) p(s) f\left(\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s \tag{3.8}
\end{equation*}
$$

By the remarks in Section 2, we seek suitable fixed points of T in the cone \mathcal{P}.
Notice from (A1), (A2), and (2.3) that, for $u \in \mathcal{P}, T u(t) \geq 0$ on $\left[a, \sigma^{2}(b)\right]_{\mathbb{T}}$. Also, for $u \in \mathcal{P}$, we have from (2.4) that

$$
\begin{align*}
T u(t) & :=\lambda \int_{a}^{\sigma(b)} G(t, s) p(s) f\left(\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s \\
& \leq \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) p(s) f\left(\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s \tag{3.9}
\end{align*}
$$

so that

$$
\begin{equation*}
\|T u\| \leq \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) p(s) f\left(\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s \tag{3.10}
\end{equation*}
$$

Next, if $u \in \mathcal{P}$, we have from (2.5), 3.5), and (3.8) that

$$
\begin{aligned}
& \min _{t \in[\xi, \omega]_{\mathbb{T}}} T u(t) \\
& =\min _{t \in[\xi, \omega]_{\mathrm{T}}} \lambda \int_{a}^{\sigma(b)} G(t, s) p(s) f\left(\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s \\
& \geq \lambda \gamma \int_{a}^{\sigma(b)} G(\sigma(s), s) p(s) f\left(\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s \\
& \geq \gamma\|T u\|
\end{aligned}
$$

Consequently, $T: \mathcal{P} \rightarrow \mathcal{P}$. In addition, standard arguments shows that T is completely continuous.

Now, from the definitions of f_{0} and g_{0}, there exists $H_{1}>0$ such that

$$
f(x) \leq\left(f_{0}+\epsilon\right) x, g(x) \leq\left(g_{0}+\epsilon\right) x, \quad 0<x \leq H_{1}
$$

Let $u \in \mathcal{P}$ with $\|u\|=H_{1}$. We first have from (2.4) and choice of ϵ, for $a \leq s \leq \sigma(b)$, that

$$
\begin{aligned}
\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r & \leq \lambda \int_{a}^{\sigma(b)} G(\sigma(r), r) q(r) g(u(\sigma(r))) \Delta r \\
& \leq \lambda \int_{a}^{\sigma(b)} G(\sigma(r), r) q(r)\left(g_{0}+\epsilon\right) u(r) \Delta r \\
& \leq \lambda \int_{a}^{\sigma(b)} G(\sigma(r), r) q(r) \Delta r\left(g_{0}+\epsilon\right)\|u\| \\
& \leq\|u\|=H_{1}
\end{aligned}
$$

As a consequence, we next have from 2.4) and choice of ϵ, for $a \leq t \leq \sigma^{2}(b)$, that

$$
\begin{aligned}
T u(t) & =\lambda \int_{a}^{\sigma(b)} G(t, s) p(s) f\left(\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s \\
& \leq \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) p(s)\left(f_{0}+\epsilon\right) \lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r \Delta s \\
& \leq \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) p(s)\left(f_{0}+\epsilon\right) H_{1} \Delta s \\
& \leq H_{1}=\|u\|
\end{aligned}
$$

So, $\|T u\| \leq\|u\|$. If we $\operatorname{set} \Omega_{1}=\left\{x \in \mathcal{B} \mid\|x\|<H_{1}\right\}$, then

$$
\begin{equation*}
\|T u\| \leq\|u\|, \quad \text { for } u \in \mathcal{P} \cap \partial \Omega_{1} \tag{3.12}
\end{equation*}
$$

Next, from the definitions of f_{∞} and g_{∞}, there exists $\bar{H}_{2}>0$ such that

$$
\begin{equation*}
f(x) \geq\left(f_{\infty}-\epsilon\right) x, \quad g(x) \geq\left(g_{\infty}-\epsilon\right) x, \quad x \geq \bar{H}_{2} \tag{3.13}
\end{equation*}
$$

Let $H_{2}=\max \left\{2 H_{1}, \bar{H}_{2} / \gamma\right\}$. Let $u \in \mathcal{P}$ and $\|u\|=H_{2}$. Then,

$$
\begin{equation*}
\min _{t \in[\xi, \omega]_{\mathbb{T}}} u(t) \geq \gamma\|u\| \geq \bar{H}_{2} \tag{3.14}
\end{equation*}
$$

Consequently, from 2.5 and choice of ϵ, for $a \leq s \leq \sigma(b)$, we have that

$$
\begin{align*}
\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r & \geq \lambda \int_{\xi}^{\omega} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r \\
& \geq \lambda \int_{\xi}^{\omega} G(\tau, r) q(r) g(u(\sigma(r))) \Delta r \\
& \geq \lambda \int_{\xi}^{\omega} G(\tau, r) q(r)\left(g_{\infty}-\epsilon\right) u(r) \Delta r \tag{3.15}\\
& \geq \gamma \lambda \int_{\xi}^{\omega} G(\tau, r) q(r)\left(g_{\infty}-\epsilon\right) \Delta r\|u\| \\
& \geq\|u\|=H_{2}
\end{align*}
$$

And so, we have from 2.5 and choice of ϵ that

$$
\begin{aligned}
T u(\tau) & =\lambda \int_{a}^{\sigma(b)} G(\tau, s) p(s) f\left(\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s \\
& \geq \lambda \int_{a}^{\sigma(b)} G(\tau, s) p(s)\left(f_{\infty}-\epsilon\right) \lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r \Delta s \\
& \geq \lambda \int_{a}^{\sigma(b)} G(\tau, s) p(s)\left(f_{\infty}-\epsilon\right) H_{2} \Delta s \\
& \geq \gamma H_{2}>H_{2}=\|u\| .
\end{aligned}
$$

Hence, $\|T u\| \geq\|u\|$. So if we set $\Omega_{2}=\left\{x \in \mathcal{B}:\|x\|<H_{2}\right\}$, then

$$
\begin{equation*}
\|T u\| \geq\|u\|, \quad \text { for } u \in \mathcal{P} \cap \partial \Omega_{2} \tag{3.16}
\end{equation*}
$$

Applying Theorem 2.1 to 3.12 and (3.16), we obtain that T has a fixed point $u \in \mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$. As such, and with v being defined by

$$
\begin{equation*}
v(t)=\lambda \int_{a}^{\sigma(b)} G(t, s) q(s) g(u(\sigma(s))) \Delta s \tag{3.17}
\end{equation*}
$$

the pair (u, v) is a desired solution of $1.2,1.3$ for the given λ. The proof is complete.

Prior to our next result, we introduce another hypothesis.
(A4) $g(0)=0$, and f is an increasing function.
We now define positive numbers L_{3} and L_{4} by

$$
\begin{gathered}
L_{3}:=\max \left\{\left[\gamma \int_{\xi}^{\omega} G(\tau, s) p(s) \Delta s f_{0}\right]^{-1},\left[\gamma \int_{\xi}^{\omega} G(\tau, s) q(s) \Delta s g_{0}\right]^{-1}\right\}, \\
L_{4}:=\min \left\{\left[\int_{a}^{\sigma(b)} G(\sigma(s), s) p(s) \Delta s f_{\infty}\right]^{-1},\left[\int_{a}^{\sigma(b)} G(\sigma(s), s) q(s) \Delta s g_{\infty}\right]^{-1}\right\} .
\end{gathered}
$$

Theorem 3.2. Assume that conditions (A1)-(A4) are satisfied. Then, for each λ satisfying

$$
\begin{equation*}
L_{3}<\lambda<L_{4} \tag{3.18}
\end{equation*}
$$

there exists a pair (u, v) satisfying (1.2), (1.3) such that $u(x)>0$ and $v(x)>0$ on $\left(a, \sigma^{2}(b)\right)_{\mathbb{T}}$.
Proof. Let λ be as in 3.18. And let $\epsilon>0$ be chosen such that

$$
\begin{gathered}
\max \left\{\left[\gamma \int_{\xi}^{\omega} G(\tau, s) p(s) \Delta s\left(f_{0}-\epsilon\right)\right]^{-1},\left[\gamma \int_{\xi}^{\omega} G(\tau, s) q(s) \Delta s\left(g_{0}-\epsilon\right)\right]^{-1}\right\} \leq \lambda \\
\lambda \leq \min \left\{\left[\int_{a}^{\sigma(b)} G(\sigma(s), s) p(s) \Delta s\left(f_{\infty}+\epsilon\right)\right]^{-1}\right. \\
\left.\left[\int_{a}^{\sigma(b)} G(\sigma(s), s) q(s) \Delta s\left(g_{\infty}+\epsilon\right)\right]^{-1}\right\}
\end{gathered}
$$

Let T be the cone preserving, completely continuous operator that was defined by (3.8). From the definitions of f_{0} and g_{0}, there exists $H_{1}>0$ such that

$$
\begin{equation*}
f(x) \geq\left(f_{0}-\epsilon\right) x, \quad g(x) \geq\left(g_{0}-\epsilon\right) x, \quad 0<x \leq H_{1} \tag{3.19}
\end{equation*}
$$

Now, $g(0)=0$, and so there exists $0<H_{2}<H_{1}$ such that

$$
\begin{equation*}
\lambda g(x) \leq \frac{H_{1}}{\int_{a}^{\sigma(b)} G(\sigma(s), s) q(s) \Delta s}, \quad 0 \leq x \leq H_{2} \tag{3.20}
\end{equation*}
$$

Choose $u \in \mathcal{P}$ with $\|u\|=H_{2}$. Then, for $a \leq s \leq \sigma(b)$, we have

$$
\begin{equation*}
\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g\left(u(\sigma(r)) \Delta r \leq \frac{\int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) H_{1} \Delta r}{\int_{a}^{\sigma(b)} G(\sigma(s), s) q(s) \Delta s} \leq H_{1}\right. \tag{3.21}
\end{equation*}
$$

Then

$$
\begin{align*}
T u(\tau) & =\lambda \int_{a}^{\sigma(b)} G(\tau, s) p(s) f\left(\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r\right) \Delta s \\
& \geq \lambda \int_{\xi}^{\omega} G(\tau, s) p(s)\left(f_{0}-\epsilon\right) \lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r \Delta s \\
& \geq \lambda \int_{\xi}^{\omega} G(\tau, s) p(s)\left(f_{0}-\epsilon\right) \lambda \int_{\xi}^{\omega} G(\tau, r) q(r) g(u(\sigma(r))) \Delta r \Delta s \tag{3.22}\\
& \geq \lambda \int_{\xi}^{\omega} G(\tau, s) p(s)\left(f_{0}-\epsilon\right) \lambda \gamma \int_{\xi}^{\omega} G(\tau, r) q(r)\left(g_{0}-\epsilon\right)\|u\| \Delta r \Delta s \\
& \geq \lambda \int_{\xi}^{\omega} G(\tau, s) p(s)\left(f_{0}-\epsilon\right)\|u\| \Delta s \\
& \geq \lambda \gamma \int_{\xi}^{\omega} G(\tau, s) p(s)\left(f_{0}-\epsilon\right)\|u\| \Delta s \geq\|u\| .
\end{align*}
$$

So, $\|T u\| \geq\|u\|$. If we put $\Omega_{1}=\left\{x \in \mathcal{B} \mid\|x\|<H_{2}\right\}$, then

$$
\begin{equation*}
\|T u\| \geq\|u\|, \quad \text { for } u \in \mathcal{P} \cap \partial \Omega_{1} . \tag{3.23}
\end{equation*}
$$

Next, by definitions of f_{∞} and g_{∞}, there exists \bar{H}_{1} such that

$$
\begin{equation*}
f(x) \leq\left(f_{\infty}-\epsilon\right) x, \quad g(x) \leq\left(g_{\infty}-\epsilon\right) x, \quad x \geq \bar{H}_{1} \tag{3.24}
\end{equation*}
$$

There are two cases: (i) g is bounded, and (ii) g is unbounded.
For case (i), suppose $N>0$ is such that $g(x) \leq N$ for all $0<x<\infty$. Then, for $a \leq s \leq \sigma(b)$ and $u \in \mathcal{P}$,

$$
\begin{equation*}
\lambda \int_{a}^{\sigma(b)} G(\sigma(s), r) q(r) g(u(\sigma(r))) \Delta r \leq N \lambda \int_{a}^{\sigma(b)} G(\sigma(r), r) q(r) \Delta r \tag{3.25}
\end{equation*}
$$

Let

$$
\begin{equation*}
M=\max \left\{f(x) \mid 0 \leq x \leq N \lambda \int_{a}^{\sigma(b)} G(\sigma(r), r) q(r) \Delta r\right\} \tag{3.26}
\end{equation*}
$$

and let

$$
\begin{equation*}
H_{3}>\max \left\{2 H_{2}, M \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) p(s) \Delta s\right\} \tag{3.27}
\end{equation*}
$$

Then, for $u \in \mathcal{P}$ with $\|u\|=H_{3}$,

$$
\begin{equation*}
T u(t) \leq \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) p(s) M \Delta s \leq H_{3}=\|u\| \tag{3.28}
\end{equation*}
$$

so that $\|T u\| \leq\|u\|$. If $\Omega_{2}=\left\{x \in \mathcal{B} \mid\|x\|<H_{3}\right\}$, then

$$
\begin{equation*}
\|T u\| \leq\|u\|, \quad \text { for } u \in \mathcal{P} \cap \partial \Omega_{2} \tag{3.29}
\end{equation*}
$$

For case (ii), there exists $H_{3}>\max \left\{2 H_{2}, \bar{H}_{1}\right\}$ such that $g(x) \leq g\left(H_{3}\right)$, for $0<$ $x \leq H_{3}$. Similarly, there exists $H_{4}>\max \left\{H_{3}, \lambda \int_{a}^{\sigma(b)} G(\sigma(r), r) q(r) g\left(H_{3}\right) \Delta r\right\}$ such that $f(x) \leq f\left(H_{4}\right)$, for $0<x \leq H_{4}$. Choosing $u \in \mathcal{P}$ with $\|u\|=H_{4}$, we have by (A4) that

$$
\begin{align*}
T u(t) & \leq \lambda \int_{a}^{\sigma(b)} G(t, s) p(s) f\left(\lambda \int_{a}^{\sigma(b)} G(\sigma(r), r) q(r) g\left(H_{3}\right) \Delta r\right) \Delta s \\
& \leq \lambda \int_{a}^{\sigma(b)} G(t, s) p(s) f\left(H_{4}\right) \Delta s \tag{3.30}\\
& \leq \lambda \int_{a}^{\sigma(b)} G(\sigma(s), s) p(s) \Delta s\left(f_{\infty}+\epsilon\right) H_{4} \\
& \leq H_{4}=\|u\|,
\end{align*}
$$

and so $\|T u\| \leq\|u\|$. For this case, if we let $\Omega_{2}=\left\{x \in \mathcal{B}:\|x\|<H_{4}\right\}$, then

$$
\|T u\| \leq\|u\|, \quad \text { for } u \in \mathcal{P} \cap \partial \Omega_{2} .
$$

In either case, application of part (ii) of Theorem 2.1 yields a fixed point u of T belonging to $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$, which in turn yields a pair (u, v) satisfying $\sqrt{1.2}$, 1.3$)$ for the chosen value of λ. The proof is complete.

References

[1] R. P. Agarwal and D. O'Regan, Triple solutions to boundary value problems on time scales, Appl. Math. Lett., 13(2000), No. 4, 7-11.
[2] R. P. Agarwal, D. O'Regan, and P. J. Y. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic, Dordrecht, The Netherlands, 1999.
[3] D. R. Anderson, Eigenvalue intervals for a second-order mixed-conditions problem on time scale, Int. J. Nonlinear Diff. Eqns., 7(2002), 97-104.
[4] D. R. Anderson, Eigenvalue intervals for a two-point boundary value problem on a measure chain, J. Comp. Appl. Math., 141(2002), No. 1-2, 57-64.
[5] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, Mass, USA, 2001.
[6] C. J. Chyan, J. M. Davis, J.Henderson, and W. K. C. Yin, Eigenvalue comparisons for differential equations on a measure chain, Elec. J. Diff. Eqns., 1998(1998), No. 35, 1-7.
[7] C. J. Chyan and J. Henderson, Eigenvalue problems for nonlinear differential equations on a measure chain, J. Math. Anal. Appl., 245(2000), No. 2, 547-559.
[8] L. H. Erbe and A. Peterson, Positive solutions for a nonlinear differential equation on ameasure chain, Math. Comp. Model., 32(2000), No. 5-6, 571-585.
[9] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120(1994), No. 3, 743-748.
[10] J. R. Graef and B. Yang, Boundary value problems for second order nonlinear ordinary differential equations, Comm. Applied Anal., 6(2002), No. 2, 273-288.
[11] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, vol. 5 of Notes and Reports in Mathematics in Science and Engineering, Academic Press, Boston, Mass, USA, 1988.
[12] Z. He, Double positive solutions of boundary value problems for p-Laplacian dynamic equations on time scales, Applicable Anal., 84(2005), No. 4, 377-390.
[13] J. Henderson and H. Wang, Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl., 208(1997), No. 1, 252-259.
[14] J. Henderson and H.Wang, Nonlinear eigenvalue problems for quasilinear systems, Comp. Math. Appl., 49(2005), No. 11-12, 1941-1949.
[15] J. Henderson and H. Wang, An eigenvalue problem for quasilinear systems, Rocky. Mount. J. Math., $\mathbf{3 7}$ (2007), No. 1, 215-228.
[16] L. Hu and L. Wang, Multiple positive solutions of boundary value problems for systems of nonlinear second-order differential equations, J. Math. Anal. Appl., 335(2007), No. 2, 10521060.
[17] G. Infante, Eigenvalues of some non-local boundary-value problems, Proc. Edinburgh Math. Soc., 46(2003), No. 1, 75-86.
[18] G. Infante and J. R. L. Webb, Loss of positivity in a nonlinear scalar heat equation, Nonlinear Diff. Eqns. Appl., 13(2006), No. 2, 249-261.
[19] M. A. Krasnosel'skii, Positive solutions of operator equations, P. Noordhoff Ltd, Groningen, The Netherlands (1964).
[20] H. J. Kuiper, On positive solutions of nonlinear elliptic eigenvalue problems, Rend. Circ. Mat. Palermo., 20(1971), 113-138.
[21] W. T. Li and H. R. Sun, Multiple positive solutions for nonlinear dynamical systems on a measure chain, J. Comp. Appl. Math., 162 (2004), No. 2, 421-430.
[22] R. Ma, Multiple nonnegative solutions of second-order systems of boundary value problems, Nonlinear Anal. (T. M. A), 42(2000), No. 6, 1003-1010.
[23] H. R. Sun, Existence of positive solutions to second-order time scale systems, Comp. Math. Appl., 49(2005), No. 1, 131-145.
[24] H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl., 281(2003), No. 1, 287-306.
[25] J. R. L. Webb, Positive solutions of some three point boundary value problems via fixed point index theory, Nonlinear Anal. (T. M. A), 47(2001), No. 7, 4319-4332.
[26] Y. Zhou and Y.Xu, Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations, J. Math. Anal. Appl., 320(2006), No. 2, 578-590.
A. Kameswara Rao

Department of Applied Mathematics, Andhra University, Visakhapatnam 530 003, India E-mail address: kamesh_1724@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 39A10, 34B15, 34A40.
 Key words and phrases. Dynamic equations; eigenvalue intervals; positive solution; cone.
 (C) 2009 Texas State University - San Marcos.

 Submitted July 6, 2009. Published October 4, 2009.

