Electronic Journal of Differential Equations, Vol. 2009(2009), No. 127, pp. 1-9.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

POSITIVE SOLUTIONS FOR A SYSTEM OF NONLINEAR
BOUNDARY-VALUE PROBLEMS ON TIME SCALES

A. KAMESWARA RAO

ABSTRACT. We determine the values of a parameter A for which there exist
positive solutions to the system of dynamic equations

uBB () + Ap(t) f(v(o(t) =0, t€ [a,b]r,
vA2(1) + Aa(t)g(u(o(t)) = 0, ¢ € [a,b]r,

with the boundary conditions, cu(a)—Bu? (a) = 0, yu(c?(b))+du’ (a(b)) = 0,
av(a) — Bv®(a) = 0, yu(o2(b)) + dv> (o (b)) = 0, where T is a time scale. To
this end we apply a Guo-Krasnosel’skii fixed point theorem.

1. INTRODUCTION

Let T be a time scale with a,0?(b) € T. Given an interval J of R, we will use
the interval notation

Jr=JnNT. (1.1)

We are concerned with determining values of A (eigenvalues) for which there exist
positive solutions for the system of dynamic equations

w2 () + Ap(t)f(v(o (1) =0, t € [a,b]r,

1.2
vEA(t) + Ag(t)g(u(o(t)) = 0, ¢ € [a,b]r, 2
satisfying the boundary conditions
— BuP(a) = u(o? ut (o =
au(a) = Bu (@) = 0, u(e*(B) + bu(o(1) =0, »

av(a) — fv2(a) =0, ~yu(a(b)) + dv2(a(b) =0.
We will use the following assumptions:
(A1) f,g € C(]0,00),[0,00));
(A2) p,q € C([a,o(b)]r,[0,00)), and each function does not vanish identically on
any closed subinterval of [a, o (b)]T;
(A3) the following limits exist as real numbers:
fO = hmwaO‘*’ f(fE)/.’E, go ‘= hmx~>0+ g(x)/xa
foo i=limg_ oo f(2)/2, and goo := limy 00 g(x)/x
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There is an ongoing flurry of research activities devoted to positive solutions of
dynamic equations on time scales. This work entails an extension of the paper by
Chyan and Henderson [7] to eigenvalue problem for system of nonlinear boundary
value problems on time scales. Also, in that light, this paper is closely related to
the works of Li and Sun [21], 23].

On a larger scale, there has been a great deal of study focused on positive so-
lutions of boundary value problems for ordinary differential equations. Interest in
such solutions is high from a theoretical sense [9] 11}, [13], 19} 20] and as applications
for which only positive solutions are meaningful [2 [T0, 16, 25]. These considera-
tions are caste primarily for scalar problems, but good attention has been given to
boundary value problems for systems of differential equations [14 [15] 17, [I8].

The main tool in this paper is an application of the Guo-Krasnoselskii fixed point
theorem for operators leaving a Banach space cone invariant [9]. A Green function
plays a fundamental role in defining an appropriate operator on a suitable cone.

2. GREEN’S FUNCTION AND BOUNDS

In this section, we state the well-known Guo-Krasnosel’skii fixed point theorem
which we will apply to a completely continuous operator whose kernel, G(t,s) is
the Green’s function for

—y*8 =0,
au(a) — fuP(a) =0, ~u(a?(b)) + du(a(b)) =0 @1)
is given by
o= A R LA o
where a, ,7,8 > 0 and
d:=~0 + ad + ay(o?(b) —a) > 0.
One can easily check that
G(t,s) >0, (ts)€ (a,0(b)r x (a,0(b))r (2.3)
and
G(t.5) < G(o(s), 5) = [afo(s) —a) + ﬂ][vd<02(b) —o(s) +9] (2.4)
for ¢ € [a,02(B)]r, s € [a,0(b)]r. Let [ = [2°0) ax3aZ®)]  Then
G(t.s) > kG(o(s). 5) = k [a(a(s) — a) + B[ (0% (b) — a(s)) + 4] (2.5)

d
fort €1, s € [a,o(b)]T, where

— min Y(o2(b) —a)+ 45  a(c?(b) —a)+ 48
o {4(7(02(17) —a)+0) 4(a(c®(b) —a) + B) } (2.6)
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We note that a pair (u(t),v(t)) is a solution of the eigenvalue problem (|1.2)), (1.3
if and only if

o(b) o(b)
u(t) = A / G(t, $)p(s)f (A / Glo(s),)a(r)g(u(o(r)Ar) As,a < t < a*(b),

o (b)
v(t) = A G(t,5)q(s)g(u(a(s)))As, a<t<o?(b).

a

(2.7)

Values of A for which there are positive solutions (positive with respect to a

cone) of (1.2)), (1.3)) will be determined via applications of the following fixed point
theorem [19].

Theorem 2.1 (Krasnosel’skii). Let B be a Banach space, and let P C B be a cone
in B. Assume that Q1 and Qo are open subsets of B with 0 € Oy C Q1 C Qo, and
let

T:PN(QW\Q) —P (2.8)
be a completely continuous operator such that either

(i) |Tu]| < ||lull, w € PN, and |Tul| > |jul|, v € PNOQ; or
(ii) || Tul| > |lull, w € PN I, and |[Tu|| < |jul], v € P NOQs.

Then, T has a fized point in P N (Q2\Q1).

3. POSITIVE SOLUTIONS IN A CONE

In this section, we apply Theorem -to obtain solutions in a cone (i.e., positive
solutions) of . (L:3). Assume throughout that [a,o?(b)]r is such that

§:min{t€'ﬂ‘:t23a%g(b)},
(3.1)
2
w:max{te’ﬂ‘:tg%a(b)};
both exist and satisfy
2 2
M§§<w§m_ (3.2)
4 4
Next, let 7 € [¢,w]r be defied by
/GTS As = max/Gts (3.3)
te(g,w]
Finally, we define
o Glo(w),s)
l= min ————, 3.4
se€la,o(®)]r G(a(s),s) (3-4)
~v = min{k, l}. (3.5)

For our construction, let B = {z : [a,02(b)]y — R} with supremum norm ||z| =
sup{|z(t)| : t € [a,0?(b)]r} and define a cone P C B by

P = {x € Blz(t) > 0 on [a,02()]r, and a(t) > ~l|z||, for t € [g,w]T}. (3.6)
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For our first result, define positive numbers L; and Lo, by

Lq := max { [7 /: G(r, s)p(s)ASfoo} 71, [’Y /E‘*’ G(r, S)Q(S)ASQOO] 71}7

Lo = min{ [/:(b) G(o(s), s)p(s)Asfo} 71, [/:(b) G(o(s), S)Q(S)Asgo] 71}.

Theorem 3.1. Assume that conditions (A1)—(A3) are satisfied. Then, for each A
satisfying

Li< )< LQ, (37)
there exists a pair (u,v) satisfying (L.2)), such that u(xz) > 0 and v(z) >0 on
(a,02(b))r.

Proof. Let A be as in (3.7). And let ¢ > 0 be chosen such that

max {1 [ 6 w20t ~0] o [0 oieaston ~0] "} <

-1

A < min { [ /:(b) G(o(s), s)p(s)As(fo + e)} 7

[/:(b) G(o(s),s)q(s)As(go + 6)} 71}.

Define an integral operator T : P — B by
a(b)

o(b)
Tu(t) =X [ Gt s)p(s)f (A / Glo(s), Ma(r)g(ulo(n)Ar)As.  (3.8)

By the remarks in Section 2, we seek suitable fixed points of T" in the cone P.
Notice from (A1), (A2), and (2.3)) that, for u € P, Tu(t) > 0 on [a,?(b)]r. Also,
for u € P, we have from (2.4]) that
o(b) o(b)
Tut) =2 [ G(ts)p(s)f (A / G(o(s), r)a(r)g(ulo(r)Ar) As
“ (3.9

<A /:(b) Glo(s). s)p(s)f (A /:(b) G(o(s),r)ar)g(u(o(r))Ar)As

so that

o(b)
[Tl < [ Gl (3 [ Gl nanstuter)an) s (.10

Next, if u € P, we have from ([2.5)), (3.5, and (3.8 that

min  Tu(t)
tE[&w]T

o(b)

o(b)
= min A G(t,s)p(s)f()\

telg,w]r a a

o(b)

G(o(s),r)a(r)g(u(o(r))Ar) As
o (3.11)

o (b)
> [ Gt (3 [ Glols)atgtutolr))ar) s

a

>yl Tul.

Consequently, T' : P — P. In addition, standard arguments shows that T is
completely continuous.
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Now, from the definitions of fy and gg, there exists H; > 0 such that
f@) < (fo+e)x, glx) < (go+e)x, 0<ax<H.

Let u € P with ||u]| = Hy. We first have from (2.4)) and choice of ¢, for a < s < o(b),
that

a(b) a(b)
A / G(a(s),r)q(r)g(u(a(r)))Ar < A G(a(r),r)q(r)g(u(o(r)))Ar

aa(b)
<A G(a(r),r)q(r)(go + eJul(r)Ar

aa(b)
<A G(a(r),r)q(r)Ar(go + €)ul

< |luf) = 1.

As a consequence, we next have from (2.4) and choice of ¢, for a <t < o%(b), that

a(b)

o(b)
)= [ G () [ Glolnarsuter)ar)as

a(b) a(b)
<A / G(a(s), s)p(s)(fo +€)A G(a(s),r)q(r)g(u(a(r)))ArAs

<3 [ Glote), sl + 1
<, = .
So, |Tul| < |jull. If we setQy = {z € B| ||z|| < H1}, then
ITu|l < |lu|l, foruePnNoR. (3.12)
Next, from the definitions of f., and g, there exists Ho > 0 such that
F@) 2 (foo — 2, 9(2) 2 (g — 3, 32 o, (3.13)
Let Hy = max{2H;, Ha/v}. Let u € P and ||u|| = Ha. Then,

min u(t) > vy|jul| > Ha. (3.14)
tG[E,w]T

Consequently, from (2.5 and choice of €, for a < s < o(b), we have that

o(b) w
A G(o(s),r)q(r)g(u(o(r)))Ar = )\/5 G(o(s),r)q(r)g(u(a(r)))Ar

a

> /g " Gr.r)a(r)glulo(r) Ar

>\ /)E " e g — urar 1Y)

> A L " G )a(r) (oo — ATl

> |lull = Ha.
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And so, we have from (2.5)) and choice of € that
a(b) a(b)
Tu(r) = A / G(7,5)p(s) f()\ /

a

G(0(s),1)a(r)g(u(o(r)) Ar) As
o(b) a(b)
> )\/ G(7,8)p(8)(foo — €)A G(a(s),r)q(r)g(u(o(r)))ArAs

a

a(b)
>0 [ Grops) (o — OHass
> vHy > Hy = |ul.
Hence, || Tul| > ||ul|. So if we set Qy = {x € B: ||z|| < Ha}, then
ITu|| > ||u|l, forue PN oQs. (3.16)

Applying Theorem to (3.12) and (3.16)), we obtain that T has a fixed point
u € PN (Q\Q1). As such, and with v being defined by

a(b)
o) =2 [ Glesa(uto(s)As (317)
the pair (u,v) is a desired solution of (I.2)), for the given A\. The proof is
complete. (I

Prior to our next result, we introduce another hypothesis.
(A4) ¢g(0) =0, and f is an increasing function.

We now define positive numbers L3 and L4 by

Ls := max / G(1,8)p Asfo 71 / G(r, s)q(s )ASQO}A}

L4 := min { [/U(b)

a

o(b)

G<o<s>7s>p<smsfoo}*1, [ et sumas] "}

Theorem 3.2. Assume that conditions (Al)—(A4) are satisfied. Then, for each A
satisfying
Ly <\ < Ly, (3.18)

there exists a pair (u,v) satisfying (1.2)), (1.3) such that u(z) > 0 and v(z) > 0 on
(a,0%(b))r.

Proof. Let A be as in (3.18). And let € > 0 be chosen such that

maX{ [7 /; G(7,s)p(s)As(fo — 6)} 71, [7 /: G(r,5)q(s)As(go — e)} 71} <\,

—1

A < min { [/aa(b) G(a(s), s)p(s)As(foo + e)} ’
[/aa(b) G(o(s),9)q(s)As(goo + 6)} 71}.

Let T be the cone preserving, completely continuous operator that was defined
by (3.8)). From the definitions of fy and go, there exists H; > 0 such that

f@) =z (fo—ez, g(x)= (g0 —€)z, 0<z<H (3.19)
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Now, ¢(0) = 0, and so there exists 0 < Hy < H; such that
H
Ag(x) < =0 ! , 0<z<H,. (3.20)
J. 7 Glo(s), s)a(s)As
Choose u € P with |ju| = Hz. Then, for a < s < g(b), we have

17D G(a(s), r)q(r) Hy Ar

a

170 G(o(s), 5)a(s)As

o(b)
/\/ G(o(s),r)q(r)g(u(o(r))Ar < <H;. (321)

o () o(b)
Tu(r) = )\/ G(r, s)p(s)f()\/ G(U(s),r)q(r)g(u(a(r)))Ar) As
w o(b)
= / Glrap(s)(fo = [ Glals).matrlgtu(o(r)Aras

>\ / G(7,8)p(s)(fo —€) / G(t,r) (u(o(r)))ArAs
(3.22)
2)\/ G(1,8)p(s)(fo — € /\7/ G(r,m)q(r)(go — €)||u||ArAs
>)\/ G(1,8)p(s)(fo — €)||u||As
> [ Gl ) o — s = )
So, [|[Tul] > ||ul|. If we put Q1 = {x € B| ||z|| < Hz}, then
|Tul| > [|ull, forue P NoQ. (3.23)

Next, by definitions of f., and g, there exists H; such that
f(@) < (fo =€)z, g(2) < (goo — ), o> H, (3.24)

There are two cases: (i) g is bounded, and (ii) ¢ is unbounded.
For case (i), suppose N > 0 is such that g(x) < N for all 0 < z < oco. Then, for
a<s<o(b) and u € P,

o(b) o(b)
)\/a G(o(s),r)q(r)g(u(o(r))Ar < N)\/a G(o(r),r)q(r)Ar. (3.25)
Let ,
M = max {f(x)|0 <z < NA /:( ) G(a(r),r)q(r)Ar}, (3.26)
and let
Hj > max {QHQ, M / " G(o(s), s)p(s)As}. (3.27)

Then, for u € P with |lu|| = Hs,
a(b)
Tu(t) < )\/ G(o(s),s)p(s)MAs < Hz = |Jul| (3.28)

so that ||Tu|| < |lul|. If Qo = {z € B] ||z|| < Hs}, then
|Tul| < ||ull, forue P NoQ,. (3.29)
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For case (ii), there exists H3z > max{2Hy, H,} such that g(z) < g(Hj3), for 0 <
x < Hs. Similarly, there exists Hy > max{Hs, )\f;(b) G(o(r),r)q(r)g(Hs)Ar} such
that f(x) < f(Hy4), for 0 < z < Hy. Choosing u € P with |u|| = H4, we have by
(A4) that

o(b)

Tu) <A [ Gl o)p(e) f()\ /

a

o(b)
G(o(r), 1)a(r)g(Ha)Ar) As

o(b)
< / G(t, 5)p(s) f(Hi)As (3.30)

o(b)
<x [ Glols), () As(foo + O H:

< Hy = |ul],
and so ||[Tu|| < ||u||. For this case, if we let Qo = {z € B: |z|| < Hy4}, then
||T7.LH S Hu“v foruePn 892

In either case, application of part (ii) of Theorem [2.1] - yields a fixed point U of T
belonging to P N (22\Q1), which in turn yields a pair (u,v) satisfying (L.2)), (L3]
for the chosen value of A\. The proof is complete.
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