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HOMOCLINIC SOLUTIONS FOR A CLASS OF SECOND ORDER
NON-AUTONOMOUS SYSTEMS

RONG YUAN, ZIHENG ZHANG

Abstract. This article concerns the existence of homoclinic solutions for the

second order non-autonomous system

q̈ + Aq̇ − L(t)q + Wq(t, q) = 0,

where A is a skew-symmetric constant matrix, L(t) is a symmetric positive

definite matrix depending continuously on t ∈ R, W ∈ C1(R × Rn, R). We
assume that W (t, q) satisfies the global Ambrosetti-Rabinowitz condition, that

the norm of A is sufficiently small and that L and W satisfy additional hy-

potheses. We prove the existence of at least one nontrivial homoclinic solution,
and the existence of infinitely many homoclinic solutions if W (t, q) is even in

q. Recent results in the literature are generalized and improved.

1. Introduction

The purpose of this work is to study the existence of homoclinic solutions for
the second order non-autonomous system

q̈ + Aq̇ − L(t)q + Wq(t, q) = 0, (1.1)

where A is a skew-symmetric constant matrix, L(t) is a symmetric and positive
definite matrix depending continuously on t ∈ R, W ∈ C1(R × Rn, R). A solution
q(t) of (1.1) is called a homoclinic solution (to 0) if q ∈ C2(R, Rn), q(t) → 0 and
q̇(t) → 0 as t → ±∞. If q(t) 6≡ 0, q(t) is called a nontrivial homoclinic solution.

When A = 0, (1.1) is the second order Hamiltonian system. Assuming that L(t)
and W (t, q) are independent of t or T -periodic in t, the existence of homoclinic
solutions for the Hamiltonian system (1.1) has been studied via critical point theory
and variational methods, see for instance [2, 4, 6, 8, 9, 15, 17] and the references
therein; a more general case is considered in [10]. In this case, the existence of
homoclinic solutions can be obtained by taking the limit of periodic solutions of
approximating problems. If L(t) and W (t, q) are neither independent of t not
periodic in t, compactness arguments derived from Sobolev imbedding theorem are
not available for the study of (1.1), see [1, 5, 7, 11, 12, 13, 14, 18] and the references
therein.
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When A 6= 0, as far as we know, the existence of homoclinic solutions of (1.1)
has not been studied. Our basic hypotheses on L and W are:

(H1) L ∈ C(R, Rn2
), L(t) is a symmetric and positive definite matrix for all

t ∈ R, and there is a continuous function α : R → R such that α(t) > 0 for
all t ∈ R,

(
L(t)q, q

)
≥ α(t)|q|2, and α(t) → +∞ as |t| → +∞.

(H2) There exists a constant µ > 2 such that for every t ∈ R and q ∈ Rn\{0}
0 < µW (t, q) ≤

(
Wq(t, q), q

)
.

(H3) Wq(t, q) = o(|q|) as |q| → 0 uniformly with respect to t ∈ R.
(H4) There exists W ∈ C(Rn, R) such that |Wq(t, q)| ≤ |W (q)| for every t ∈ R

and q ∈ Rn.

Remark 1.1. From (H1), we see that there is a constant β > 0 such that(
L(t)q, q

)
≥ β|q|2 for all t ∈ R and q ∈ Rn. (1.2)

(H2) is called the global Ambrosetti-Rabinowitz condition due to Ambrosetti and
Rabinowitz (e.g., [3]). Combining (H2) with (H3), we see that W (t, q) ≥ 0 for all
(t, q) ∈ R × Rn, W (t, 0) = 0, Wq(t, 0) = 0. Moreover, W (t, q) = o(|q|2) as |q| → 0
uniformly with respect to t, which implies that for any ε > 0 there is δ > 0 such
that

W (t, q) ≤ ε|q|2 for (t, q) ∈ R× Rn, |q| ≤ δ. (1.3)

In addition, we need the following hypothesis on A.
(H5) ‖A‖ <

√
β, where β is defined in (1.2).

Now we state our main result.

Theorem 1.2. Assume (H1)–(H5). Then (1.1) possesses at least one nontrivial
homoclinic solution. Moreover, if we assume that W (t, q) is even in q; i.e.,

(H6) W (t,−q) = W (t, q) for all t ∈ R and q ∈ Rn,
then (1.1) has infinitely many distinct homoclinic solutions.

Remark 1.3. From Remark 1.1, we know that there exists β > 0 such that (1.2)
holds. However, since we do not have an explicit estimate on β, we simply assume
that ‖A‖ is sufficiently small. Furthermore, when A = 0, our main result is just
[13, Theorems 1 and 2].

To overcome the lack of compactness in standard Sobolev imbedding theorems,
we employ a compact imbedding theorem obtained in [13]. In Section 2 we state
and prove preliminary results. Section 3 is devoted to the proof of Theorem 1.2.

2. Preliminaries

Let

E =
{
q ∈ H1(R, Rn) :

∫
R

[
|q̇(t)|2 +

(
L(t)q(t), q(t)

)]
dt < +∞

}
.

This vector space is a Hilbert space when endowed with the inner product

(x, y) =
∫

R

[(
ẋ(t), ẏ(t)

)
+

(
L(t)x(t), y(t)

)]
dt

and the corresponding norm ‖x‖2 = (x, x). Note that

E ⊂ H1(R, Rn) ⊂ Lp(R, Rn)
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for all p ∈ [2,+∞] with the imbedding being continuous. In particular, for p = +∞,
there exists a constant C > 0 such that

‖q‖∞ ≤ C‖q‖, ∀q ∈ E. (2.1)

Here Lp(R, Rn) (2 ≤ p < +∞) and H1(R, Rn) denote the Banach spaces of func-
tions on R with values in Rn under the norms

‖q‖p :=
( ∫

R
|q(t)|pdt

)1/p and ‖q‖H1 :=
(
‖q‖22 + ‖q̇‖22

)1/2

respectively. L∞(R, Rn) is the Banach space of essentially bounded functions from
R into Rn equipped with the norm

‖q‖∞ := ess sup{|q(t)| : t ∈ R}.

Lemma 2.1 ([13, Lemma 1]). Assume L satisfies (H1). Then the embedding of E
in L2(R, Rn) is compact.

Lemma 2.2 ([13, Lemma 2]). Assume (H1), (H3), (H4). If qk ⇀ q0 (weakly) in
E, then Wq(t, qk) → Wq(t, q0) in L2(R, Rn).

Lemma 2.3. Under Assumption (H2), for every t ∈ R, we have

W (t, q) ≤ W
(
t,

q

|q|

)
|q|µ, if 0 < |q| ≤ 1, (2.2)

W (t, q) ≥ W
(
t,

q

|q|

)
|q|µ, if |q| ≥ 1. (2.3)

Proof. It suffices to show that for every q 6= 0 and t ∈ R the function (0,∞) 3 ζ →
W (t, ζ−1q)ζµ is non-increasing, which is an immediate consequence of (H2). �

Remark 2.4. From Lemma 2.3, we see that there exists α0(t) > 0 such that

W (t, q) ≥ α0(t)|q|µ for all (t, q) ∈ R× Rn, |q| ≥ 1.

Now we introduce more notation and some definitions. Let B be a real Banach
space, I ∈ C1(B, R), which means that I is a continuously Fréchet-differentiable
functional defined on B.

Definition 2.5 ([16]). I ∈ C1(B, R) is said to satisfy the (PS) condition if any
sequence {uj}j∈N ⊂ B, for which {I(uj)}j∈N is bounded and I ′(uj) → 0 as j → +∞,
possesses a convergent subsequence in B.

Moreover, let Br be the open ball in B with the radius r and centered at 0 and
∂Br denote its boundary. We obtain the existence and multiplicity of homoclinic
solutions of (1.1) by use of the following well-known Mountain Pass Theorems, see
[16].

Lemma 2.6 ([16, Theorem 2.2]). Let B be a real Banach space and I ∈ C1(B, R)
satisfying the (PS) condition. Suppose that I(0) = 0 and

(A1) there exist constants ρ, α > 0 such that I|∂Bρ
≥ α,

(A2) there exists e ∈ B \Bρ such that I(e) ≤ 0.
Then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where
Γ = {g ∈ C([0, 1],B) : g(0) = 0, g(1) = e}.
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Lemma 2.7 ([16, Theorem 9.12]). Let B be an infinite dimensional real Banach
space and I ∈ C1(B, R) be even satisfying the (PS) condition and I(0) = 0. If
B = V ⊕X, where V is finite dimensional, and I satisfies

(A3) there exist constants ρ, α > 0 such that I|∂Bρ∩X ≥ α and
(A4) for each finite dimensional subspace B̃ ⊂ B, there is an R = R(B̃) such that

I ≤ 0 on B̃\BR(B̃),
then I has an unbounded sequence of critical values.

3. Proof of Theorem 1.2

Now we establish the corresponding variational framework to obtain homoclinic
solutions of (1.1). Take B = E and define the functional I : E → R by

I(q) =
∫

R

[1
2
|q̇(t)|2 +

1
2
(
Aq(t), q̇(t)

)
+

1
2
(
L(t)q(t), q(t)

)
−W (t, q(t))

]
dt

=
1
2
‖q‖2 +

1
2

∫
R

(
Aq(t), q̇(t)

)
dt−

∫
R

W (t, q(t))dt.

(3.1)

Lemma 3.1. Under the conditions of Theorem 1.2, we have

I ′(q)v =
∫

R

[(
q̇(t), v̇(t)

)
−

(
Aq̇(t), v(t)

)
+

(
L(t)q(t), v(t)

)
−

(
Wq(t, q(t)), v(t)

)]
dt,

(3.2)
for all q, v ∈ E, which yields, using the skew-symmetry of A,

I ′(q)q = ‖q‖2 −
∫

R

(
Aq̇(t), q(t)

)
dt−

∫
R

(
Wq(t, q(t)), q(t)

)
dt

= ‖q‖2 +
∫

R

(
Aq(t), q̇(t)

)
dt−

∫
R

(
Wq(t, q(t)), q(t)

)
dt.

(3.3)

Moreover, I is a continuously Fréchet-differentiable functional defined on E; i.e.,
I ∈ C1(E, R) and any critical point of I on E is a classical solution of (1.1) with
q(±∞) = 0 = q̇(±∞).

Proof. We begin by showing that I : E → R. By (1.3), there exist constants M > 0
and R1 > 0 such that

W (t, q) ≤ M |q|2 for all (t, q) ∈ R× Rn, |q| ≤ R1. (3.4)

Letting q ∈ E, then q ∈ C0(R, Rn) (see, e.g., [17]), the space of continuous functions
q on R such that q(t) → 0 as |t| → +∞; i.e., E ⊂ C0(R, Rn). Therefore there is a
constant R2 > 0 such that |t| ≥ R2 implies that |q(t)| ≤ R1. Hence, by (3.4), we
have

0 ≤
∫

R
W (t, q(t))dt ≤

∫ R2

−R2

W (t, q(t))dt + M

∫
|t|≥R2

|q(t)|2dt < +∞. (3.5)

Combining (3.1) and (3.5), we show that I : E → R.
Next we prove that I ∈ C1(E, R). Rewrite I as I = I1 − I2, where

I1 :=
1
2

∫
R

[
|q̇(t)|2 +

(
Aq(t), q̇(t)

)
+

(
L(t)q(t), q(t)

)]
dt, I2 :=

∫
R

W (t, q(t))dt.

It is easy to check that I1 ∈ C1(E, R), and by using the skew-symmetry of A, we
have

I ′1(q)v =
∫

R

[(
q̇(t), v̇(t)

)
−

(
Aq̇(t), v(t)

)
+

(
L(t)q(t), v(t)

)]
dt. (3.6)
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Therefore it is sufficient to consider I2. In the process we will see that

I ′2(q)v =
∫

R

(
Wq(t, q(t)), v(t)

)
dt, (3.7)

which is defined for all q, v ∈ E. For any given q ∈ E, let us define J(q) : E → R
as following

J(q)v =
∫

R

(
Wq(t, q(t)), v(t)

)
dt, v ∈ E.

It is obvious that J(q) is linear. Now we show that J(q) is bounded. Indeed, for
any given q ∈ E, there exists a constant M1 > 0 such that ‖q‖ ≤ M1 and, by (2.1),
‖q‖∞ ≤ CM1. According to (H3) and (H4), there is a constant b1 > 0 (dependent
on q) such that

|Wq(t, q(t))| ≤ b1|q(t)| for all t ∈ R,

which by (1.2) and the Hölder inequality yields

|J(q)v| =
∣∣∣ ∫

R

(
Wq(t, q(t)), v(t)

)
dt

∣∣∣ ≤ b1‖q‖2 ‖v‖2 ≤
b1

β
‖q‖ ‖v‖. (3.8)

Moreover, for q and v ∈ E, by the Mean Value Theorem, we have∫
R

W (t, q(t) + v(t))dt−
∫

R
W (t, q(t))dt =

∫
R

(
Wq(t, q(t) + h(t)v(t)), v(t)

)
dt,

where h(t) ∈ (0, 1). Therefore, by Lemma 2.2 and the Hölder inequality, we have∫
R

(
Wq(t, q(t) + h(t)v(t)), v(t)

)
dt−

∫
R

(
Wq(t, q(t)), v(t)

)
dt

=
∫

R

(
Wq(t, q(t) + h(t)v(t))−Wq(t, q(t)), v(t)

)
dt → 0

(3.9)

as v → 0. Combining (3.8) and (3.9), we see that (3.7) holds. It remains to prove
that I ′2 is continuous. Suppose that q → q0 in E and note that

I ′2(q)v − I ′2(q0)v =
∫

R

(
Wq(t, q(t))−Wq(t, q0(t)), v(t)

)
dt.

By Lemma 2.2 and the Hölder inequality, we obtain

I ′2(q)v − I ′2(q0)v → 0 as q → q0,

which implies the continuity of I ′2 and we show that I ∈ C1(E, R).
Lastly, we check that critical points of I are classical solutions of (1.1) satisfying

q(t) → 0 and q̇(t) → 0 as |t| → +∞. It is well known that E ⊂ C0(R, Rn) (the
space of continuous functions q on R such that q(t) → 0 as |t| → +∞). On the
other hand, if q is a critical point of I, for any v ∈ E ⊂ C0(R, Rn), by (3.2) we have∫

R

[(
q̇(t), v̇(t)

)
−

(
Aq̇(t), v(t)

)]
dt =

∫
R

(
q̇(t) + Aq(t), v̇(t)

)
dt

= −
∫

R

(
L(t)q(t)−Wq(t, q(t)), v(t)

)
dt,

which implies that L(t)q − Wq(t, q) is the weak derivative of q̇ + Aq. Since L ∈
C(R, Rn2

), W ∈ C1(R×Rn, R) and E ⊂ C0(R, Rn), we see that q̇+Aq is continuous,
which yields that q̇ is continuous and q ∈ C2(R, Rn); i.e., q is a classical solution of
(1.1). Moreover, it is easy to check that q satisfies q̇(t) → 0 as |t| → +∞ since q̇ is
continuous. �
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Lemma 3.2. Under Assumption (H1)-(H5), I satisfies the (PS) condition.

Proof. Assume that {uj}j∈N ⊂ E is a sequence such that {I(uj)}j∈N is bounded
and I ′(uj) → 0 as j → +∞. Then there exists a constant C1 > 0 such that

|I(uj)| ≤ C1, ‖I ′(uj)‖E∗ ≤ C1 (3.10)

for every j ∈ N.
We firstly prove that {uj}j∈N is bounded in E. By (3.1), (3.3), (H2) and the

Hölder inequality, we have(µ

2
− 1

)
‖uj‖2 = µI(uj)− I ′(uj)uj

+
∫

R

(
µW (t, uj(t))−

(
Wq(t, uj(t)), uj(t)

))
dt

−
(µ

2
− 1

) ∫
R

(
Auj(t), u̇j(t)

)
dt

≤ µI(uj)− I ′(uj)uj +
(µ

2
− 1

)‖A‖√
β
‖uj‖2.

(3.11)

Combining this inequality with (3.10), we obtain(µ

2
− 1

)(
1− ‖A‖√

β

)
‖uj‖2 ≤ µI(uj)− I ′(uj)uj ≤ µC1 + C1‖uj‖. (3.12)

Since µ > 2 and ‖A‖ <
√

β, the inequality (3.12) shows that {uj}j∈N is bounded
in E. By Lemma 2.1, the sequence {uj}j∈N has a subsequence, again denoted by
{uj}j∈N, and there exists u ∈ E such that

uj ⇀ u, weakly in E,

uj → u, strongly in L2(R, Rn).

Hence (
I ′(uj)− I ′(u)

)
(uj − u) → 0,

and by Lemma 2.2 and the Hölder inequality, we have∫
R

(
Wq(t, uj(t))−Wq(t, u(t)), uj(t)− u(t)

)
dt → 0,

and ∣∣ ∫
R

(
Au̇j(t)−Au̇(t), uj(t)− u(t)

)
dt

∣∣ ≤ ‖A‖‖u̇j − u̇‖‖uj − u‖2 → 0

as j → +∞. On the other hand, an easy computation shows that(
I ′(uj)− I ′(u), uj − u

)
= ‖uj − u‖2 −

∫
R

(
Au̇j(t)−Au̇(t), uj(t)− u(t)

)
dt

−
∫

R

(
Wq(t, uj(t))−Wq(t, u(t)), uj(t)− u(t)

)
dt.

Consequently, ‖uj − u‖ → 0 as j → +∞. �

Now we can give the proof of Theorem 1.2, we divide the proof into several steps.
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Proof of Theorem 1.2.
Step 1 It is clear that I(0) = 0 by Remark 1.1 and I ∈ C1(E, R) satisfies the (PS)
condition by Lemmas 3.1 and 3.2.
Step 2 We now show that there exist constants ρ > 0 and α > 0 such that I
satisfies the condition (A1) of Lemma 2.6. By (1.3), for all ε > 0, there exists δ > 0
such that W (t, q) ≤ ε|q|2 whenever |q| ≤ δ. Letting ρ = δ

C and ‖q‖ = ρ, we have
‖q‖∞ ≤ δ, where C > 0 is defined in (2.1). Hence W (t, q(t)) ≤ ε|q(t)|2 for all t ∈ R.
Integrating on R, we get∫

R
W (t, q(t))dt ≤ ε‖q‖22 ≤

ε

β
‖q‖2.

In consequence, combining this with (3.1), we obtain that, for ‖q‖ = ρ,

I(q) =
1
2
‖q‖2 +

1
2

∫
R

(
Aq(t), q̇(t)

)
dt−

∫
R

W (t, q(t))dt

≥ 1
2
‖q‖2 − 1

2
‖A‖√

β
‖q‖2 − ε

β
‖q‖2

=
(1
2
− 1

2
‖A‖√

β
− ε

β

)
‖q‖2.

(3.13)

Setting ε = 1
4β (1− ‖A‖√

β
), the inequality (3.13) implies

I|∂Bρ
≥ 1

4
(
1− ‖A‖√

β

) δ2

C2
= α > 0.

Step 3 It remains to prove that there exists e ∈ E such that ‖e‖ > ρ and I(e) ≤ 0,
where ρ is defined Step 2. By (3.1), we have, for every m ∈ R\{0} and q ∈ E \{0},

I(m q) =
m2

2
‖q‖2 +

m2

2

∫
R

(
Aq(t), q̇(t)

)
dt−

∫
R

W (t, m q(t))dt

≤ m2

2
(
1 +

‖A‖√
β

)
−

∫
R

W (t, m q(t))dt.

Take some Q ∈ E such that ‖Q‖ = 1. Then there exists a subset Ω of positive
measure of R such that Q(t) 6= 0 for t ∈ Ω. Take m > 0 such that m|Q(t)| ≥ 1 for
t ∈ Ω. Then, by (H5) and Remark 2.4, we obtain that

I(m Q) ≤ m2

2
(
1 +

‖A‖√
β

)
−mµ

∫
Ω

α0(t)|Q(t)|µdt. (3.14)

Since α0(t) > 0 and µ > 2, (3.14) implies that I(mQ) < 0 for some m > 0 such
that m|Q(t)| ≥ 1 for t ∈ Ω and ‖mQ‖ > ρ, where ρ is defined in Step 2. By Lemma
2.6, I possesses a critical value c ≥ α > 0 given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where
Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.

Hence there is q ∈ E such that I(q) = c, I ′(q) = 0.
Step 4 Now suppose that W (t, q) is even in q; i.e., (H6) holds, which implies that
I is even. Furthermore, we already know that I(0) = 0 and I ∈ C1(E, R) satisfies
the (PS) condition in Step 1.
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To apply Lemma 2.7, it suffices to prove that I satisfies the conditions (A3) and
(A4) of Lemma 2.7. Here we take V = {0} and X = E. (A3) is identically the same
as in Step 2, so it is already proved. Now we prove that (A4) holds. Let Ẽ ⊂ E be
a finite dimensional subspace. From Step 3 we know that, for any Q ∈ Ẽ ⊂ E such
that ‖Q‖ = 1, there is mQ > 0 such that

I(mQ) < 0 for every |m| ≥ mQ > 0.

Since Ẽ ⊂ E is a finite dimensional subspace, we can choose an R = R(Ẽ) > 0 such
that

I(q) < 0, ∀q ∈ Ẽ\BR.

Hence, by Lemma 2.7, I possesses an unbounded sequence of critical values {cj}j∈N
with cj → +∞. Let qj be the critical point of I corresponding to cj , then (1.1) has
infinitely many distinct homoclinic solutions.
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