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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THE
FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN

BANACH SPACES

JUN WU, YICHENG LIU

Abstract. In this article, we established the existence and uniqueness of so-

lutions for fractional integro-differential equations with nonlocal conditions in
Banach spaces. Krasnoselskii-Krein-type conditions are used for obtaining the

main result.

1. Introduction

In this article, we are interesting in the existence and uniqueness of solutions for
the Cauchy problem with a Caputo fractional derivative and nonlocal conditions:

Dqx(t) = f(t, x(t), [θx](t)), q ∈ (0, 1) t ∈ I := [0, 1], (1.1)

x(0) + g(x) = x0, (1.2)

where q ∈ (0, 1), f : I ×X ×X → X, g : C(I,X) → X, θ : X → X defined as

[θx](t) =
∫ t

0

k(t, s, x(s))ds,

and k : ∆×X → X, ∆ = {(t, s) : 0 ≤ s ≤ t ≤ 1}. Here, (X, ‖ · ‖) is a Banach space
and C = C(I,X) denotes the Banach space of all bounded continuous functions
from I into X equipped with the norm ‖ · ‖C .

The study of fractional differential equations and inclusions is linked to the
wide applications of fractional calculus in physics, continuum mechanics, signal
processing, and electromagnetics. The theory of fractional differential equations
has seen considerable development, see for example the monographs of Kilbas et
al. [5] and Lakshmikantham et al. [9].

Recently, existence and uniqueness criteria for the various fractional (integro-
)differential equations were considered by Ahmad and Nieto [1], Bhaskar[4], Lak-
shmikantham and Leela et al [7, 8]. For more information in this fields, see [2, 3]
and the references therein.
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As indicated in many previous articles, the nonlocal condition x(0) + g(x) = x0

generalizes the Cauchy condition x(0) = x0, and can be applied in physics with
better cases than the Cauchy condition. The term g(x) denotes the nonlocal effects,
which describe the diffusion phenomenon of the a small amount in a transparent
tube, with the general form g(x) =

∑p
i=1 cix(ti). Also, the problem (1.1)-(1.2)

includes many classical formulations. For example, g(x) = x0 − x(T ) becomes a
periodic boundary problem, g(x) = x0 + x(T ) becomes an antiperiodic boundary
problem, while g(x) = 0 becomes a Cauchy problem.

In [2], the authors presented some existence and uniqueness results for the prob-
lem (1.1)-(1.2), when f(t, x(t), [θx](t)) = p(t, x(t)) +

∫ t

0
k(t, s, x(s))ds. In [3], the

authors presented some existence and uniqueness results for the problem (1.1)-(1.2),
when f(t, x(t), [θx](t)) =

∫ t

0
k(t, s, x(s))ds. The aim of this paper is to present some

existence results for the problem (1.1)-(1.2) for some Krasnoselskii-Krein-type con-
ditions. Our methods are based on the equivalence of norms and a fixed point
theorem.

2. Main results

For the next theorem, we sue the following assumptions:
(F1) f is continuous and there exist constants α, β ∈ (0, 1], L1, L2 > 0 such that

for t ∈ I and xi, yi ∈ X,

‖f(t, x1, y1)− f(t, x2, y2)‖ ≤ L1‖x1 − y1‖α + L2‖x2 − y2‖β ;

(F2) k is continuous and there exist β1 ∈ (0, 1], h ∈ L1(I) such that

‖k(t, s, x)− k(t, s, y)‖ ≤ h(s)‖x− y‖β1 , (t, s) ∈ ∆, x, y ∈ X ;

(G) g is bounded, continuous, and there exists a constant b ∈ (0, 1) such that
‖g(u)− g(v)‖ ≤ b‖u− v‖.

Theorem 2.1. Under Assumptions (F1), (F2), (G), Problem (1.1)-(1.2) has a
unique solution.

For special cases of f , we obtain the following corollaries.

Corollary 2.2. Let f(t, x(t), [θx](t)) = p(t, x(t))+
∫ t

0
k(t, s, x(s))ds. Assume (F2),

(G) and that p is continuous and there exist constants β ∈ (0, 1], L > 0 such that

‖p(t, x)− p(t, y)‖ ≤ L‖x− y‖β t ∈ I, x, y ∈ X.
Then (1.1)-(1.2) has a unique solution.

Corollary 2.3. Assume (F1), (G) and that k(t, s, x(s)) = γ(t, s)x(s) and γ ∈
C(∆). Then (1.1)-(1.2) has a unique solution.

For the next theorem, we use the assumptions:
(F1’) f is continuous and there exist constants p1, p2 ∈ [0, q), L1, L2, C > 0 such

that

‖f(t, x, y)‖ ≤ L1

tp1
‖x‖+

L2

tp2
‖y‖+ C, t ∈ I, x, y ∈ X ;

(F2’) k is continuous and there exist h ∈ L1(I), K > 0 such that

‖k(t, s, x)‖ ≤ h(s)‖x‖+K, (t, s) ∈ ∆, x, y ∈ X.
Theorem 2.4. Assume (F1’), F(2’), (G). Then (1.1)-(1.2) has at least one solution.

We remark that Theorem 2.1 extends [2, Theorem 2.1] and [3, Theorem 2.1].



EJDE-2009/129 EXISTENCE AND UNIQUENESS OF SOLUTIONS 3

3. Proof of Theorem 2.1

The following lemma, due to Krasnoselskii, plays an important role in the proof
of the existence part of Theorem 2.1.

Lemma 3.1 ([6]). Let M be a closed convex and nonempty subset of a Banach space
X. Let A,B be two operators such that (1) Ax+By ∈M whenever x, y ∈M ; (2)
A is compact and continuous; (3) B is a contraction mapping. Then there exists
z ∈M such that z = Az +Bz.

Proof of Theorem 2.1. First, we transform the Cauchy problem (1.1)-(1.2) into
fixed point problem with F : C(I,X) → C(I,X) defined by

Fx(t) = x0 − g(x) +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s), [θx](s))ds. (3.1)

Let F = A+B, with

Ax(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s), [θx](s))ds; (3.2)

Bx(t) = x0 − g(x). (3.3)

Define the norm ‖ · ‖k in C(I,X), for u ∈ C(I,X) and for some k ∈ N, by

‖u‖k = max{e−kt‖u(t)‖ : t ∈ I}.

Note that the norms ‖ · ‖C and ‖ · ‖k are equivalent.
We prove Theorem 2.1 in the following two steps.

Step 1: Existence. Let P = supx∈X ‖g(x)‖, M0 = supt∈I ‖
∫ t

0
k(t, s, 0)ds‖, M1 =

supt∈I ‖f(t, 0, 0)‖ and Q = ‖x0‖+ P + M1
Γ(q+1) + 3. Choose a k1 ∈ N such that

1
kq
1

(L1Q
α + L2(‖h‖L1Qβ1 +M0)β) < 3.

Setting BQ = {u ∈ C(I,X) : ‖u‖k1 ≤ Q}. For u ∈ BQ, noting the assumption
(F2), we have

‖[θu](t)‖ ≤
∫ t

0

‖k(t, r, u(r))− k(t, r, 0) + k(t, r, 0)‖dr

≤ ‖h‖L1 sup
r∈[0,t]

‖x(r)‖β1 +M0

≤ ‖h‖L1ek1tQβ1 +M0.

Thus
‖θu‖k1 ≤ ‖h‖L1Qβ1 +M0.

By assumption (F1), for u ∈ BQ, we obtain

‖Fu(t)‖ ≤ ‖x0‖+ P +
1

Γ(q)

∫ t

0

(t− s)q−1‖f(s, u(s), [θu](s))− f(s, u(s), 0)‖ds

+
1

Γ(q)

∫ t

0

(t− s)q−1‖f(s, u(s), 0)− f(s, 0, 0)‖ds

+
1

Γ(q)

∫ t

0

(t− s)q−1‖f(s, 0, 0)‖ds
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≤ ‖x0‖+ P +
L2

Γ(q)

∫ t

0

(t− s)q−1‖[θu](s)‖βds

+
L1

Γ(q)

∫ t

0

(t− s)q−1‖u(s)‖αds+
M1

Γ(q + 1)

≤ ‖x0‖+ P +
M1

Γ(q + 1)
+

L2

Γ(q)

∫ t

0

(t− s)q−1eβk1sds‖θu‖β
k1

+
L1

Γ(q)

∫ t

0

(t− s)q−1eαk1sds‖u‖α
k1

≤ ‖x0‖+ P +
M1

Γ(q + 1)
+

L1

Γ(q)

∫ t

0

(t− s)q−1ek1sds‖u‖α
k1

+
L2

Γ(q)

∫ t

0

(t− s)q−1ek1sds(‖h‖L1Qβ1 +M0)β

≤ ‖x0‖+ P +
M1

Γ(q + 1)
+ ek1t[

L1

kq
1

Qα +
L2

kq
1

(‖h‖L1Qβ1 +M0)β ].

Thus

‖Fu‖k1 ≤ ‖x0‖+ P +
M1

Γ(q + 1)
+
L1

kq
1

Qα +
L2

kq
1

(‖h‖L1Qβ1 +M0)β < Q.

This implies F (BQ) ⊂ BQ.
On the other hand, for u ∈ BQ and t1, t2 ∈ J(t1 < t2), we deduce that

‖Au(t2)−Au(t1)‖

=
1

Γ(q)
‖

∫ t2

0

(t2 − s)q−1f(s, u(s), [θu](s))ds−
∫ t1

0

(t1 − s)q−1f(s, u(s), [θu](s))ds‖

≤ M

Γ(q + 1)
[2(t2 − t1)q + (t1)q − (t2)q]

≤ 2M
Γ(q + 1)

(t2 − t1)q,

where M = sup{‖f(t, x, y)‖ : (t, x, y) ∈ I × BQ × θ(BQ)}. This means A(BQ)
is equicontinuous set. By Ascoli-Arzela theorem, we easily deduce that A(BQ) is
relatively compact set. It follows from the continuousness of f that A is complete
continuous.

By Assumption (G), it is easy to see that B is contraction mapping. Following
the Lemma 3.1 (Krasnoselskii’s fixed point theorem), we conclude that F has a
fixed point in BQ. Thus there exists a solution of Cauchy problem (1.1)-(1.2).
Step 2: Uniqueness. Let ϕ(t) and ψ(t) be two solutions of Cauchy problem
(1.1)-(1.2), and set m(t) = ‖ϕ(t)− ψ(t)‖.

First, we prove that m(0) = 0. Indeed, by the definition of operator B and
assumption (G), we see that B is contraction on C(I,X). Thus there exists a unique
y(t) such that By(t) = x0 + g(y). On the other hand, noting that ϕ(0) = x0 + g(ϕ)
and ψ(0) = x0 + g(ψ), we obtain ϕ(0) = ψ(0).

Next, we prove m(t) ≡ 0 for t ∈ I by contraction. If m(t) 6= 0 for some t ∈ I.
Setting t∗ = min{t ∈ I : m(t) 6= 0}, then m(t) ≡ 0 for t ∈ [0, t∗]. Thus m(t) ≡ 0 for
t ∈ I if and only if t∗ = 1. If t∗ < 1, then we can choose positive numbers ε0 and
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k2 ∈ N such that

ek2ε0

kq
2

(L1m
α−1
ε0

+ L2‖h‖β
L1m

ββ1−1
ε0

) < 1,

where mε0 = max{‖ϕ(t)− ψ(t)‖ : t ∈ [t∗, t∗ + ε0]}.
Redefine the norm ‖ · ‖k2 on the interval [t∗, t∗ + ε0] by

‖u‖k2 = sup{e−k2(t−t∗)‖u(t)‖ : t ∈ [t∗, t∗ + ε0]},

then the norms ‖ · ‖k2 and ‖ · ‖C are equivalent on [t∗, t∗ + ε0]. Since ϕ(0) = ψ(0),
we claim that g(ϕ) = g(ψ). Thus there exists t1 ∈ [t∗, t∗ + ε0] such that

0 < mε0 = ‖ϕ(t1)− ψ(t1)‖
= ‖Fϕ(t1)− Fψ(t1)‖

≤ 1
Γ(q)

∫ t1

t∗

(t1 − s)q−1‖f(s, ϕ(s), [θϕ](s))− f(s, ψ(s), [θψ](s))‖ds

≤ L1

Γ(q)

∫ t1

t∗

(t1 − s)q−1‖ϕ(s)− ψ(s)‖αds

+
L2

Γ(q)

∫ t1

t∗

(t1 − s)q−1‖[θϕ](s)− [θψ](s)‖βds

≤ 1
Γ(q)

∫ t1

t∗

(t1 − s)q−1[L1m
α(s) + L2‖h‖β

L1 sup
r∈[0,s]

mββ1(r)]ds

≤ L1

Γ(q)

∫ t1

t∗

(t1 − s)q−1eαk2(s−t∗)ds‖ϕ− ψ‖α
k2

+
L2‖h‖β

L1

Γ(q)

∫ t1

t∗

(t1 − s)q−1eββ1k2(s−t∗)ds‖ϕ− ψ‖ββ1
k2

≤ ek2ε0

kq
2

(L1m
α
ε0

+ L2‖h‖β
L1m

ββ1
ε0

) < mε0 .

This is impossible. Thus t∗ = 1 and we conclude that ϕ(t) ≡ ψ(t) for t ∈ [0, 1].
The proof is complete. �

4. Proof of Theorem 2.4

Define an operator H : C(I,R+) → C(I,R+) by

Hx(t) =
1

Γ(q)

∫ t

0

(t− s)q−1(as−p1 + bs−p2) sup
r∈[0,s]

x(r)ds,

where p1, p2 ∈ [0, q) are constants and a = L1, b = L2‖h‖L1 .

Lemma 4.1. There exist an increasing function b ∈ C(I,R+) and a δ ∈ (0, 1) such
that Hb(t) ≤ δb(t).

Proof. We choose a positive number η ∈ I such that

aηq−p1B(q, 1− p1)
Γ(q)

+
bηq−p2B(q, 1− p2)

Γ(q)
+ aηq−p1 + bηq−p2 < 1,
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where B(·, ·) is the Beta function B(x, y) =
∫ 1

0
(1− s)x−1sy−1ds. Let

δ =
aηq−p1B(q, 1− p1)

Γ(q)
+
bηq−p2B(q, 1− p2)

Γ(q)
+ aηq−p1 + bηq−p2

and define an increasing function b : I → R by

b(t) =

{
1, if t ∈ [0, η],
e(t−η)/η, if t ∈ (η, 1].

We claim that Hb(t) ≤ δb(t) for t ∈ [0, 1]. For t ∈ [0, η], recalling that B(x, y) =∫ 1

0
(1− s)x−1sy−1ds, we have

Hb(t) =
1

Γ(q)

∫ t

0

(t− s)q−1(as−p1 + bs−p2)ds

=
a

Γ(q)
tq−p1

∫ 1

0

(1− z)q−1z1−p1−1dz +
b

Γ(q)
tq−p2

∫ 1

0

(1− z)q−1z1−p2−1dz

=
aB(q, 1− p1)

Γ(q)
tq−p1 +

bB(q, 1− p2)
Γ(q)

tq−p2

≤ aB(q, 1− p1)
Γ(q)

ηq−p1 +
bB(q, 1− p2)

Γ(q)
ηq−p2 < δb(t).

For t ∈ (η, 1], we have

Hb(t) =
1

Γ(q)

∫ t

0

(t− s)q−1(as−p1 + bs−p2)b(s)ds

=
1

Γ(q)

∫ η

0

(t− s)q−1(as−p1 + bs−p2)ds

+
1

Γ(q)

∫ t

η

(t− s)q−1(as−p1 + bs−p2)e
s−η

η ds

≤ 1
Γ(q)

∫ η

0

(η − s)q−1(as−p1 + bs−p2)ds

+
1

Γ(q)

∫ t

η

(t− s)q−1(as−p1 + bs−p2)e
s−η

η ds

≤ aηq−p1B(q, 1− p1)
Γ(q)

+
bηq−p2B(q, 1− p2)

Γ(q)

+
1

Γ(q)

∫ t

η

(t− s)q−1(as−p1 + bs−p2)e−
t−s

η dse
t−η

η

≤ [
aηq−p1B(q, 1− p1)

Γ(q)
+
bηq−p2B(q, 1− p2)

Γ(q)
+ aηq−p1 + bηq−p2 ]e

t−η
η

= δb(t).

The proof is complete. �

Proof of Theorem 2.4. As in the proof of Theorem 2.1, we prove the operator F
admits a fixed point. Define the norm ‖ · ‖b in C(I,X), for u ∈ C(I,X), by

‖u‖b = max{ 1
b(t)

‖u(t)‖ : t ∈ I}.
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Then the norms ‖ · ‖C and ‖ · ‖b are equivalent. Let P = supx∈X ‖g(x)‖ ,

Q =
1

1− δ
(‖x0‖+ P +

C

Γ(q + 1)
+
L2KB(q, 1− p2)

Γ(q)
),

and BQ = {u ∈ C(I,X) : ‖u‖b ≤ Q}. For u ∈ BQ, noting the assumption (F2’),
we have

‖[θu](t)‖ ≤
∫ t

0

‖k(t, r, u(r))‖dr ≤ ‖h‖L1 sup
r∈[0,t]

‖x(r)‖+K.

By the assumption (F1’) and Lemma 4.1, for u ∈ BQ, we obtain

‖Fu(t)‖ ≤ ‖x0‖+ P +
1

Γ(q)

∫ t

0

(t− s)q−1‖f(s, u(s), [θu](s))‖ds

≤ ‖x0‖+ P +
1

Γ(q)

∫ t

0

(t− s)q−1(L1s
−p1‖u(s)‖+ L2s

−p2‖θu(s)‖+ C)ds

≤ ‖x0‖+ P +
1

Γ(q)

∫ t

0

(t− s)q−1(L1s
−p1 + L2‖h‖L1s−p2) sup

r∈[0,s]

‖u(s)‖ds

+
1

Γ(q)

∫ t

0

(t− s)q−1(L2Ks
−p2 + C)ds

≤ 1
Γ(q)

∫ t

0

(t− s)q−1(L1s
−p1 + L2‖h‖L1s−p2)b(s)ds‖u‖b

+ ‖x0‖+ P +
C

Γ(q + 1)
+
L2KB(q, 1− p2)

Γ(q)

≤ δb(t)‖u‖b + ‖x0‖+ P +
C

Γ(q + 1)
+
L2KB(q, 1− p2)

Γ(q)
.

Thus

‖Fu‖b ≤ δQ+ ‖x0‖+ P +
C

Γ(q + 1)
+
L2KB(q, 1− p2)

Γ(q)
= Q.

This implies F (BQ) ⊂ BQ.
Similar arguments as in the proof of Theorem 2.1 show that A is completely

continuous and B is contraction mapping. Thus, by Lemma 3.1, we conclude that
F has a fixed point in BQ. Thus there exists a solution of Cauchy problem (1.1)-
(1.2). The proof is complete. �
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tional abstract integro-differential equations in Banach spaces, Communications in Mathemat-

ical Analysis, 6 (2009), 31-35.

[4] T. G. Bhaskar, V. Lakshmikantham, S. Leela; Fractional differential equations with Kras-
noselskii - Krein - type condition. Nonlinear Analysis: Hybrid Systems (2009), doi: 10.1016/

j.nahs.2009.06.010.



8 J. WU, Y. LIU EJDE-2009/129

[5] A. A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo; Theory and Applications of Fractional

Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science, Amster-

dam, 2006.
[6] M. A. Krasnoselskii; Some problems of nonlinear analysis. Amer. Math. Soc. Trans.,

1958(10),345-409.

[7] V. Lakshmikantham, S. Leela; Nagumo-type uniqueness result for fractional differential equa-
tions. Nonlinear Analysis 71 (2009), 2886-2889.

[8] V. Lakshmikantham, S. Leela; A Krasnoselskii-Krein-type uniqueness result for fractional

differential equations. Nonlinear Analysis 71 (2009), 3421-3424.
[9] V. Lakshmikantham, S. Leela, J. Vasundhara Devi; Theory of fractional Dynamical systems,

Cambridge Academic Publishers, Cambridge, 2009.

Jun Wu
College of Mathematics and Computer Science, Changsha University of Science Tech-

nology, Changsha, 410114, China

E-mail address: junwmath@hotmail.com

Yicheng Liu

Department of Mathematics and System Sciences, College of Science, National Univer-
sity of Defense Technology, Changsha, 410073, China

E-mail address: liuyc2001@hotmail.com


	1. Introduction
	2. Main results
	3. Proof of Theorem 2.1
	4. Proof of Theorem 2.4
	References

