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REGULARITY OF WEAK SOLUTIONS TO THE
MAGNETO-HYDRODYNAMICS EQUATIONS IN TERMS OF

THE DIRECTION OF VELOCITY

YUWEN LUO

Abstract. In this article, we study the regularity of weak solutions to the 3D

incompressible magneto-hydrodynamics equations. We obtain a new class of

regularity criteria in terms of the direction of the velocity. Our result extend
some results known for incompressible Navier-Stokes equations.

1. Introduction

We consider the 3D incompressible magneto-hydrodynamics (MHD) equation
∂u

∂t
− ν∆u + u · ∇uc = −∇p− 1

2
∇b2 + b · ∇b,

∂b

∂t
− η∆b + u · ∇b = b · ∇u,

∇ · u = ∇ · b = 0,

u(0, x) = u0(x), b(0, x) = b0(x)

(1.1)

Here u, b describe the flow velocity vector and the magnetic field vector respectively,
and p is pressure. While u0, b0 are the given initial velocity and initial magnetic
field respectively, with ∇ · u0 = 0, ∇ · b0 = 0. Without loss of generality, we set
ν = η = 1 in the rest of the paper (it can be achieved by rescaling). If ν = η = 0,
(1.1) is called the ideal MHD equations.

It is well known that there exist a global Leray-Hopf weak solution (u, b) ∈
L∞(0,∞;L2(R3)) ∩ L2(0,∞; Ḣ(R3)) if the initial data (u0, b0) ∈ L2(R3). Using
the standard energy method, it can be easily proved that the solution satisfies the
energy inequality

‖u(t)‖2 + ‖b(t)‖2 +
∫ T

0

(‖∇u(s)‖2L2 + ‖∇b(s)‖2L2)ds ≤ ‖u0‖2L2 + ‖b0‖2L2 , T ≥ 0.

Up to now, it is unknown whether solutions of (1.1) on (0, T ) will develop finite
time singularities even if the initial data is sufficiently smooth. This problem, global
regularity issue, has been thoroughly studied for the 3D Navier-Stokes equations
and many of these results can be extended to the 3D MHD equations. Serrin [6]
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showed that a weak solution of 3D incompressible Navier-Stokes equations with
initial data u0 ∈ L2(R3) lying Lp(0,∞;Lq(R3)) is smooth in the spatial direction if
p, q ≥ 1 and 2/p+3/q < 1. He and Xin [5] extended this criteria to MHD equations,
precisely they showed that under the condition

u ∈ Lp(0, T ;Lq(R3)) for 1/p + 3/2q ≤ 1/2 and q > 3,

then the solution remains smooth on [0, T ].
Another class of regularity criteria which involves the gradient of u for the 3D

Navier-Stoke equations was introduced by Beirão de Veiga [2] . He showed that any
Leray-Hopf solution is smooth given ∇u ∈ Lp(0, T ;Lq(R3)) with 2/p + 3/q = 2,
3/2 < q < ∞. Beale, Kato and Majda[1] dealt with the vorticity ω = ∇ × u
and proved the regularity under the condition ω ∈ L1(0, T ;L∞(R3)). He, Xin [5]
and Zhou [9] respectively extended the result of Beirão de Veiga [2] to the MHD
equations, they obtained some condition of ∇u alone to determine the regularity
of the MHD equations. Precisely, the showed that under the condition

∇u ∈ L
p

(0, T ;Lq(R3)) with 2/p + 3/q ≤ 1, 3/2 < q ≤ ∞,

then the solution can be extended to t = T . Caflisch, Kapper and Steele [3]
extended the well known result of [1] to the 3D ideal MHD equations, they showed
under the condition∫ T

0

(‖∇ × u(t)‖L∞ + ‖∇ × b(t)‖L∞)dt < ∞

then the solutions remains smooth on [0, T ].
Constantin and Fefferman [4] used the direction of the vorticity ω/|ω| to describe

the regularity criterion to the Navier-Stokes equations. They showed that under
a Lipschitz-like regularity assumption on ω/|ω|, the solution is smooth. Under
the framework of Constantin and Fefferman, Zhou [10, 11] get some more relaxed
regularity criterion in terms of the direction of vorticity. Inspired by the initial
work of [4], He and Xin[5] extended the result to the MHD equations. They showed
that if there exist three positive constant K, ρ,Ω such that

|ω(x + y, t)− ω(x, t)| ≤ K|ω(x + y, t)||y|1/2

holds if both |y| ≤ ρ and |ω(x, t)| ≥ Ω for any t ∈ [0, T ], then the solution is remains
smooth on [0, T ], where ω = ∇ × u is the vorticity of the velocity. Zhou [12] also
studied the regularity criterion for generalized magneto-hydrodynamics equations
in term of the vorticity field and get similar result.

Of the same spirit in [4], Vasseur[7] used the direction of the velocity u/|u| to
describe the regularity criterion to the Navier-Stokes equations. He showed that if
the initial value u0 ∈ L2(R3), and div(u/|u|) ∈ Lp(0,∞;Lq(R3)) with

2
p

+
3
q
≤ 1

2
, q ≥ 6, p ≥ 4

then u is smooth on (0,∞)× R3.
We restricted ourselves to u/|u| to study the regularities of the weak solutions

of (1.1). We followed the same method of [7] to get our result:

Theorem 1.1. Let u, b be a Leray-Hopf solution to MHD equation (1.1) with the
initial value u0, b0 ∈ H1(R3). If

b ∈ Lα(0, T ;Lβ(R3)) with
2
α

+
3
β
≤ 1, β > 3,
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and

div(u/|u|) ∈ Lp(0, T ;Lq(R3)) with
2
p

+
3
q
≤ 1

2
, q ≥ 6, p ≥ 4,

then u, b is smooth on (0,∞)× R3.

This result shows that it is sufficient to control the norm of b and the rate of
change the direction of the velocity to get full regularity of the solution. The proof
is standard, based on energy methods.

First, we need to introduced some definitions and symbols.

Definition 1.2 ([8]). A measurable vector pair (u, b) is called a weak solution
to the the generalized magneto-hydrodynamics equations (1.1), if it satisfies the
following properties

(1) u ∈ L∞([0, T );L2(R3)) ∩ L2([0, T );H(R3)),
b ∈ L∞([0, T );L2(R3)) ∩ L2([0, T );H(R3));

(2) (u, b) satisfies (1.1) in the sense of distribution; that is,∫ T

0

∫
R3

(∂φ

∂t
+ u · ∇φ

)
u dx dt +

∫
R3

u0φ(0, x) dx

=
∫ T

0

∫
R3

(∇u : ∇φ + b · ∇φ · b) dx dt ,∫ T

0

∫
R3

(∂φ

∂t
+ u · ∇φ

)
b dx dt +

∫
R3

b0φ(0, x) dx

=
∫ T

0

∫
R3

(∇b : ∇φ + b · ∇φ · u) dx dt

for all φ ∈ C∞0 (R3 × [0, T )) with ∇ · φ = 0, and∫ T

0

∫
R3

u · ∇φdx dt = 0,

∫ T

0

∫
R3

b · ∇φdx dt = 0

for every φ ∈ C∞0 (R3 × [0, T )).
(3) The energy inequality holds; that is,

‖u(t)‖2L2 + 2
∫ t

0

‖∇u‖2L2ds ≤ ‖u0‖2L2 ,

‖b(t)‖2L2 + 2
∫ t

0

‖∇b‖2L2ds ≤ ‖b0‖2L2 ,

for all t ∈ [0, T ).

The space Lp,q consists of functions f for which ‖f‖Lp,q < +∞, where

‖f‖Lp,q =


( ∫ T

0
‖u(τ, ·)‖p

Lq dτ
)1/p

, if 1 ≤ p < +∞,

ess sup0<τ<t ‖u(τ, ·)‖Lq , if p = +∞

where

‖u(τ, ·)‖Lq =


( ∫ T

0
|u(τ, x)|q dx

)1/q

, if 1 ≤ q < +∞,

ess supx∈R3 ‖u(τ, ·)‖Lq if q = +∞
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2. Proof of Theorem 1.1

Proof. Multiplying the first equation by |u|2u, and the second equation by |b|2b.
Integrate the first equation over R3, and after suitable integration by parts, we
obtain

d

dt

∫
R3

|u|4

4
dx +

∫
R3

(|∇u|2|u|2 + 2|u|2|∇|u‖2) dx

=
∫

R3
2pu|u| · ∇|u|dx−

∫
R3

b · ∇(|u|2u) · b dx .

(2.1)

Integrate the second equation over R3, and after suitable integration by parts, we
obtain

d

dt

∫
R3

|b|4

4
dx +

∫
R3

(|b|2|∇b|2 + 2|b|2|∇|b‖2) dx =
∫

R3
(b · ∇u) · |b|2bdx (2.2)

Adding (2.1) and (2.2) yields

d

dt

∫
R3

|u|4 + |b|4

4
dx +

∫
R3

(|∇u|2|u|2 + 2|u|2|∇|u‖2)dx

+
∫

R3
(|b|2|∇b|2 + 2|b|2|∇|b‖2) dx

=
∫

R3
(2pu|u| · ∇|u| − b · ∇(|u|2u) · b− (b · ∇|b|2b) · u) dx

(2.3)

Next we estimate the right hand terms one by one. Because

−∆p =
3∑

i,j=1

∂i∂j(uiuj − bibj).

The Calderon-Zygmund inequality tells us that there exists a absolute constant C
such that

‖p‖Lq ≤ C(‖u‖2L2q + ‖b‖2L2q ), for 1 < q < ∞.

By generalized Hölder’s inequality and Young’s inequality, we get

2
∫

R3
pu|u| · ∇|u| ≤ 2

∫
R3
|p‖u|2| u

|u|
· ∇|u|| dx

≤ 2‖p‖Lr‖u‖2L2r‖
u

|u|
· ∇|u|‖Lq̄

≤ 2(‖u‖4L2r + ‖u‖2L2r‖b‖2L2r )‖
u

|u|
· ∇|u|‖Lq̄

≤ C|| u

|u|
· ∇|u|||Lp̄(‖u‖4L2r + ‖b‖4L2r ).

(2.4)

Where 2/r + 1/q̄ = 1, 2 ≤ r < 6, and here we use the fact

|u|div(u/|u|) = − u

|u|
· ∇|u|.

Write ‖u‖4L2r = ‖|u|2‖Lr , then interpolation inequality of Lp spaces and Sobolev
imbedding theorem gives

‖u|2‖Lr ≤ ‖|u|2‖2θ
L2‖|u|2‖2(1−θ)

L6 ≤ ‖|u|2‖2θ
L2‖∇|u|2‖2(1−θ)

L2 .
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Where θ/2 + (1− θ)/6 = 1/r. Using Young’s inequality again, we obtain

‖ u

|u|
· ∇|u|‖Lp̄(‖u‖4L2r + ‖b‖4L2r )

≤ C‖ u

|u|
· ∇|u|‖1/θ

Lp̄ (‖u‖4L4 + ‖b‖4L4) +
1
8
(‖∇|u|2‖2L2 + ‖∇|b|2‖2L2)

= C‖ u

|u|
· ∇|u|‖1/θ

Lp̄ (‖u‖4L4 + ‖b‖4L4) +
1
2
(‖|u|∇|u|‖2L2 + ‖|b|∇|b|‖2L2).

(2.5)

Assume that div(u/|u|) ∈ Lp(Lq), u ∈ La(Lb). Then we have |u|div(u/|u|) ∈
Lp̄(Lq̄) where

1
p̄

=
1
a

+
1
p
,

1
q̄

=
1
b

+
1
q

If 1/θ ≤ p̄, then ∫ T

0

‖ u

|u|
· ∇|u|‖1/θ

Lp̄ dx < ∞.

Now we seek conditions for 1/θ ≤ p̄. By the relation

2
r

+
1
q̄

= 1,

θ

2
+

1− θ

6
=

1
r
,

1
θ
≤ p̄,

we get 2/p̄+3/q̄ ≤ 2. From the definition of weak solution, we know 2/a+3/b = 3/2.
So

2
p̄

+
3
q̄

=
2
a

+
3
b

+
2
p

+
3
q

=
3
2

+
2
p

+
3
q
≤ 2;

that is,
2
p

+
3
q
≤ 1

2
.

Next we estimate the second term of (2.3). As in [8], we have

−
∫

R3
b · ∇(|u|2u) · bdx ≤

∫
R3
|b|2|u||∇|u|2| dx

Using Cauchy’s inequality with ε, we obtain∫
R3
|b|2|u||∇|u|2| dx ≤ C

∫
R3
|b|4|u|2 dx +

1
8
‖∇|u|2‖2L2

= C

∫
R3
|b|4|u|2 dx +

1
2
‖|u|∇|u|‖2L2 .

By generalized Hölder inequality, interpolation inequality of Lp spaces, Sobolev
imbedding theorem and Young’s inequality, we obtain

C

∫
R3
|b|4|u|2dx ≤ C‖b‖2Lβ‖b‖2L2r‖u‖2L2r

≤ C‖b‖2Lβ (‖b‖4L2r + ‖u‖4L2r )

≤ C‖b‖2/ξ

Lβ (‖b‖4L4 + ‖u‖4L4) +
1
2
(‖|u|∇|u|‖2L2 + ‖|b|∇|b|‖2L2) ,
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where
1
β

+
1
r

=
1
2

ξ

2
+

1− ξ

6
=

1
r

2 ≤ r < 6

(2.6)

We need 2/ξ ≤ α so that ∫ T

0

‖b‖2/ξ

Lβ dx < ∞ .

By the relation (2.6), this is satisfied if 2/α+3/β ≤ 1. And β > 3 implies 2 ≤ r < 6.
Due to the above argument,

−
∫

R3
b · ∇(|u|2u) · bdx ≤ C‖b‖2/ξ

Lβ (‖b‖4L4 + ‖u‖4L4) + (‖|u|∇|u|‖2L2 +
1
2
‖|b|∇|b|‖2L2)

(2.7)
The last term of (2.3) can be treated in the same way,

−
∫

R3
b · ∇(|b|2b) · udx ≤ C‖b‖2/ξ

Lβ (‖b‖4L4 + ‖u‖4L4) + (
1
2
‖|u|∇|u|‖2L2 + ‖|b|∇|b|‖2L2)

(2.8)
Combining (2.3), (2.4), (2.5), (2.7), (2.8), we obtain

d

dt

∫
R3

|u|4 + |b|4

4
dx +

∫
R3

(|∇u|2|u|2 + |b|2|∇b|2) dx

≤ C(‖b‖2/ξ

Lβ + ‖|u|div(u/|u|)‖1/θ
Lq + 1)(‖b‖4Lb + ‖u‖4Lb)

= C(‖b‖2/ξ

Lβ + ‖|u|div(u/|u|)‖1/θ
Lq + 1)

∫
R3

|u|4 + |b|4

4
dx

Let A(t) = C(‖b‖2/ξ

Lβ +‖|u|div(u/|u|)‖1/θ
Lq +1), then the Gronwell inequality implies

that, whenever T is finite,

‖u(T )‖4L4 + ‖b(T )‖4L4 ≤ C(‖u0‖4L4 + ‖b0‖4L4) exp(t sup
t∈[0,T )

A(t)).

This shows that the solution (u, b) can be extended to t = T . This completes the
proof. �
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