Electronic Journal of Differential Equations, Vol. 2009(2009), No. 134, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A SEMILINEAR ELLIPTIC SYSTEM

ZU-CHI CHEN, YING CUI

Abstract

In this article, we show the existence and uniqueness of smooth solutions for boundary-value problems of semilinear elliptic systems.

1. Introduction and main results

We study the solvability for the semilinear elliptic system with homogeneous Dirichlet boundary value condition

$$
\begin{gather*}
L_{1} u=f(x, u, v, D u, D v), \quad x \in \Omega \\
L_{2} v=g(x, u, v, D u, D v), \quad x \in \Omega \tag{1.1}\\
\quad u=v=0, \quad x \in \partial \Omega
\end{gather*}
$$

where $\Omega \subset \mathbb{R}^{N}(N \geq 2)$ denotes a bounded domain with smooth boundary, and $f, g: \bar{\Omega} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, L_{1}$ and L_{2} are the uniformly elliptic operators of second order:

$$
L_{k} u=\sum_{i, j=1}^{N} \partial_{x_{j}}\left(a_{i, j}^{k}(x) u\right), k=1,2
$$

with its first eigenvalue $\lambda_{k}>0$ for $k=1,2$, and in the context, $\lambda=: \min \left\{\lambda_{1}, \lambda_{2}\right\}$. We suppose the following conditions:
(H1) $f, g: \Omega \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \mapsto \mathbb{R}$ are Caratheodory functions which satisfy

$$
\begin{aligned}
& |f(x, s, t, \xi, \eta)| \leq h_{1}(x, s, t)+k_{1}|\xi|^{\alpha_{1}}+k_{2}|\eta|^{\alpha_{2}} \\
& |g(x, s, t, \xi, \eta)| \leq h_{2}(x, s, t)+k_{3}|\xi|^{\alpha_{3}}+k_{4}|\eta|^{\alpha_{4}}
\end{aligned}
$$

where constant $\alpha_{i}, k_{i} \in \mathbb{R}_{0}^{+}, i=1,2,3,4 ; h_{1}(x, s, t)$ and $h_{2}(x, s, t)$ are Caratheodory functions that satisfy the following conditions:
(H2) for every $r>0, \sup _{|s| \leq r,|t| \leq r} h_{i}(\cdot, s, t) \in L^{p}(\Omega), \frac{2 N}{N+1}<p<N$;
(H3) $\max \left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}=: \alpha \leq 1$;
(H4) $\alpha_{i} \geq \frac{1}{p}$ or $\alpha_{i}=0$, for $i=1,2,3,4$.

[^0]Theorem 1.1. Assume (H1)-(H4). If 1.1) has two pairs of subsolutions and supersolutions $(\underline{u}, \bar{u}),(\underline{v}, \bar{v})$, then 1.1) has at least one solution $(u, v) \in\left[W^{2, p}(\Omega) \cap\right.$ $\left.W_{0}^{1, p}(\Omega)\right]^{2}$.

For the next theorem we need the assumption
(H5) $f, g: \Omega \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \mapsto \mathbb{R}$ are Lipschitz continuous, with Lipschitz coefficients l_{1} and l_{2}, and $L:=\max \left\{l_{1}, l_{2}\right\}<\frac{\lambda}{4 C+1}$, where $C=C(n, p, \Omega)$ is the coefficient for the Poincaré inequality.

Theorem 1.2. Under Condition (H5), Problem (1.1) has at most one weak solution $(u, v) \in\left[W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)\right]^{2}, \frac{2 N}{N+1}<p<N$.

2. The proof of Theorem 1.1

Proof. From (H2) and (H3), we know that $\left[\alpha p, p^{*}\right)$ is not empty, where $p^{*}=\frac{N p}{N-p}$. Fix $q_{0} \in\left[\alpha p, p^{*}\right)$, let $T: W^{1, q_{0}}(\Omega) \mapsto W^{1, q_{0}}(\Omega) \cap L^{\infty}(\Omega)$ be the cut-off function about $\underline{u}, \bar{u}, \underline{v}, \bar{v}$; i.e.,

$$
\begin{gathered}
T u(x)=\bar{u}(x), \quad \bar{u} \leq u, \\
T u(x)=u(x), \quad \underline{u} \leq u \leq \bar{u}, \\
T u(x)=\underline{u}(x), \quad u \leq \underline{u} \\
T v(x)=\bar{v}(x), \quad \bar{v} \leq v \\
T v(x)=v(x), \quad \underline{v} \leq v \leq \bar{v} \\
T v(x)=\underline{v}(x), \quad v \leq \underline{v} .
\end{gathered}
$$

Next, we prove that $T u, T v \in W^{1, q_{0}}(\Omega) \cap L^{\infty}(\Omega)$. Firstly, we notice that

$$
\begin{array}{cl}
|T u(x)| \leq \max \{|\underline{u}|,|\bar{u}|\}=: M, & \text { a.e. } x \in \Omega, \\
|T v(x)| \leq \max \{|\underline{v}|,|\bar{v}|\}=: m, & \text { a.e. } x \in \Omega
\end{array}
$$

for every $u, v \in W^{1, q_{0}}(\Omega)$, then $T u, T v \in L^{\infty}(\Omega)$. Since the embedding of $W^{2, p}(\Omega)$ into $W^{1, q_{0}}(\Omega)$ is compact and $\bar{u}, \underline{u}, \bar{v}, \underline{v} \in W^{1, q_{0}}(\Omega)$, then by [8, A.6], we know $|u-v| \in W^{1, q_{0}}(\Omega)$. Also, from

$$
\begin{aligned}
& T u(x)=\frac{u+\bar{u}+2 \underline{u}-|u-\bar{u}|}{4}+\frac{|u+\bar{u}-2 \underline{u}-|u-\bar{u}||}{4} \\
& T v(x)=\frac{v+\bar{v}+2 \underline{v}-|v-\bar{v}|}{4}+\frac{|v+\bar{v}-2 \underline{v}-|v-\bar{v}||}{4}
\end{aligned}
$$

we know that $T u, T v \in W^{1, q_{0}}(\Omega)$, hence $T u, T v \in W^{1, q_{0}}(\Omega) \cap L^{\infty}(\Omega)$.
Let $S:[0,1] \times\left[W^{1, q_{0}}(\Omega)\right]^{2} \mapsto\left[W^{1, q_{0}}(\Omega)\right]^{2}$ be defined as $S(t, u, v)=\left(w_{1}, w_{2}\right)$, where $\left(w_{1}, w_{2}\right)$ is the solution of the following boundary-value problem

$$
\begin{gather*}
L_{1} w_{1}=t f(x, T u, T v, D(T u), D(T v)), x \in \Omega \\
w_{1}=0, x \in \partial \Omega \tag{2.1}\\
L_{2} w_{2}=t g(x, T u, T v, D(T u), D(T v)), x \in \Omega \\
w_{2}=0, x \in \partial \Omega \tag{2.2}
\end{gather*}
$$

According to (H1)-(H4), for every $u, v \in W^{1, q_{0}}(\Omega)$, we have $f, g \in L^{p}(\Omega)$. Then, based on [3, Theorem 6.4], (2.1) and 2.2 have a unique solution $\left(w_{1}, w_{2}\right) \in$ $\left[W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)\right]^{2}$ which means that S is a well-defined operator. Obviously
$S(0, u, v)=(0,0)$, then by the Sobolev embedding theorem, $W^{2, p}(\Omega) \hookrightarrow W^{1, q_{0}}(\Omega)$, we know that S is continuous.

Next we prove that $(u, v) \in\left[W^{1, q_{0}}(\Omega)\right]^{2}$, and for a certain $t \in[0,1], S(t, u, v)=$ (u, v) and this (u, v) satisfies

$$
\|u\|_{1, q_{0}}+\|v\|_{1, q_{0}} \leq C .
$$

According to the Sobolev embedding theorem and (H1), we have

$$
\begin{align*}
\|u\|_{1, q_{0}} & \leq C\|u\|_{2, p} \\
& \leq C\left(\left\|h_{1}(x, T u, T v)\right\|_{p}+k_{1}\left\||D(T u)|^{\alpha_{1}}\right\|_{p}+k_{2}\left\||D(T v)|^{\alpha_{2}}\right\|_{p}\right) \tag{2.3}
\end{align*}
$$

and

$$
\begin{align*}
\|v\|_{1, q_{0}} & \leq C\|v\|_{2, p} \tag{2.4}\\
& \leq C\left(\left\|h_{2}(x, T u, T v)\right\|_{p}+k_{3}\left\||D(T u)|^{\alpha_{3}}\right\|_{p}+k_{4}\left\||D(T v)|^{\alpha_{4}}\right\|_{p}\right)
\end{align*}
$$

Then from the definition of $T u$ and $T v$, and the condition (H2) we know that

$$
\begin{equation*}
\left\|h_{i}(x, T u, T v)\right\|_{p} \leq C, \quad i=1,2 \tag{2.5}
\end{equation*}
$$

Where C depends only on $\bar{u}, \underline{u}, \bar{v}, \underline{v}$ and p. When $i=1,3$, we have

$$
\left\|D(T u)^{\alpha_{i}}\right\|_{p}=\left[\|D(T u)\|_{\alpha_{i} p}\right]^{\alpha_{i}}= \begin{cases}\left.\|D \bar{u}\|_{\alpha_{i} p}\right]^{\alpha_{i}}, & u \geq \bar{u} \tag{2.6}\\ {\left[\|D u\|_{\alpha_{i} p}\right]^{\alpha_{i}},} & \underline{u} \leq u \leq \bar{u} \\ {\left[\|D \underline{u}\|_{\alpha_{i} p}\right]^{\alpha_{i}},} & u \leq \underline{u}\end{cases}
$$

When $i=2$, 4 , we have

$$
\left\|D(T v)^{\alpha_{i}}\right\|_{p}=\left[\|D(T v)\|_{\alpha_{i} p}\right]^{\alpha_{i}}= \begin{cases}\left.\|D \bar{v}\|_{\alpha_{i} p}\right]^{\alpha_{i}}, & v \geq \bar{v} \tag{2.7}\\ {\left[\|D v\|_{\alpha_{i} p} p\right]^{\alpha_{i}},} & \underline{v} \leq v \leq \bar{v} \\ {\left[\|D \underline{v}\|_{\alpha_{i} p}\right]^{\alpha_{i}},} & v \leq \underline{v}\end{cases}
$$

Then by [1, Theorem 4.14] (Ehrling-Nirenberg-Gagliardo), we obtain

$$
\begin{align*}
\|D u\|_{\alpha_{i} p} & \leq k_{1} \epsilon\|u\|_{2, \alpha_{i} p}+k_{2}(\epsilon)\|u\|_{\alpha_{i} p}, \underline{u} \leq u \leq \bar{u} \\
\|D v\|_{\alpha_{i} p} & \leq k_{3} \epsilon\|v\|_{2, \alpha_{i} p}+k_{4}(\epsilon)\|v\|_{\alpha_{i} p}, \underline{v} \leq v \leq \bar{v} . \tag{2.8}
\end{align*}
$$

Since $\underline{u} \leq u \leq \bar{u}, \underline{v} \leq v \leq \bar{v}, \alpha_{i} \leq 1, i=1,2,3,4$, by $\alpha_{i} p \leq q_{0}$ and $\bar{u}, \underline{u}, \bar{v}, \underline{v} \in$ $W^{1, q_{0}}(\Omega)$, we obtain

$$
\begin{gather*}
\|u\|_{\alpha_{i} p} \leq C, \quad\|v\|_{\alpha_{i} p} \leq C, \quad\|D \bar{u}\|_{\alpha_{i} p} \leq C \\
\|D \underline{u}\|_{\alpha_{i} p} \leq C, \quad\|D \bar{v}\|_{\alpha_{i} p} \leq C, \quad\|D \underline{v}\|_{\alpha_{i} p} \leq C \tag{2.9}\\
\|u\|_{2, \alpha_{i} p} \leq C\|u\|_{2, p}, \quad\|v\|_{2, \alpha_{i} p} \leq C\|v\|_{2, p}, \quad i=1,2,3,4 .
\end{gather*}
$$

Without loss of generality, we assume that $\|u\|_{2, p} \geq 1,\|v\|_{2, p} \geq 1$. By (2.5), 2.6), (2.7), 2.8, 2.9), we know from (2.3) and (2.4) that

$$
\|u\|_{2, p}+\|v\|_{2, p} \leq C_{1} \varepsilon\left(\|u\|_{2, p}+\|v\|_{2, p}\right)+\frac{C}{2}
$$

Select $\varepsilon=\frac{1}{2 C_{1}}$, we can write

$$
\|u\|_{2, p}+\|v\|_{2, p} \leq C
$$

Then according to 2.3 and 2.4 ,

$$
\|u\|_{1, q_{0}}+\|v\|_{1, q_{0}} \leq C
$$

From the Leray-Schauder fixed point theorem [7, Theorem 11.3], there exists a solution $(u, v) \in\left[W^{1, q_{0}}(\Omega)\right]^{2}$ satisfying $S(1, u, v)=(u, v)$; i. e.,

$$
\begin{gather*}
L_{1} u=f(x, T u, T v, D(T u), D(T v)), \quad x \in \Omega \\
L_{2} v=g(x, T u, T v, D(T u), D(T v)), \quad x \in \Omega \tag{2.10}\\
\quad u=v=0, \quad x \in \partial \Omega
\end{gather*}
$$

Then $(u, v) \in\left[W^{1, q_{0}}(\Omega)\right]^{2}$ implies $f, g \in L^{p}(\Omega)$ and $(u, v) \in\left[W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)\right]^{2}$.
Next we prove that (u, v) satisfies

$$
\underline{u} \leq u \leq \bar{u}, \underline{v} \leq v \leq \bar{v}
$$

Firstly we prove $u \leq \bar{u}$. Let $w=u-\bar{u}$, then $w \in W^{2, p}(\Omega)$, define $w^{+}(x)=$ $\max \{0, w(x)\}$, then we need only to prove $w^{+}=0$. Previously,

$$
\begin{gathered}
L_{1} u=f(x, T u, T v, D(T u), D(T v)) \\
L_{1} \bar{u} \geq f(x, \bar{u}, T v, D \bar{u}, D(T v))
\end{gathered}
$$

We obtain the inequality

$$
\begin{equation*}
L_{1} w \leq[f(x, T u, T v, D(T u), D(T v))-f(x, \bar{u}, T v, D \bar{u}, D(T v))] \tag{2.11}
\end{equation*}
$$

Multiply this inequality by w^{+}, and integrate on Ω. On the left-hand side, we have

$$
\begin{aligned}
\int_{\Omega} L_{1} \omega \cdot \omega^{+} & =\int_{\Omega} \sum_{i, j=1}^{N} a_{i j}^{1}(x) D_{i} \omega \cdot D_{j} \omega^{+}-\int_{\partial \Omega} \sum a_{i j}^{1}(x) D_{i} \omega \cdot \omega^{+} \\
& =\int_{\Omega} \sum_{i, j=1}^{N} a_{i j}^{1}(x) D_{i} \omega \cdot D_{j} \omega^{+}
\end{aligned}
$$

Then we can rewrite 2.11 as

$$
\begin{align*}
\int_{\Omega} \sum_{i, j=1}^{N} a_{i j}^{1}(x) D_{i} \omega \cdot D_{j} \omega^{+} \leq & \int_{\Omega}[f(x, T u, T v, D(T u), D(T v)) \tag{2.12}\\
& -f(x, \bar{u}, T v, D \bar{u}, D(T v))] w^{+} d x
\end{align*}
$$

Let $A=\{x \in \Omega: u(x) \leq \bar{u}(x)\}$ and $B=\{x \in \Omega: u(x)>\bar{u}(x)\}$. Then $\Omega=A \cup B$. Obviously on $A, w^{+}=0$. In $B, T u=\bar{u}$. Then the righthand side of (2.12) is zero. That is,

$$
\int_{\Omega} \sum_{i, j=1}^{N} a_{i j}^{1}(x) D_{i} \omega \cdot D_{j} \omega^{+}=0
$$

On $A, w^{+}=0$; on $B, \omega=\omega^{+}$. We can write the previous equation as

$$
\int_{\Omega^{+}} \sum_{i, j=1}^{N} a_{i j}^{1}(x) D_{i} \omega^{+} \cdot D_{j} \omega^{+}=0
$$

Then according to the definition of the uniform elliptic operator,

$$
\lambda\left|D \omega^{+}\right|^{2} \leq \int_{\Omega^{+}} \sum_{i, j=1}^{N} a_{i j}^{1}(x) D_{i} \omega^{+} \cdot D_{j} \omega^{+}=0
$$

Consequently, $w^{+}=0, x \in \Omega$. That is in $\Omega, u \leq \bar{u}$. Similarly, we can prove that $\underline{u} \leq u$ and $\underline{v} \leq v \leq \bar{v}$. From the definition of T, we know $T u=u$ and $T v=v$. Then
by (2.10), we obtain that $(u, v) \in\left[W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)\right]^{2}$ is the solution of 1.1). The proof is completed.

An example. In this section, we illustrate Theorem 1.1.

$$
\begin{gather*}
L_{1} u=\lambda_{1} \phi_{1}(x)+\frac{2 \lambda_{1}}{9} u+v+\lambda_{1} \phi_{1}|D u|^{\frac{1}{2}}, \quad x \in \Omega \\
L_{2} v=\frac{3}{4} \lambda_{2}^{2} \phi_{2}(x)+\frac{\lambda_{2}^{2}}{12} u+\frac{\lambda_{2}}{4} v+\frac{\sqrt{3}}{4} \lambda_{2}^{\frac{3}{2}} \phi_{2}(x)|D v|^{\frac{1}{2}}, \quad x \in \Omega \tag{2.13}\\
u=v=0, \quad x \in \partial \Omega .
\end{gather*}
$$

Here Ω is a regular domain in $R^{N}(N>2)$ with smooth boundary $\partial \Omega$, and

$$
\phi_{i}(x)=\frac{\varphi_{i}(x)}{\sup _{\Omega}\left|\varphi_{i}\right|+\sup _{\Omega}\left|D \varphi_{i}\right|} \leq 1
$$

In addition, $\lambda_{i}>0, \varphi_{i}(x)>0$ are the first eigenvalue and the corresponding eigenfunction of operator L_{i} in Ω with zero-Dirichlet boundary value condition. Therefore,

$$
L_{i} \phi_{i}(x)=\frac{L_{i} \varphi_{i}(x)}{\sup _{\Omega}\left|\varphi_{i}\right|+\sup _{\Omega}\left|D \varphi_{i}\right|}=\frac{\lambda_{i} \varphi_{i}(x)}{\sup _{\Omega}\left|\varphi_{i}\right|+\sup _{\Omega}\left|D \varphi_{i}\right|}=\lambda_{i} \phi_{i}(x)
$$

When $2<p<N$, we can verify that problem 2.13) satisfies condition (H1)-(H4). Let

$$
\underline{u}=0 ; \quad \underline{v}=0 ; \quad \bar{u}=9 \phi ; \quad \bar{v}=3 \lambda_{1} \phi ; \quad \phi=\max \left(\phi_{1}, \phi_{2}\right) .
$$

It is not difficult to verify that $(\underline{u}, \bar{u}),(\underline{v}, \bar{v})$, based on this definition, is a pair of super-solution and sub-solution for problem (2.13). Hence according to Theorem 1.1. problem 2.13 has at least one solution $(u, v) \in\left[W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)\right]^{2}$.

3. The proof of Theorem 1.2

Proof. Assume $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in\left[W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)\right]^{2}$ are solutions for problem (1.1); therefore

$$
\begin{aligned}
L_{1} u_{1}=f\left(x, u_{1}, v_{1}, D u_{1}, D v_{1}\right), & x \in \Omega \\
L_{2} v_{1}=g\left(x, u_{1}, v_{1}, D u_{1}, D v_{1}\right), & x \in \Omega \\
& u_{1}=v_{1}=0, \quad x \in \partial \Omega
\end{aligned}
$$

and

$$
\begin{aligned}
L_{1} u_{2}=f\left(x, u_{2}, v_{2}, D u_{2}, D v_{2}\right), & x \in \Omega, \\
L_{2} v_{2}=g\left(x, u_{2}, v_{2}, D u_{2}, D v_{2}\right), & x \in \Omega, \\
& u_{2}=v_{2}=0, \quad x \in \partial \Omega
\end{aligned}
$$

Then

$$
\begin{align*}
L_{1}\left(u_{1}-u_{2}\right)= & f\left(x, u_{1}, v_{1}, D u_{1}, D v_{1}\right)-f\left(x, u_{2}, v_{2}, D u_{2}, D v_{2}\right) \tag{3.1}\\
L_{2}\left(v_{1}-v_{2}\right)= & g\left(x, u_{1}, v_{1}, D u_{1}, D v_{1}\right)-g\left(x, u_{2}, v_{2}, D u_{2}, D v_{2}\right) \tag{3.2}\\
& \left.\left(u_{1}-u_{2}\right)\right|_{\partial \Omega}=\left.\left(v_{1}-v_{2}\right)\right|_{\partial \Omega}=0 \tag{3.3}
\end{align*}
$$

Multiply (3.1) by $\left(u_{1}-u_{2}\right)$ and 3.2 by $\left(v_{1}-v_{2}\right)$, and then integrate them on Ω yield

$$
\begin{aligned}
\int_{\Omega}\left(u_{1}-u_{2}\right) \cdot L_{1}\left(u_{1}-u_{2}\right) & =\int_{\Omega} \sum_{i, j=1}^{N} a_{i j}^{1}(x) D_{i}\left(u_{1}-u_{2}\right) \cdot D_{j}\left(u_{1}-u_{2}\right), \\
\int_{\Omega}\left(v_{1}-v_{2}\right) \cdot L_{2}\left(v_{1}-v_{2}\right) & =\int_{\Omega} \sum_{i, j=1}^{N} a_{i j}^{2}(x) D_{i}\left(v_{1}-v_{2}\right) \cdot D_{j}\left(v_{1}-v_{2}\right) .
\end{aligned}
$$

By the uniformly elliptic condition, we get

$$
\begin{aligned}
& \int_{\Omega} \sum_{i, j=1}^{N} a_{i j}^{1}(x) D_{i}\left(u_{1}-u_{2}\right) \cdot D_{j}\left(u_{1}-u_{2}\right) \geq \lambda\left\|D u_{1}-D u_{2}\right\|^{2} \\
& \int_{\Omega} \sum_{i, j=1}^{N} a_{i j}^{2}(x) D_{i}\left(v_{1}-v_{2}\right) \cdot D_{j}\left(v_{1}-v_{2}\right) \geq \lambda\left\|D v_{1}-D v_{2}\right\|^{2} .
\end{aligned}
$$

Using the Lipschitz condition on f, g, it yields

$$
\begin{aligned}
& \int_{\Omega}\left(f\left(x, u_{1}, v_{1}, D u_{1}, D v_{1}\right)-f\left(x, u_{2}, v_{2}, D u_{2}, D v_{2}\right)\right)\left(u_{1}-u_{2}\right) d x \\
& \leq L \int_{\Omega}\left(\left|u_{1}-u_{2}\right|+\left|v_{1}-v_{2}\right|+\left|D u_{1}-D u_{2}\right|+\left|D v_{1}-D v_{2}\right|\right) \cdot\left|u_{1}-u_{2}\right| d x \\
& \leq L \int_{\Omega}\left(3\left|u_{1}-u_{2}\right|^{2}+\left|v_{1}-v_{2}\right|^{2}+\frac{\left|D u_{1}-D u_{2}\right|^{2}+\left|D v_{1}-D v_{2}\right|^{2}}{2}\right) d x
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{\Omega}\left(g\left(x, u_{1}, v_{1}, D u_{1}, D v_{1}\right)-g\left(x, u_{2}, v_{2}, D u_{2}, D v_{2}\right)\right)\left(v_{1}-v_{2}\right) d x \\
& \leq L \int_{\Omega}\left(\left|u_{1}-u_{2}\right|+\left|v_{1}-v_{2}\right|+\left|D u_{1}-D u_{2}\right|+\left|D v_{1}-D v_{2}\right|\right) \cdot\left|v_{1}-v_{2}\right| d x \\
& \leq L \int_{\Omega}\left(\left|u_{1}-u_{2}\right|^{2}+3\left|v_{1}-v_{2}\right|^{2}+\frac{\left|D u_{1}-D u_{2}\right|^{2}+\left|D v_{1}-D v_{2}\right|^{2}}{2}\right) d x
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& \lambda\left\|D u_{1}-D u_{2}\right\|^{2} \\
& \leq \int_{\Omega} \sum_{i, j=1}^{N} a_{i j}^{1}(x) D_{i}\left(u_{1}-u_{2}\right) \cdot D_{j}\left(u_{1}-u_{2}\right) \\
& \leq L \int_{\Omega}\left(3\left|u_{1}-u_{2}\right|^{2}+\left|v_{1}-v_{2}\right|^{2}+\frac{\left|D u_{1}-D u_{2}\right|^{2}+\left|D v_{1}-D v_{2}\right|^{2}}{2}\right) d x
\end{aligned}
$$

and

$$
\begin{aligned}
& \lambda\left\|D v_{1}-D v_{2}\right\|^{2} \\
& \leq \int_{\Omega} \sum_{i, j=1}^{N} a_{i j}^{2}(x) D_{i}\left(v_{1}-v_{2}\right) \cdot D_{j}\left(v_{1}-v_{2}\right) \\
& \leq L \int_{\Omega}\left(\left|u_{1}-u_{2}\right|^{2}+3\left|v_{1}-v_{2}\right|^{2}+\frac{\left|D u_{1}-D u_{2}\right|^{2}+\left|D v_{1}-D v_{2}\right|^{2}}{2}\right) d x
\end{aligned}
$$

Summing these two formulas yields

$$
\begin{align*}
& \lambda\left\|D u_{1}-D u_{2}\right\|^{2}+\lambda\left\|D v_{1}-D v_{2}\right\|^{2} \\
& \leq L \int_{\Omega}\left(4\left|u_{1}-u_{2}\right|^{2}+4\left|v_{1}-v_{2}\right|^{2}+\left|D u_{1}-D u_{2}\right|^{2}+\left|D v_{1}-D v_{2}\right|^{2}\right) d x \tag{3.4}
\end{align*}
$$

Using the Poincaré inequality,

$$
\|u\|_{L^{2}(\Omega)}^{2} \leq C\|D u\|_{L^{2}(\Omega)}^{2}, \quad\|v\|_{L^{2}(\Omega)}^{2} \leq C\|D v\|_{L^{2}(\Omega)}^{2}
$$

According to this formula and 3.4 , we have
$\int_{\Omega}\left[\left|D\left(u_{1}-u_{2}\right)\right|^{2}+\left|D\left(v_{1}-v_{2}\right)\right|^{2}\right] d x \leq L \frac{4 C+1}{\lambda} \int_{\Omega}\left[\left|D\left(u_{1}-u_{2}\right)\right|^{2}+\left|D\left(v_{1}-v_{2}\right)\right|^{2}\right] d x$
By condition $(H 5), L \frac{4 C+1}{\lambda}<1$, we get $D\left(u_{1}-u_{2}\right)=0, D\left(v_{1}-v_{2}\right)=0, x \in \Omega$. Since $u_{i}=v_{i}=0$ on $\partial \Omega$ for $i=1,2$, it follows that $u_{1}=u_{2}$ and $v_{1}=v_{2}$, a.e. $x \in \Omega$. This completes the proof.

References

[1] R. A. Adams; Sobolev Space. Academic Press, New York,1975.
[2] C. O. Alves, D. C. de Morais Filho and M. A. S. Souto. On systems of elliptic equations involving subcritical or critical Sobolev exponents, Nonlinear Analysis. 42 (2000), 771-787.
[3] Y. Z. Chen and L. c. Wu; Elliptic partial differential equations of second order and elliptic systems. Science Press, Beijing,1997.
[4] F. Correa; Positive Solutions of a asymptotic planar system of elliptic boundary Value Problems. Inter. J. Math. and Math.Sci. 21 (1998), 549-554.
[5] R. Dalmasso; Existence and Uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Analysis. 39 (2000) 559-568.
[6] M. Delgado and A. Suarez; Existence of Solutions for elliptic systems with holder continuous nonlinearities, Differential and Integral Equations. 13 (2000), April-June, 453-477.
[7] D. Gilbarg and N. S. Trudinger; Elliptic partial differential Equations of second order. Springer-Verlag, Berlin, 1983.
[8] D. Kinderlehrer, G. Stampacchia; An introduction to Variational Inequalities and their applications. Academic Press, New York 1980.
[9] D. H. Sattinger; Monotone Methods in nonlinear Elliptic and Parabolic boundary Value Problems, Indiana Univ. Math. J. 21 (1972), 979-1000.

Zu-Chi Chen
Department of mathematics, University of Science and Technology of China, Hefei 230026, China

E-mail address: chenzc@ustc.edu.cn
Ying Cui
Department of mathematics, University of Science and Technology of China, Hefei 230026, China

E-mail address: cuiy@mail.ustc.edu.cn

[^0]: 2000 Mathematics Subject Classification. 35J55, 35J60, 35J65.
 Key words and phrases. Super-sub solutions; compact continuous operator; Leray-Schauder fixed point theorem.
 (C)2009 Texas State University - San Marcos.

 Submitted July 6, 2009. Published October 19, 2009.
 Supported by grant 10371116 from the NNSF of China.

