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POSITIVITY AND STABILITY FOR A SYSTEM OF
TRANSPORT EQUATIONS WITH UNBOUNDED BOUNDARY

PERTURBATIONS

CIRO D’APICE, BRAHIM EL HABIL, ABDELAZIZ RHANDI

Abstract. This article concerns wellposedness, positivity and spectral prop-

erties of the solution of a system of transport equations with unbounded bound-
ary perturbations. In particular we obtain that the rescaled solution converges

to the unique steady-state solution as time approaches infinity on a weighted

L1-space.

1. Introduction

Inspired from a queueing network model studied by [4], [6], [8], [10], we propose
in this paper to study the qualitative and the quantitative properties of the system
of partial differential equations

∂p0(x, t)
∂t

+
∂p0(x, t)
∂x

= η

∫ 1

0

µ(x)p1(x, t)dx, t ≥ 0, x ∈ (0, 1),

∂p1(x, t)
∂t

+
∂p1(x, t)
∂x

= −(α+ µ(x))p1(x, t), t ≥ 0, x ∈ (0, 1),

∂pn(x, t)
∂t

+
∂pn(x, t)

∂x
= −(α+ µ(x))pn(x, t) + αpn−1(x, t),

for t ≥ 0, x ∈ (0, 1), 2 ≤ n ≤ N + 1,

∂pN+2(x, t)
∂t

+
∂pN+2(x, t)

∂x
= −µ(x)pN+2(x, t) + αpN+1(x, t),

for t ≥ 0, x ∈ (0, 1),

(1.1)

with the boundary conditions

p0(0, t) = p0(1, t), t ≥ 0,

p1(0, t) = αp0(1, t) + qµp1(1, t) + ηµp2(1, t), t ≥ 0,

pn(0, t) = qµpn(1, t) + ηµpn+1(1, t), 2 ≤ n ≤ N + 1, t ≥ 0,

pN+2(0, t) = qµpN+2(1, t), t ≥ 0,

(1.2)
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and the initial values
p0(x, 0) = f0(x), x ∈ (0, 1),

p1(x, 0) = f1(x), x ∈ (0, 1),

pn(x, 0) = fn(x), 2 ≤ n ≤ N + 1, x ∈ (0, 1),

pN+2(x, 0) = fN+2(x), x ∈ (0, 1),

(1.3)

where fi ∈ L1(0, 1) for i ∈ {0, 1, . . . , N + 2}. Using the language of operator
matrices we see that equations (1.1)-(1.2) are equivalent to

∂t


p0

p1

...
pN+2

 + ∂x


p0

p1

...
pN+2

 = Q


p0

p1

...
pN+2

 +R


p0

p1

...
pN+2

 (1.4)


p0(0, t)
p1(0, t)

...
pN+2(0, t)

 = Φ


p0(1, t)
p1(1, t)

...
pN+2(1, t)

 , (1.5)

where Q is the multiplication operator

Q =



0 0 0 0 . . . 0 0 0
0 D 0 0 . . . 0 0 0
0 α D 0 . . . 0 0 0
0 0 α D . . . 0 0 0
. . . . . . . 0 0 0
0 0 0 0 . . . D 0 0
0 0 0 0 . . . α D 0
0 0 0 0 . . . 0 α −µ(.)


,

and R the integral operator

R =



0 ηΨ 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
. . . . . . . 0 0 0
0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0


with Ψ(ϕ) =

∫ 1

0
ϕ(x)µ(x)dx and Dϕ = −(α + µ(.))ϕ for ϕ ∈ L1(0, 1). The (N +

3)× (N + 3)-matrix Φ is

Φ =



1 0 0 0 . . . 0 0 0
α q η 0 . . . 0 0 0
0 0 q η . . . 0 0 0
0 0 0 q . . . 0 0 0
. . . . . . . 0 0 0
0 0 0 0 . . . . 0 0
0 0 0 0 . . . 0 q η
0 0 0 0 . . . 0 0 q


.
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Here and in the sequel we suppose that µ ∈ L∞((0, 1),R+), η ∈ (0, 1), q := 1 − η,
λ0 > 0 and take without loss of generality

∫ 1

0
µ(x)dx = µ = 1. Hence, equations

(1.4)-(1.5) are similar to a model describing the growth of a cell population proposed
by Rotenberg [11] (see also [1], [2]).

On the Banach space X := [L1(0, 1)]N+3, N ≥ 1, endowed with the usual norm

‖ϕ‖ :=
N+2∑
i=0

‖ϕi‖L1(0,1), ϕ ∈ X,

one can see that Q, R ∈ L(X). Then the problem (1.3)-(1.5) can be written as the
Cauchy problem

P ′(t) = AmP (t) +BP (t) := LmP (t), t ≥ 0,

Γ0P (t) = ΦΓ1P (t) := ΦP (t),

P (0) = (f0, . . . , fN+2)T ∈ X,
(1.6)

where B = R + Q, the operator Am and the trace application Γ0 and Γ1 are
respectively defined by

Am = − ∂

∂x
IdX , Γ0 = γ0IdX , Γ1 = γ1IdX ,

where γi : L1(0, 1) :→ C, γi(ϕ) = ϕ(i) for i ∈ {0, 1} and ϕ ∈ L1(0, 1).
In Section 2 below we construct the semigroup solution SΦ(·) of the Cauchy

problem (1.6) and give the explicit expression of the unperturbed semigroup TΦ(·)
corresponding to Am (i.e. B=0).

In Section 3 we prove the irreducibility of the semigroups SΦ(·) and TΦ(·), and
show that the growth bound of TΦ(·) is ω0(TΦ) = 0.

In the last section we investigate the spectrum of the generator LΦ of the semi-
group SΦ(·) and we prove in particular that the spectral bound s(LΦ) of LΦ is a
dominant eigenvalue and a first order pole of the resolvent of LΦ. As a consequence
we obtain that the rescaled semigroup (e−s(LΦ)tSΦ(t))t≥0 converges to the unique
steady-state solution as t goes to infinity on a weighted L1-space.

2. Construction of the semigroup solution of (1.6)

In this section we prove that the operator

LΦϕ = (AΦ +B)ϕ = (Am +B)ϕ,

D(LΦ) = D(AΦ) := {ϕ ∈ [W 1(0, 1)]N+3, Γ0ϕ = ΦΓ1ϕ = Φϕ}

generates a C0-semigroup SΦ(·) on X. Thus the Cauchy problem (1.6) is wellposed.
Here W 1(0, 1) = {ϕ ∈ L1(0, 1) : ∂ϕ

∂x ∈ L1(0, 1)} is the first Sobolev space equipped
with the norm

‖ϕ‖W 1(0,1) := ‖ϕ‖L1(0,1) + ‖∂ϕ
∂x
‖L1(0,1).

First, it is known that the operator A0, defined by

A0ϕ = Amϕ, D(A0) = {ϕ ∈ [W 1(0, 1)]N+3, Γ0ϕ = 0},

generates the positive C0-semigroup (T0(t))t≥0, given by

T0(t)ϕ(x) = χ(t,1)(x)ϕ(x− t)
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with χ(t,1)(x) :=

{
1, if x ≥ t,

0, otherwise.
We show now that the operator AΦ generates a C0-semigroup (TΦ(t))t≥0 on X.

To this purpose we give the expression of the resolvent of AΦ.

Lemma 2.1. For λ > log(1 + α), the resolvent R(λ,AΦ) of AΦ is given by

R(λ,AΦ)g = (λ−AΦ)−1g = e−λ.(Id−e−λΦ)−1ΦΓ1(λ−A0)−1g+(λ−A0)−1g, (2.1)

for g ∈ X.

Proof. Let λ > log |Φ| = log(1 + α), ψ ∈ CN+3 and g ∈ X. The general solution of
the equation

λϕ+
∂

∂x
ϕ = g,

Γ0ϕ = ψ.
(2.2)

is
ϕ(x) = e−λxψ + (λ−A0)−1g(x). (2.3)

We have to show that the solution of (2.2) satisfies the boundary condition ψ =
ΦΓ1ϕ. So, by (2.3) we obtain

ψ = e−λΦψ + ΦΓ1(λ−A0)−1g.

Hence, [Id − e−λΦ]ψ = ΦΓ1(λ − A0)−1g. Since e−λ|Φ| < 1, it follows that the
equation (2.2) with the boundary condition Γ0ϕ = ΦΓ1ϕ has a unique solution
given by

ϕ(x) = e−λx(Id− e−λΦ)−1ΦΓ1(λ−A0)−1g + (λ−A0)−1g(x).

Moreover, ϕ is in (W 1(0, 1))N+3 which implies that ϕ ∈ D(AΦ) and this proves
(2.1). �

Now, we show that operator AΦ generates a C0-semigroup on X.

Theorem 2.2. On X the operator AΦ generates a C0-semigroup (TΦ(t))t≥0 satis-
fying

‖TΦ(t)‖L(X) ≤ (1 + α)et log(1+α). (2.4)

Proof. On X we define a new norm

‖|ϕ‖| :=
∫ 1

0

(1 + α)x|ϕ(x)|dx, ϕ ∈ X.

Since
‖ϕ‖ ≤ ‖|ϕ‖| ≤ (1 + α)‖ϕ‖, ϕ ∈ X, (2.5)

these two norms are equivalent. Take λ > log(1+α), g ∈ X and set ϕ = R(λ,AΦ)g.
Multiplying (2.2) by (1 + α)xsign(ϕ)(x) and integrating by parts, we find

λ‖|ϕ‖| = λ

∫ 1

0

(1 + α)x|ϕ(x)|dx

≤ −
∫ 1

0

(1 + α)x ∂

∂x
|ϕ(x)|dx+

∫ 1

0

(1 + α)x|g(x)|dx

≤ ‖|g‖|+ log(1 + α)‖|ϕ‖|+ |Γ0ϕ| − (1 + α)|Γ1ϕ|
= ‖|g‖|+ log(1 + α)‖|ϕ‖|+ |Γ0ϕ| − |Φ||Γ1ϕ|
≤ ‖|g‖|+ log(1 + α)‖|ϕ‖|.
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Consequently,

‖|R(λ,AΦ)g‖| ≤ 1
λ− log(1 + α)

‖|g‖|.

Since D(AΦ) is dense in X, the Hille-Yosida theorem implies that AΦ generates a
C0-semigroup TΦ(·) satisfying

‖|TΦ(t)‖| ≤ et log(1+α), t ≥ 0.

Now the estimate (2.4) follows from (2.5) and this completes the proof. �

Since B ∈ L(X), by the bounded perturbation theorem (cf. [3, Theorem III.1.3])
we obtain the following generation result for the operator LΦ.

Theorem 2.3. The operator LΦ generates a C0-semigroup (SΦ(t))t≥0 on X satis-
fying

‖SΦ(t)‖L(X) ≤ (1 + α)et(log(1+α)+(1+α)‖B‖).

In the remainder part of this section, we give an explicit formula for the semi-
group TΦ(·). For this purpose we define, on the space [W 1(0, 1)]N+3, the linear
operator TΦ(t) by

TΦ(t)ϕ(x) := χ[0,t](x)ΦΓ1T0(t− x)ϕ, x ∈ (0, 1), 0 ≤ t ≤ 1 (2.6)

for ϕ ∈ [W 1(0, 1)]N+3, where χ[0,t] is the characteristic function of the interval [0, t]
defined by

χ[0,t](x) =

{
0, if t < x,

1, otherwise.

For ϕ ∈ [W 1(0, 1)]N+3 we have

‖TΦ(t)ϕ‖ =
∫ 1

0

|χ[0,t](x)ΦΓ1T0(t− x)ϕ| dx

≤ (1 + α)
∫ t

0

|Γ1T0(t− x)ϕ| dx

≤ (1 + α)
∫ t

0

|χ(1, t− x)ϕ(1− t+ x)| dx

≤ (1 + α)
∫ 1

0

|ϕ(1− x)| dx

= (1 + α)‖ϕ‖.

(2.7)

Since [W 1(0, 1)]N+3 is dense in X, the operator TΦ(t), t ∈ [0, 1], can be extended
to a bounded linear operator on X which will be also denoted by TΦ(t).

Lemma 2.4. The family (TΦ(t))0≤t≤1 satisfies:
(i) TΦ(0) = 0, and ‖TΦ(t)‖L(X) ≤ (1 + α) for all t ∈ [0, 1],
(ii) for all t, s ∈ [0, 1] such that s+ t ∈ [0, 1], TΦ(t)TΦ(s) = 0.

Proof. (i) It is easy to see that TΦ(0) = 0. The estimate has been proved above
(see (2.7)).

(ii) Let ϕ ∈ [W 1(0, 1)]N+3, t, s ∈ [0, 1] such that s+t ∈ [0, 1], and set ψ = TΦ(s)ϕ.
Then

ψ(x) = χ[0,s](x)Φ(T0(s− x)ϕ)(1)

= χ[0,s](x)Φϕ(1− s+ x)
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=: χ[0,s](x)Φy(x)

with y(x) := ϕ(1− s+ x) ∈ CN+3. Hence,

TΦ(t)ψ(x) = (TΦ(t)χ[0,s]Φy(·))(x)
= χ[0,t](x)ΦΓ1T0(t− x)χ[0,s]Φy(·)
= χ[0,t](x)Φχ[0,s](1− t+ x)Φy(1− t+ x) = 0,

since χ[0,s](1 − t + x) = 0 for all x ∈ (0, 1). The denseness of [W 1(0, 1)]N+3 in X
completes the proof. �

To show the main result of this section, we define some auxiliary operators. For
any t ≥ 0 there exists n ∈ N and r ∈ [0, 1

2 ) such that t = n
2 + r. We define the

operators BΦ(t), t ≥ 0, by

BΦ(t) := (BΦ(1/2))nBΦ(r),

where BΦ(t) = T0(t) + TΦ(t) for t ∈ [0, 1].

Lemma 2.5. The family (BΦ(t))t≥0 is a C0-semigroup on X.

Proof. The uniqueness of the decomposition t = n
2 + r with n ∈ N and r ∈ [0, 1

2 )
implies that the operators BΦ(t), t ≥ 0, are well defined. Moreover, from the
boundedness of BΦ(t) follows that BΦ(t), t ≥ 0, are bounded linear operators on
X, and the following holds

BΦ(0) = BΦ(0) = T0(0) + TΦ(0) = Id.

We propose now to show the semigroup property. First, we start with the case
t, s ∈ [0, 1] with s+ t ∈ [0, 1] and prove that

BΦ(t)BΦ(s)ϕ = BΦ(t+ s)ϕ (2.8)

for ϕ ∈ X. In fact, for ϕ ∈ [W 1(0, 1)]N+3 (and hence by density for ϕ ∈ X), we
have

BΦ(t)BΦ(s)ϕ(x)

= (T0(t) + TΦ(t))(T0(s) + TΦ(s))ϕ(x)

= T0(t+ s)ϕ(x) + TΦ(t)T0(s)ϕ(x) + T0(t)TΦ(s)ϕ(x)

= T0(t+ s)ϕ(x) + χ[0,t](x)ΦΓ1T0(t+ s− x)ϕ+ χ[t,1](x)TΦ(s)ϕ(x− t)

= T0(t+ s)ϕ(x) + [χ[0,t](x)χ[t+s,1](x) + χ[0,t](x)χ[0,t+s](x)]ΦΓ1T0(t+ s− x)ϕ

+ χ[t,1](x)χ[0,t+s](x)ΦΓ1T0(t+ s− x)ϕ

= BΦ(t+ s)ϕ(x).

Next, by an easy computation one sees that(
TΦ(r)T0(

1
2
)ϕ+ T0(r)TΦ(

1
2
)ϕ

)
(x) =

(
T0(

1
2
)TΦ(r)ϕ+ TΦ(

1
2
)T0(r)ϕ

)
(x)

= χ[0,r+ 1
2 ](x)ΦΓ1T0(r +

1
2
− x)ϕ

for all ϕ ∈ X. This shows that

BΦ(r)BΦ(1/2) = BΦ(1/2)BΦ(r) for all r ∈ [0,
1
2
]. (2.9)
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Now, the semigroup property

BΦ(t+ s) = BΦ(t)BΦ(s), t, s ≥ 0

follows from (2.8) and (2.9). For the strong continuity, let us consider t ∈ (0, 1
2 )

and ϕ ∈ X. Then BΦ(t)ϕ− ϕ = (T0(t)ϕ− ϕ) + TΦ(t)ϕ→ 0 as t→ 0+, since T0(·)
is strongly continuous and ‖TΦ(t)ϕ‖ ≤ (1 + α)

∫ 1

1−t
|ϕ(x)| dx. �

Theorem 2.6. The semigroups TΦ(·) and BΦ(·) coincide.

Proof. We denote by C the generator of the C0-semigroup BΦ(·). Let ϕ ∈ D(AΦ),
t ∈ (0, 1) and set ψ = ϕ− Γ0ϕ. Then

1
t
(BΦ(t)ϕ− ϕ) + ϕ′

=
1
t
(T0(t)ψ − ψ) + ψ′ +

1
t
(χ(t,1)(·)− 1)Γ0ϕ+

1
t
TΦ(t)ϕ

=
1
t
(T0(t)ψ − ψ) + ψ′ − 1

t
χ(0,t)(·)Γ0ϕ+

1
t
χ(0,t)(·)Φϕ(1− t+ ·).

Since ψ ∈ D(A0) and Γ0ϕ = ΦΓ1ϕ, it follows that

lim
t→0+

1
t
(BΦ(t)ϕ− ϕ) + ϕ′ = 0.

Hence, D(AΦ) ⊂ D(C) and C|D(AΦ) = AΦ. Since C and AΦ are both generators,
we deduce that AΦ = C and therefore TΦ(·) = BΦ(·). �

3. Irreducibility and some spectral properties

In this section we study the irreducibility of the semigroups TΦ(·) and SΦ(·), and
we characterize the growth bound ω0(TΦ). We begin by proving the irreducibility.
To this purpose we need the following lemma.

Lemma 3.1. Assume that A generates an irreducible C0-semigroup T (·) on a Ba-
nach lattice X and B ∈ L(X) is such that etB ≥ 0, t ≥ 0. Then the perturbed
semigroup S(·) is irreducible.

Proof. Since the semigroup (etB)t≥0 is positive, it follows that B + ‖B‖Id ≥ 0 (cf.
[9, Theorem 1.11.C-II]). Hence the semigroup generated by A+B+‖B‖Id satisfies

et‖B‖S(t) ≥ T (t), t ≥ 0.

Thus the irreducibility of T (·) implies that the semigroup (et‖B‖S(t))t≥0 is irre-
ducible. Hence, S(·) is irreducible too. �

As a consequence we obtain the following result.

Proposition 3.2. The semigroups (TΦ(t))t≥0 and (SΦ(t))t≥0 are irreducible.

Proof. Let λ ≥ ln(1 + α) and ϕ > 0. By Lemma 2.1 we have

(λ−AΦ)−1ϕ = e−λ.(Id− e−λΦ)−1ΦΓ1(λ−A0)−1ϕ+ (λ−A0)−1ϕ

≥ e−λ.(Id− e−λΦ)−1ΦΓ1(λ−A0)−1ϕ

≥ e−λ.
∞∑

n=0

(e−λΦ)nΦΓ1(λ−A0)−1ϕ

≥ e−λ.ΦΓ1(λ−A0)−1ϕ
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= e−λ·Φ
( ∫ 1

0

eλ(s−1)ϕ(s) ds
)
> 0,

since (λ − A0)−1ϕ(x) =
∫ x

0
eλ(s−x)ϕ(s) ds and Φ > 0. Hence (λ − AΦ)−1 is irre-

ducible and therefore TΦ(·) is irreducible.
Now, we decompose B as B = B0 +B1 with

B0 =



0 ηΨ 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
0 α 0 0 . . . 0 0 0
0 0 α 0 . . . 0 0 0
. . . . . . . 0 0 0
0 0 0 0 . . . 0 0 0
0 0 0 0 . . . α 0 0
0 0 0 0 . . . 0 α 0


,

B1 =



0 0 0 0 . . . 0 0 0
0 D 0 0 . . . 0 0 0
0 0 D 0 . . . 0 0 0
0 0 0 D . . . 0 0 0
. . . . . . . 0 0 0
0 0 0 0 . . . D 0 0
0 0 0 0 . . . 0 D 0
0 0 0 0 . . . 0 0 −µ(.)


.

Since B1 is a real multiplication operator on X, it follows that (etB1)t≥0 is a positive
semigroup on X. Thus, by the positivity of B0, we get the positivity of (etB)t≥0

on X. Hence, the irreducibility of SΦ(·) follows now from Lemma 3.1. �

Proposition 3.3. The growth bound of the semigroups TΦ(·) satisfies

ω0(TΦ) = 0.

Proof. Since σ(A0) = ∅, it follows from the proof of Lemma 2.1 that

λ ∈ σ(AΦ) ⇐⇒ 1 ∈ σ(e−λΦ).

An easy computation shows that

det(Id− e−λΦ) = (1− e−λ)(1− qe−λ)N+2.

Hence, 1 ∈ σ(e−λΦ) ⇔ eλ = 1 or eλ = q. This implies that {<λ : λ ∈ σ(AΦ)} =
{0, log q} and thus

s(AΦ) = ω0(TΦ) = 0,
since q ∈ (0, 1). �

4. The spectral bound of the generator of SΦ(·)

In this section we are interested in studying some spectral properties of the
generator LΦ of the semigroup SΦ(·) on X. In particular we show that 0 < s(LΦ) =
ω0(SΦ) > 0 is a dominant eigenvalue and a first order pole of the resolvent of LΦ.
Here, as in [10], we use an abstract framework developed by Greiner [5].

On the product space X := X × CN+3, we define the operators

A0 :=
(
Lm 0
−Γ0 0

)
with D(A0) := D(Lm)× {0},
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B :=
(

0 0
Φ 0

)
with D(B) := D(Lm)× CN+3,

A := A0 + B =
(

Lm 0
Φ− Γ0 0

)
with D(A) := D(Lm)× {0}.

Set X0 := X × {0} = D(A0). Since Γ0 ∈ L(D(Am),CN+3) is surjective one can
define for γ ∈ ρ(L0) the operator Dγ :=

(
Γ0|ker(γ−Lm)

)−1 ∈ L(CN+3, ker(γ − Lm))
called the Dirichlet operator. Moreover,

R(γ,A0) =
(
R(γ, L0) Dγ

0 0

)
.

The part A|X0 of A in X0 is given by

D(A|X0) = D(LΦ)× {0} and A|X0 =
(
LΦ 0
0 0

)
.

Thus, A|X0 can be identified with the operator (LΦ, D(LΦ)). Furthermore, for
γ ∈ ρ(L0), the following characteristic equation holds (cf. [10, Page 11])

γ ∈ σp(LΦ) ⇔ 1 ∈ σp(ΦDγ) = σ(ΦDγ) (4.1)

and if in addition there exists β ∈ C such that 1 ∈ ρ(ΦDβ), then

γ ∈ σ(LΦ) ⇔ 1 ∈ σ(ΦDγ). (4.2)

Let us consider the operators D0, D1 and D2 defined on W 1,1
0 (0, 1) := {ϕ ∈

W 1,1(0, 1) : ϕ(0) = 0} by D0ϕ = −ϕ′, D1ϕ = −ϕ′ − (α + µ(·))ϕ and D2ϕ =
−ϕ′ − µ(·)ϕ, ϕ ∈W 1,1

0 (0, 1). Then, for any γ ∈ C, we have

(R(γ,D0)ϕ)(x) = e−γx

∫ x

0

eγsϕ(s)ds,

(R(γ,D1)ϕ)(x) = e−(γ+α)x−
R x
0 µ(σ)dσ

∫ x

0

e(γ+α)s+
R s
0 µ(σ)dσϕ(s)ds,

(R(γ,D2)ϕ)(x) = e−γx−
R x
0 µ(σ)dσ

∫ x

0

eγs+
R s
0 µ(σ)dσϕ(s)ds

for ϕ ∈ L1(0, 1) and x ∈ [0, 1]. Set

r1,1 = R(γ,D0),

r1,2 = ηR(γ,D0)ΨR(γ,D1),

rj,k = αj−kR(γ,D1)j−k+1, 2 ≤ k ≤ j ≤ N + 2,

rN+3,k = αN+3−kR(γ,D2)R(γ,D1)N+3−k, 2 ≤ k ≤ N + 3.

Then the resolvent of L0 can be computed explicitly as the following lemma shows.
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Lemma 4.1. For the operator (L0, D(L0)) we have ρ(L0) = C and

R(γ, L0) =



r1,1 r1,2 0 0 . . . 0 0
0 r2,2 0 0 . . . 0 0
0 r3,2 r3,3 0 . . . 0 0
0 r4,2 r4,3 r4,4 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . . .
0 rN+2,2 rN+2,3 rN+2,4 . . . rN+2,N+2 0
0 rN+3,2 rN+3,2 rN+3,4 . . . rN+3,N+2 rN+3,N+3


.

One can also characterize ker(γ − Lm) for any γ ∈ C and therefore one obtains
an explicit formula for the Dirichlet operator Dγ . To this purpose, for γ ∈ C, set

εγk(x) :=
αk

k!
xke−(γ+α)x−

R x
0 µ(s)ds, 0 ≤ k ≤ N,

dγ
1,1 :=

η

γ
(1− e−γx)

∫ 1

0

µ(x)εγ0(x)dx,

dγ
N+3,k := exp(−γ · −

∫ ·

0

µ(s)ds)−
N+1−k∑

n=0

εγn, 1 ≤ k ≤ N + 1,

dγ
N+3,N+2 := exp(−γ · −

∫ ·

0

µ(s)ds).

Lemma 4.2. For γ ∈ C, the Dirichlet operator Dγ is given by

Dγ =



e−γx dγ
1,1 0 0 . . . 0 0

0 εγ0 0 0 . . . 0 0
0 εγ1 εγ0 0 . . . 0 0
0 εγ2 εγ1 εγ0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . . .
0 εγN εγN−1 εγN−2 . . . εγ0 0
0 dγ

N+3,1 dγ
N+3,2 dγ

N+3,3 . . . dγ
N+3,N+1 dγ

N+3,N+2


.

By setting

aγ
k,j = 0 if 0 ≤ k ≤ N and j ≥ k + 2,

aγ
0,0 = e−γ ,

aγ
1,0 = αe−γ ,

aγ
0,1 = dγ

1,1(1),

aγ
1,1 = αdγ

1,1(1) + qεγ0(1) + ηεγ1(1),

aγ
1,2 = ηεγ0(1),

aγ
2,2 = qεγ0(1) + ηεγ1(1),

aγ
k,1 = qεγk−1(1) + ηεγk(1), 2 ≤ k ≤ N if N ≥ 2,

aγ
N+2,k = qdγ

N+3,k(1), 1 ≤ k ≤ N + 2,

bγN+1,k = qεγN−k+1(1) + ηdγ
N+3,k(1), 1 ≤ k ≤ N + 1,
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bγN+1,N+2 = ηdγ
N+3,N+2(1),

one deduces the expression of ΦDγ .

Lemma 4.3. For γ ∈ C, the matrix ΦDγ is equal to

aγ
0,0 aγ

0,1 0 0 . . . . 0 0 0
aγ
1,0 aγ

1,1 aγ
1,2 0 . . . . 0 0 0

0 aγ
2,1 aγ

2,2 aγ
1,2 . . . . 0 0 0

0 aγ
3,1 aγ

2,1 aγ
2,2 . . . . 0 0 0

0 aγ
4,1 aγ

3,1 aγ
2,1 . . . . 0 0 0

. . . . . . . . . . .

. . . . . . . . . . .
0 aγ

N−1,1 . . . . . aγ
2,2 aγ

1,2 0 0
0 aγ

N,1 aγ
N−1,1 . . . . aγ

2,1 aγ
2,2 aγ

1,2 0
0 bγN+1,1 bγN+1,2 bγN+1,3 . . . . bγN+1,N bγN+1,N+1 bγN+1,N+2

0 aγ
N+2,1 aγ

N+2,2 aγ
N+2,3 . . . . aγ

N+2,N aγ
N+2,N+1 aγ

N+2,N+2


.

Remark 4.4. By setting ΦDγ = (α(γ)
ij )1≤i,j≤N+3, γ > 0, we have limγ→+∞ α

(γ)
ij =

0. Hence, there is β > 0 such that r(ΦDβ) < 1. This implies that 1 ∈ ρ(ΦDβ). So,
by (4.1), (4.2) and Lemma 4.1, we get, for any γ ∈ C,

γ ∈ σ(LΦ) ⇔ 1 ∈ σ(ΦDγ) = σp(ΦDγ) ⇔ γ ∈ σp(LΦ). (4.3)

In particular we obtain
σ(LΦ) = σp(LΦ)

and if 1 ∈ ρ(ΦDγ), then

R(γ, LΦ) = R(γ, L0) +Dγ(IdCN+3 − ΦDγ)−1ΦR(γ, L0) (4.4)

(cf. [10, Proposition 1.8]).

The following result shows that s(LΦ) > 0.

Proposition 4.5. There exists γ0 > 0 such that 1 = r(ΦDγ0) and therefore

s(LΦ) = γ0 > 0.

Proof. Since ΦD0 = (α(0)
ij )1≤i,j≤N+3 is an irreducible matrix, it follows from [13,

Proposition 6.3., Chap.I] that r(ΦD0) > max1≤i≤N+3 α
(0)
ii . In particular,

r(ΦD0) > a0
0,0 = 1. (4.5)

On the other hand, by the explicit expression of ΦDβ one can see that the function
0 < β 7→ r(ΦDβ) is decreasing and limβ→+∞ r(ΦDβ) = 0. Thus, by continuity and
(4.5), there exists a unique γ0 > 0 such that r(ΦDγ0) = 1 ∈ σ(ΦDγ0). Hence, from
(4.3) we get γ0 ∈ σ(LΦ).

Now, take λ > γ0 and set ΦDλ = (α(λ)
ij )1≤i,j≤N+3. Since 0 ≤ α

(λ)
ij ≤ α

(γ0)
ij and

α
(λ)
11 < α

(γ0)
11 , it follows from [13, Page 22] that

r(ΦDλ) < r(ΦDγ0) = 1.

Then, by the positivity of ΦDλ and (4.4), we obtain λ ∈ ρ(LΦ) and R(λ, LΦ) ≥ 0.
Since s(LΦ) = inf{µ ∈ ρ(LΦ) : R(µ,LΦ) ≥ 0} (cf. [12, Remark 2.3.5]), we get
s(LΦ) < λ and hence s(LΦ) ≤ γ0. Thus, since γ0 ∈ σ(LΦ), it follows that s(LΦ) =
γ0. �
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The first main result of this paper shows that the spectral bound of LΦ is a
dominant spectral value.

Theorem 4.6. The spectral bound s(LΦ) of LΦ is a first order pole of the resolvent
and the boundary spectrum of LΦ is given by

σb(LΦ) = σ(LΦ) ∩ {<λ = s(LΦ)} = {s(LΦ)}.

Proof. It follows from (4.4) and the compactness of ΦR(γ, L0), <γ > s(LΦ), that

ress(R(γ, LΦ)) = ress(R(γ, L0)), <γ > s(LΦ).

Since σ(L0) = ∅, we deduce from the spectral theorem for the resolvent (cf. [3])
that ress(R(γ, L0)) = 0 and hence

ress(R(γ, LΦ)) = 0, <γ > s(LΦ).

This implies that 1
λ−s(LΦ) is a pole of finite algebraic multiplicity for any λ > s(LΦ).

By [9, Proposition 2.5.A-III] we deduce that s(LΦ) is a pole of finite algebraic
multiplicity and the first assertion is proved by applying [9, Proposition 3.5.C-III],
since SΦ(·) is irreducible (see Proposition 3.2). For the second assertion we note
first that, by

Proposition 4.5, s(LΦ) = γ0 > 0. Let us consider a ∈ R such that

|a| >

√
4γ2

0

(1− e−γ0)2
− γ2

0 =: ξ0.

Then, it is easy to see that

|dγ0+ia
1,1 (1)| < dγ0

1,1(1).

Hence,
|α(γ0+ia)

ij | ≤ α
(γ0)
ij and |α(γ0+ia)

12 | < α
(γ0)
12

for all i, j = 1, . . . , N + 3, where (α(γ)
ij )1≤i,j≤N+3 = ΦDγ , γ ∈ C. So, by [13, Page

22] and Proposition 4.5 we obtain

r(ΦDγ0+ia) < r(ΦDγ0) = 1.

Thus, by (4.3), we get γ0 + ia ∈ ρ(LΦ) for any a ∈ R with |a| > ξ0. This means
that σb(LΦ) is bounded. On the other hand, using [9, Proposition 2.9.C-III] and [9,
Proposition 2.10.C-III], we obtain that σb(LΦ) is cyclic, i.e., if a+ib ∈ σb(LΦ), a, b ∈
R, then a+ ikb ∈ σb(LΦ) for all k ∈ Z. Now, the boundedness of σb(LΦ) gives the
second assertion. �

Now, we deduce the asymptotic behavior of the semigroup (SΦ(t))t≥0.

Theorem 4.7. There exists 0 � w ∈ [L∞(0, 1)]N+3 such that the rescaled semi-
group (e−s(LΦ)tSΦ(t))t≥0 converges to the unique steady-state solution as t goes to
infinity in the weighted space L1

w := [L1(0, 1;wdx)]N+3; i.e., there is 0 � ψ ∈ L1
w

and 0 � ŵ ∈ (L1
w)∗ such that

lim
t→∞

e−s(LΦ)tSΦ(t)ϕ = 〈ŵ, ϕ〉L1
w
ψ

for all ϕ ∈ L1
w, where the limit is in L1

w equipped with the weighted norm

‖ϕ‖w :=
N+2∑
i=0

∫ 1

0

ϕi(x)wi(x) dx.
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Proof. Since, by Theorem 4.6, s(LΦ) is a first order pole of the resolvent, it follows
from [9, Proposition 3.5.C-III] that there is a strictly positive eigenvector w of L∗Φ
corresponding to s(LΦ). Hence, e−s(LΦ)tSΦ(t)∗w = w and therefore

‖e−s(LΦ)tSΦ(t)‖w ≤ 1 for all t ≥ 0.

On the other hand, we know from Theorem 4.6, Remark 4.4 and Proposition 4.1 that
s(LΦ) ∈ σp(LΦ) and SΦ(·) is irreducible. So, we deduce that the set {e−s(LΦ)tSΦ(t) :
t ≥ 0} is relatively weakly compact in L1

w (cf. [8, Lemma 3.10]). Now, the assertion
follows as in [8, Theorem 3.11]. �
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