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UPPER SEMICONTINUITY OF RANDOM ATTRACTORS FOR
NON-COMPACT RANDOM DYNAMICAL SYSTEMS

BIXIANG WANG

Abstract. The upper semicontinuity of random attractors for non-compact

random dynamical systems is proved when the union of all perturbed random
attractors is precompact with probability one. This result is applied to the

stochastic Reaction-Diffusion with white noise defined on the entire space Rn.

1. Introduction

In this paper, we study the limiting behavior of random attractors of non-
compact random dynamical systems as stochastic perturbations approach zero. In
particular, we will establish the upper semicontinuity of random attractors for the
stochastically perturbed Reaction-Diffusion equation defined on the entire space
Rn:

du+ (λu−∆u)dt = (f(x, u) + g(x))dt+ εhdW, (1.1)
where ε is a small positive parameter, λ is a fixed positive constant, g and h are
given functions defined on Rn, f is a smooth nonlinear function satisfying some con-
ditions, and W is a two-sided real-valued Wiener process on a complete probability
space.

By a random attractor we mean a compact and invariant random set which
attracts all solutions when initial times approach minus infinity. The concept of
random attractor was introduced in [12, 13] as extension to stochastic systems of the
concept of global attractor for deterministic equations found in [2, 14, 21, 24, 25], for
instance. In the case of bounded domains, random attractors for stochastic PDEs
have been studied by many authors, see, e.g., [6, 7, 8, 9, 10, 11, 12, 13, 17, 18, 19, 20,
22, 23, 31, 32] and the references therein. In these papers, the asymptotic compact-
ness of random dynamical systems follows directly from the compactness of Sobolev
embeddings in bounded domains. This is the key to prove the existence of random
attractors for PDEs defined in bounded domains. Since Sobolev embeddings are not
compact on unbounded domains, the random dynamical systems associated with
PDEs in this case are non-compact, and the asymptotic compactness of solutions
cannot be obtained simply from these embeddings. This is a reason why there are
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only a few results on existence of random attractors for PDEs defined on unbounded
domains. Nevertheless, the existence of such attractors for some stochastic PDEs
on unbounded domains has been proved in [4, 27, 28, 29, 30] recently. The asymp-
totic compactness and existence of absorbing sets for the stochastic Navier-Stokes
equations on unbounded domains were established in [5].

In this paper, we will examine the limiting behavior of random attractors for the
stochastically perturbed Reaction-Diffusion equation (1.1) defined on Rn when ε→
0, and prove the upper semicontinuity of these perturbed random attractors. In the
deterministic case, the upper semicontinuity of global attractors were investigated
in [14, 15, 16, 25] and many other papers. For stochastic PDEs defined in bounded
domains, this problem has been studied by the authors of [9, 10, 19, 20, 22]. To
the best of our knowledge, there is no result reported in the literature on the upper
semicontinuity of random attractors for stochastic PDEs defined on unbounded
domains. The purpose of this paper is to prove such a result for equation (1.1)
on Rn. Of course, the main difficulty here is the non-compactness of Sobolev
embeddings on Rn. In this paper, we will overcome the obstacles caused by the
non-compactness of embeddings by using uniform estimates for far-field values of
functions lying in the perturbed random attractors. Actually, by a cut-off technique,
we will show that the values of all functions in all perturbed random attractors are
uniformly convergent to zero (in a sense) when spatial variables approach infinity
(see the proof of Lemma 6.1 for more details).

The outline of this paper is as follows. We recall the basic random attractors the-
ory in the next section, and prove a result on the upper semicontinuity of random
attractors in Section 3. This result works for non-compact random dynamical sys-
tems corresponding to stochastic PDEs defined on unbounded domains. In Section
4, we define a continuous random dynamical system for equation (1.1) in L2(Rn).
The uniform estimates of solutions for the equation are given in Section 5. Finally,
we prove the upper semicontinuity of random attractors for (1.1) in the last section.

We denote by ‖ · ‖ and (·, ·) the norm and the inner product in L2(Rn) and use
‖ · ‖p to denote the norm in Lp(Rn). Otherwise, the norm of a general Banach
space X is written as ‖ · ‖X . The letters c and ci (i = 1, 2, . . .) are generic positive
constants which may change their values from line to line or even in the same line.

2. Random attractors

We recall some basic concepts related to random attractors for stochastic dy-
namical systems. The reader is referred to [1, 3, 11, 13] for more details.

Let (X, ‖ · ‖X) be a Banach space with Borel σ-algebra B(X), and let (Ω,F , P )
be a probability space.

Definition 2.1. (Ω,F , P, (θt)t∈R) is called a metric dynamical system if θ : R ×
Ω → Ω is (B(R) × F ,F)-measurable, θ0 is the identity on Ω, θs+t = θt ◦ θs for all
s, t ∈ R and θtP = P for all t ∈ R.

Definition 2.2. A continuous random dynamical system (RDS) onX over a metric
dynamical system (Ω,F , P, (θt)t∈R) is a mapping

φ : R+ × Ω×X → X, (t, ω, x) 7→ φ(t, ω, x),

which is (B(R+)×F × B(X),B(X))-measurable and satisfies, for P -a.e. ω ∈ Ω,
(i) φ(0, ω, ·) is the identity on X;
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(ii) φ(t+ s, ω, ·) = φ(t, θsω, ·) ◦ φ(s, ω, ·) for all t, s ∈ R+;
(iii) φ(t, ω, ·) : X → X is continuous for all t ∈ R+.

Hereafter, we assume that φ is a continuous RDS on X over (Ω,F , P, (θt)t∈R).

Definition 2.3. A random bounded set {B(ω)}ω∈Ω of X is called tempered with
respect to (θt)t∈R if for P -a.e. ω ∈ Ω,

lim
t→∞

e−βt‖B(θ−tω)‖X = 0 for all β > 0,

where ‖B‖X = supx∈B ‖x‖X .

Definition 2.4. Let D be a collection of random subsets of X. Then D is called
inclusion-closed if D = {D(ω)}ω∈Ω ∈ D and D̃ = {D̃(ω)}ω∈Ω with D̃(ω) ⊆ D(ω)
for all ω ∈ Ω imply that D̃ ∈ D.

Definition 2.5. Let D be a collection of random subsets ofX and {K(ω)}ω∈Ω ∈ D.
Then {K(ω)}ω∈Ω is called a random absorbing set for φ in D if for every B ∈ D
and P -a.e. ω ∈ Ω, there exists T (B,ω) > 0 such that

φ(t, θ−tω,B(θ−tω)) ⊆ K(ω) for all t ≥ T (B,ω).

Definition 2.6. Let D be a collection of random subsets of X. Then φ is said to be
D-pullback asymptotically compact in X if for P -a.e. ω ∈ Ω, {φ(tn, θ−tnω, xn)}∞n=1

has a convergent subsequence in X whenever tn → ∞, and xn ∈ B(θ−tn
ω) with

{B(ω)}ω∈Ω ∈ D.

Definition 2.7. Let D be a collection of random subsets of X. Then a random set
{A(ω)}ω∈Ω of X is called a D-random attractor (or D-pullback attractor) for φ if
the following conditions are satisfied, for P -a.e. ω ∈ Ω,

(i) A(ω) is compact, and ω 7→ d(x,A(ω)) is measurable for every x ∈ X;
(ii) {A(ω)}ω∈Ω is invariant, that is,

φ(t, ω,A(ω)) = A(θtω), ∀ t ≥ 0;

(iii) {A(ω)}ω∈Ω attracts every set in D, that is, for every B = {B(ω)}ω∈Ω ∈ D,

lim
t→∞

dist(φ(t, θ−tω,B(θ−tω)),A(ω)) = 0,

where dist(·, ·) is the Hausdorff semi-metric dist(Y,Z) = supy∈Y infz∈Z ‖y−
z‖X for any Y ⊆ X and Z ⊆ X.

The following existence result for a random attractor for a continuous RDS can
be found in [3, 4, 13].

Proposition 2.8. Let D be an inclusion-closed collection of random subsets of X
and φ a continuous RDS on X over (Ω,F , P, (θt)t∈R). Suppose that {K(ω)}ω∈K

is a closed random absorbing set for φ in D and φ is D-pullback asymptotically
compact in X. Then φ has a unique D-random attractor {A(ω)}ω∈Ω which is given
by

A(ω) = ∩τ≥0∪t≥τφ(t, θ−tω,K(θ−tω)).
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3. Upper semicontinuity of random attractors

In this section, we establish the upper semicontinuity of random attractors when
small random perturbations approach zero. Let (X, ‖ · ‖X) be a Banach space and
Φ be an autonomous dynamical system defined on X. Given ε > 0, suppose Φε

is a random dynamical system over a metric system (Ω,F , P, (θt)t∈R). We further
suppose that for P -a.e. ω ∈ Ω, t ≥ 0, εn → 0, and xn, x ∈ X with xn → x, the
following holds:

lim
n→∞

Φεn(t, ω, xn) = Φ(t)x. (3.1)

Let D be a collection of subsets of X. Given ε > 0, suppose that Φε has a random
attractorAε = {Aε(ω)}ω∈Ω ∈ D and a random absorbing set Eε = {Eε(ω)}ω∈Ω ∈ D
such that for some deterministic positive constant c and for P -a.e. ω ∈ Ω,

lim sup
ε→0

‖Eε(ω)‖X ≤ c, (3.2)

where ‖Eε(ω)‖X = supx∈Eε(ω) ‖x‖X . We also assume that there exists ε0 > 0 such
that for P -a.e. ω ∈ Ω,

∪0<ε≤ε0Aε(ω) is precompact in X. (3.3)

Let A0 be the global attractor of Φ in X, which means that A0 is compact and
invariant and attracts every bounded subset of X uniformly. Then the relationships
between Aε and A0 are given by the following theorem.

Theorem 3.1. Suppose (3.1)-(3.3) hold. Then for P -a.e. ω ∈ Ω,

dist(Aε(ω),A0) → 0, as ε→ 0. (3.4)

Proof. We argue by contradiction. If (3.4) is not true, then there δ > 0 and a
sequence {xn}∞n=1 with xn ∈ Aεn(ω) and εn → 0 such that

dist(xn,A0) ≥ δ. (3.5)

It follows from (3.3) that there are y0 ∈ X and a subsequence of {xn}∞n=1 (still
denoted by {xn}∞n=1) such that

lim
n→∞

xn = y0. (3.6)

Next we prove y0 ∈ A0. To this end, we take a sequence {tm}∞m=1 with tm → ∞.
By the invariance of Aεn

we find that there exists a sequence {x1,n}∞n=1 with x1,n ∈
Aεn

(θ−t1ω) such that

xn = Φεn
(t1, θ−t1ω, x1,n), ∀ n ≥ 1. (3.7)

By (3.3) again, there exist y1 ∈ X and a subsequence of {x1,n}∞n=1 (still denoted
by {x1,n}∞n=1) such that

lim
n→∞

x1,n = y1. (3.8)

By (3.1) and (3.8) we find that

lim
n→∞

Φεn(t1, θ−t1ω, x1,n) = Φ(t1)y1. (3.9)

It follows from (3.6)-(3.7) and (3.9) that y0 = Φ(t1)y1. Since x1,n ∈ Aεn
(θ−t1ω)

and Aεn(θ−t1ω) ⊆ Eεn(θ−t1ω), by (3.2) we get

lim sup
n→∞

‖x1,n‖X ≤ lim sup
n→∞

‖Eεn
(θ−t1ω)‖X ≤ c. (3.10)
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By (3.8) and (3.10) we find that ‖y1‖X ≤ c. Similarly, for each m ≥ 2, repeating
the above procedure, we can find that there is ym ∈ X such that

y0 = Φ(tm)ym, ∀ m ≥ 2, (3.11)

‖ym‖X ≤ c, ∀ m ≥ 2. (3.12)

Since tm →∞, (3.11) and (3.12) imply that y0 ∈ A0. Therefore, by (3.6) we have

dist(xn,A) ≤ dist(xn, y0) → 0,

a contradiction with (3.5). This completes the proof. �

We remark that the upper semicontinuity of random attractors for stochastic
PDEs as perturbations of autonomous, non-autonomous and random systems was
first proved by the authors in [9], [10] and [22], respectively. The conditions (3.1)-
(3.3) of this paper are close but different from that given in [9, 10, 22]. For instance,
the following condition is essentially assumed in [9, 10, 22] (see Theorem 2 on page
1562 in [9], Theorem 3.1 on page 496 in [10], and Theorem 2 on page 655 in [22]):
there exists a compact set K such that, P -a.s.

lim
ε→0

dist(Aε(ω),K) = 0. (3.13)

For parabolic PDEs defined in bounded domains, the solution operators are com-
pact, which follows from the regularity of solutions and the compactness of Sobolev
embeddings. In that case, the existence of the compact set K satisfying condition
(3.13) can be obtained by the existence of bounded absorbing sets in a space with
higher regularity (see [9, 10, 22]). However, this method does not work for PDEs
defined on unbounded domains because Sobolev embeddings are no longer compact.
Therefore, in the case of unbounded domains, it is difficult to find a compact set K
which satisfies (3.13). In this paper, we require condition (3.3) rather than (3.13).
As proved in Section 6 of this paper, the condition (3.3) is indeed fulfilled for the
parabolic equation (1.1) defined on the unbounded domain Rn, and hence the upper
semicontinuity of the random attractors follows from Theorem 3.1 immediately.

4. Stochastic Reaction-Diffusion equations on Rn

In this paper, we will investigate the upper semicontinuity of random attractors
of the stochastic Reaction-Diffusion equation defined on Rn. Given a small positive
parameter ε, consider the following stochastically perturbed equation:

du+ (λu−∆u)dt = (f(x, u) + g(x))dt+ εh dW, x ∈ Rn, t > 0, (4.1)

with the initial condition:

u(x, 0) = u0(x), x ∈ Rn. (4.2)

Here ε and λ are positive constants, g is a given function in L2(Rn), h ∈ H2(Rn)∩
W 2,p(Rn) for some p ≥ 2,W is a two-sided real-valued Wiener process on a complete
probability space (Ω,F , P ), where P is the Wiener distribution, Ω is a subset of
{ω ∈ C(R,R) : ω(0) = 0} with P (Ω) = 1, and F is a σ-algebra. In addition, the
space (Ω,F , P ) is invariant under the Wiener shift:

θtω(·) = ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R.

This means that (Ω,F , P, (θt)t∈R) is a metric dynamical system (see, e.g., [9, 23]
for existence of this space).
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Consider the one-dimensional Ornstein-Uhlenbeck equation:

dy + λydt = dW (t). (4.3)

One may easily check that a solution to (4.3) is given by

y(θtω) = −λ
∫ 0

−∞
eλτ (θtω)(τ)dτ, t ∈ R.

Note that the random variable |y(ω)| is tempered and y(θtω) is P -a.e. continuous.
Therefore, it follows from Proposition 4.3.3 in [1] that there exists a tempered
function r(ω) > 0 such that

|y(ω)|2 + |y(ω)|p ≤ r(ω), (4.4)

where r(ω) satisfies, for P -a.e. ω ∈ Ω,

r(θtω) ≤ e
λ
2 |t|r(ω), t ∈ R. (4.5)

Then it follows from (4.4)-(4.5) that, for P -a.e. ω ∈ Ω,

|y(θtω)|2 + |y(θtω)|p ≤ e
λ
2 |t|r(ω), t ∈ R. (4.6)

Let z(θtω) = hy(θtω) and v(t) = u(t) − εz(θtω) where u is a solution of problem
(4.1)-(4.2). Then v satisfies

∂v

∂t
+ λv −∆v = f(x, v + εz(θtω)) + g + ε∆z(θtω). (4.7)

In this paper, we assume that the nonlinearity f satisfies the following conditions:
For all x ∈ Rn and s ∈ R,

f(x, s)s ≤ −α1|s|p + ψ1(x), (4.8)

|f(x, s)| ≤ α2|s|p−1 + ψ2(x), (4.9)
∂f

∂s
(x, s) ≤ β, (4.10)

|∂f
∂x

(x, s)| ≤ ψ3(x), (4.11)

where α1, α2 and β are positive constants, ψ1 ∈ L1(Rn) ∩ L∞(Rn), and ψ2 ∈
L2(Rn) ∩ Lq(Rn) with 1

q + 1
p = 1, and ψ3 ∈ L2(Rn).

It follows from [4] that, under conditions (4.8)-(4.11), for P -a.e. ω ∈ Ω and
for all v0 ∈ L2(Rn), (4.7) has a unique solution v(·, ω, v0) ∈ C([0,∞), L2(Rn)) ∩
L2((0, T ),H1(Rn)) with v(0, ω, v0) = v0 for every T > 0. Furthermore , the solution
is continuous with respect to v0 in L2(Rn) for all t ≥ 0. Let

u(t, ω, u0) = v(t, ω, v0) + εz(θtω), where v0 = u0 − εz(ω). (4.12)

We can associate a random dynamical system Φε with problem (4.1)-(4.2) via u for
each ε > 0, where Φε : R+ × Ω× L2(Rn) → L2(Rn) is given by

Φε(t, ω, u0) = u(t, ω, u0), for every (t, ω, u0) ∈ R+ × Ω× L2(Rn). (4.13)

Then Φε is a continuous random dynamical system over (Ω,F , P, (θt)t∈R) in L2(Rn).
In the sequel, we always assume that D is a collection of random subsets of L2(Rn)
given by

D = {D = {D(ω)}ω∈Ω, D(ω) ⊆ L2(Rn) and e−
1
2 λt‖B(θ−tω)‖ → 0 as t→∞},

(4.14)
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where
‖B(θ−tω)‖ = sup

u∈B(θ−tω)

‖u‖.

In [4], the authors proved that Φε has a D-pullback random attractor if D is the
collection of all tempered random subsets of L2(Rn). Following the arguments of [4],
we can also prove that Φε has a unique D-pullback random attractor {Aε(ω)}ω∈Ω

when D is given by (4.14) (the existence of {Aε(ω)}ω∈Ω in this case is also implied
by the estimates given in Section 5 of this paper). When ε = 0, problem (4.1)-(4.2)
defines a continuous deterministic dynamical system Φ in L2(Rn). In this case, the
results of [4] imply that Φ has a unique global attractor A in L2(Rn) (see also [26]
for existence of global attractors for deterministic parabolic equations in L2(Rn)).
The purpose of this paper is to establish the relationships of {Aε(ω)}ω∈Ω and A
when ε→ 0.

5. Uniform estimates of solutions

In this section, we derive uniform estimates of solutions with respect to the
small parameter ε. These estimates are useful for proving the semicontinuity of
the perturbed random attractors. Here and after, we always assume that D is the
collection of random subsets of L2(Rn) given in (4.14).

Lemma 5.1. Let 0 < ε ≤ 1, g ∈ L2(Rn) and (4.8)-(4.11) hold. Then for every
B = {B(ω)}ω∈Ω ∈ D and P -a.e. ω ∈ Ω, there is T (B,ω) > 0, independent of ε,
such that for all v0(θ−tω) ∈ B(θ−tω),

‖v(t, θ−tω, v0(θ−tω))‖2 ≤ e−λt‖v0(θ−tω)‖2 + c+ εcr(ω), ∀ t ≥ 0,∫ t

0

eλ(τ−t)‖∇v(τ, θ−tω, v0(θ−tω))‖2dτ ≤ e−λt‖v0(θ−tω)‖2 + c+ εcr(ω), ∀ t ≥ 0,∫ t

0

eλ(τ−t)‖u(τ, θ−tω, u0(θ−tω))‖p
pdτ ≤ c+ εcr(ω), ∀ t ≥ T (B,ω),

where c is a positive deterministic constant independent of ε, and r(ω) is the tem-
pered function in (4.4).

Proof. The idea of proof is similar to that given in [4], but now we have to pay
attention to how the estimates depend on the parameter ε. Multiplying (4.7) by v
and then integrating over Rn, we find that

1
2
d

dt
‖v‖2+λ‖v‖2+‖∇v‖2 =

∫
Rn

f(x, v+εz(θtω)) v dx+(g, v)+ε(∆z(θtω), v). (5.1)

For the nonlinear term, by (4.8)-(4.9) we obtain∫
Rn

f(x, v + εz(θtω))v dx

=
∫

Rn

f(x, v + εz(θtω))(v + εz(θtω)) dx− ε

∫
Rn

f(x, v + εz(θtω))z(θtω) dx

≤ −α1

∫
Rn

|u|p dx+
∫

Rn

ψ1(x) dx− ε

∫
Rn

f(x, u) z(θtω) dx

≤ −1
2
α1‖u‖p

p + εc2(‖z(θtω)‖p
p + ‖z(θtω)‖2) + c3,

(5.2)
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where c2 and c3 do not depend on ε. Similarly, the remaining terms on the right-
hand side of (5.1) are bounded by

‖g‖‖v‖+ ε‖∇z(θtω)‖‖∇v‖ ≤ 1
2
λ‖v‖2 +

1
2λ
‖g‖2 +

1
2
ε‖∇z(θtω)‖2 +

1
2
‖∇v‖2. (5.3)

Then it follows from (5.1)-(5.3) that

d

dt
‖v‖2 +λ‖v‖2 +‖∇v‖2 +α1‖u‖p

p ≤ εc4(‖z(θtω)‖p
p +‖z(θtω)‖2 +‖∇z(θtω)‖2)+ c5.

(5.4)
Note that z(θtω) = hy(θtω) and h ∈ H2(Rn) ∩W 2,p(Rn). Then we have

‖z(θtω)‖p
p + ‖z(θtω)‖2 + ‖∇z(θtω)‖2 ≤ c6(|y(θtω)|p + |y(θtω)|2) = p1(θtω). (5.5)

By (4.6), we find that for P -a.e. ω ∈ Ω,

p1(θτω) ≤ c6e
1
2 λ|τ |r(ω), ∀ τ ∈ R. (5.6)

It follows from (5.4)-(5.5) that, for all t ≥ 0,

d

dt
‖v‖2 + λ‖v‖2 + ‖∇v‖2 + α1‖u‖p

p ≤ εc4p1(θtω) + c5. (5.7)

Multiplying (5.7) by eλt and then integrating the inequality, we get that, for all
t ≥ 0,

‖v(t, ω, v0(ω))‖2 +
∫ t

0

eλ(τ−t)‖∇v(τ, ω, v0(ω))‖2dτ

+ α1

∫ t

0

eλ(τ−t)‖u(τ, ω, u0(ω))‖p
pdτ

≤ e−λt‖v0(ω)‖2 + εc4

∫ t

0

eλ(τ−t)p1(θτω)dτ + c7.

(5.8)

By replacing ω by θ−tω, we get from (5.8) and (5.6) that, for all t ≥ 0,

‖v(t, θ−tω, v0(θ−tω))‖2 +
∫ t

0

eλ(τ−t)‖∇v(τ, θ−tω, v0(θ−tω))‖2dτ

+ α1

∫ t

0

eλ(τ−t)‖u(τ, θ−tω, u0(θ−tω))‖p
pdτ

≤ e−λt‖v0(θ−tω)‖2 + εc4

∫ t

0

eλ(τ−t)p1(θτ−tω)ds+ c7

≤ e−λt‖v0(θ−tω)‖2 + εc9r(ω) + c7.

(5.9)

Since v0(θ−tω) ∈ D, there is T = T (B,ω), independent of ε, such that for all t ≥ T ,

e−λt‖v0(θ−tω)‖2 ≤ 1,

which along with (5.9) implies the lemma. �

As a consequence of Lemma 5.1, we have the following estimates for u.

Lemma 5.2. Let 0 < ε ≤ 1, g ∈ L2(Rn) and (4.8)-(4.11) hold. Then for every
B = {B(ω)}ω∈Ω ∈ D and P -a.e. ω ∈ Ω, there is T (B,ω) > 0, independent of ε,
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such that for all t ≥ T (B,ω) and u0(θ−tω) ∈ B(θ−tω),

‖u(t, θ−tω, u0(θ−tω))‖2 ≤ c+ εcr(ω),∫ t+1

t

‖∇u(τ, θ−t−1ω, u0(θ−t−1ω))‖2dτ ≤ c+ εcr(ω),

where c is a positive deterministic constant independent of ε, and r(ω) is the tem-
pered function in (4.4).

Proof. It follows from (4.12) and Lemma 5.1 that

‖u(t, θ−tω, u0(θ−tω))‖2 ≤ 2‖v(t, θ−tω, u0(θ−tω)− εz(θ−tω))‖2 + 2ε2‖z(ω)‖2

≤ 4e−λt(‖u0(θ−tω)‖2 + ‖z(θ−tω)‖2) + c+ εcr(ω),
(5.10)

where we have used (4.4) and the fact 0 < ε ≤ 1. Since u0(θ−tω) ∈ B(θ−tω)
and ‖z(ω)‖2 is tempered, there is T (B,ω) > 0, independent of ε, such that for all
t ≥ T (B,ω),

e−λt(‖u0(θ−tω)‖2 + ‖z(θ−tω)‖2) ≤ 1, (5.11)
which along with (5.10) implies that, for all t ≥ T (B,ω),

‖u(t, θ−tω, u0(θ−tω))‖2 ≤ 4 + c+ εcr(ω). (5.12)

Similarly, we have

‖∇u(τ, θ−t−1ω, u0(θ−t−1ω))‖2

= ‖∇v(τ, θ−t−1ω, u0(θ−t−1ω)− εz(θ−t−1ω)) + ε∇z(θτ−t−1ω)‖2

≤ 2‖∇v(τ, θ−t−1ω, u0(θ−t−1ω)− εz(θ−t−1ω))‖2 + 2ε2‖∇z(θτ−t−1ω)‖2
(5.13)

For τ ∈ (t, t+ 1), by (4.6) we find that

‖∇z(θτ−t−1ω)‖2 ≤ c|y(θτ−t−1ω)|2 ≤ ce
λ
2 r(ω). (5.14)

By (5.13) and (5.14), we get

‖∇u(τ, θ−t−1ω, u0(θ−t−1ω))‖2

≤ 2‖∇v(τ, θ−t−1ω, u0(θ−t−1ω)− εz(θ−t−1ω))‖2 + εcr(ω).

Integrating the above expression with respect to τ in (t, t+ 1) we obtain∫ t+1

t

‖∇u(τ, θ−t−1ω, u0(θ−t−1ω))‖2dτ

≤ 2
∫ t+1

t

‖∇v(τ, θ−t−1ω, u0(θ−t−1ω)− εz(θ−t−1ω))‖2dτ + εcr(ω).
(5.15)

Given t ≥ 0, replacing t by t+ 1 in Lemma 5.1 we find that∫ t+1

t

eλ(τ−t−1)‖∇v(τ, θ−t−1ω, u0(θ−t−1ω)− εz(θ−t−1ω))‖2dτ

≤ 2e−λ(t+1)(‖u0(θ−t−1ω)‖2 + ‖z(θ−t−1ω)‖2) + c+ εcr(ω).
(5.16)

Replacing t by t+ 1 in (5.11), we find that the first term on the right-hand side of
(5.16) is less than 2 when t ≥ T (B,ω). Therefore, we have, for all t ≥ T (B,ω),∫ t+1

t

eλ(τ−t−1)‖∇v(τ, θ−t−1ω, u0(θ−t−1ω)− εz(θ−t−1ω))‖2dτ ≤ 2 + c+ εcr(ω).
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Since eλ(τ−t−1) ≥ e−λ for τ ∈ (t, t+1), the above implies that, for all t ≥ T (B,ω),∫ t+1

t

‖∇v(τ, θ−t−1ω, u0(θ−t−1ω)− εz(θ−t−1ω))‖2dτ ≤ eλ(2 + c+ εcr(ω)). (5.17)

It follows from (5.15) and (5.17) that, for all t ≥ T (B,ω),∫ t+1

t

‖∇u(τ, θ−t−1ω, u0(θ−t−1ω))‖2dτ ≤ c+ εcr(ω),

which along with (5.12) concludes the proof. �

We are now in a position to establish the uniform estimates of solutions in
H1(Rn).

Lemma 5.3. Let 0 < ε ≤ 1, g ∈ L2(Rn) and (4.8)-(4.11) hold. Then for every B =
{B(ω)}ω∈Ω ∈ D and P -a.e. ω ∈ Ω, there is T (B,ω) > 0, independent of ε, such
that for all t ≥ T (B,ω), u0(θ−tω) ∈ B(θ−tω) and v0(θ−tω) = u0(θ−tω)− εz(ω),

‖∇v(t, θ−tω, v0(θ−tω))‖2 ≤ c+ εcr(ω),

‖∇u(t, θ−tω, u0(θ−tω))‖2 ≤ c+ εcr(ω),

where c is a positive deterministic constant independent of ε, and r(ω) is the tem-
pered function in (4.4).

Proof. Taking the inner product of (4.7) with ∆v in L2(Rn), we get that

1
2
d

dt
‖∇v‖2 + λ‖∇v‖2 + ‖∆v‖2 = −

∫
Rn

f(x, u)∆v dx− (g+ ε∆z(θtω),∆v). (5.18)

By (4.9)-(4.11), the first term on the right-hand side of (5.18) satisfies

−
∫

Rn

f(x, u) ∆v dx

= −
∫

Rn

f(x, u) ∆u dx+ ε

∫
Rn

f(x, u) ∆z(θtω) dx

=
∫

Rn

∂f

∂x
(x, u) ∇u dx+

∫
Rn

∂f

∂u
(x, u) |∇u|2 dx+ ε

∫
Rn

f(x, u)∆z(θtω) dx

≤ c
(
‖∇u‖2 + ‖u‖p

p

)
+ εc

(
‖∆z(θtω)‖2 + ‖∆z(θtω)‖p

p

)
+ c,

(5.19)

where we have used the fact 0 < ε ≤ 1. For the last term on the right-hand side of
(5.18), we have

|(g,∆v)|+ ε|(∆z(θtω),∆v)| ≤ 1
2
‖∆v‖2 + ‖g‖2 + ε‖∆z(θtω)‖2. (5.20)

It follows from (5.18)-(5.20) that, for all t ≥ 0,

d

dt
‖∇v‖2 ≤ c

(
‖∇u‖2 + ‖u‖p

p

)
+ εc

(
‖∆z(θtω)‖2 + ‖∆z(θtω)‖p

p

)
+ c

≤ c
(
‖∇u‖2 + ‖u‖p

p

)
+ εcp2(θtω) + c,

(5.21)
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where p2(θtω) = ‖∆z(θtω)‖2 +‖∆z(θtω)‖p
p. Let T (B,ω) be the constant in Lemma

5.2, fix t ≥ T (B,ω) and s ∈ (t, t+ 1). Integrating (5.21) in (s, t+ 1) we find that

‖∇v(t+ 1, ω, v0(ω))‖2 ≤ ‖∇v(s, ω, v0(ω))‖2 + εc

∫ t+1

s

p2(θτω)dτ

+ c

∫ t+1

s

(
‖∇u(τ, ω, u0(ω))‖2 + ‖u(τ, ω, u0(ω))‖p

p

)
dτ + c.

≤ ‖∇v(s, ω, v0(ω))‖2 + εc

∫ t+1

t

p2(θτω)dτ

+ c

∫ t+1

t

(
‖∇u(τ, ω, u0(ω))‖2 + ‖u(τ, ω, u0(ω))‖p

p

)
dτ + c.

Integrating the above expression with respect to s in (t, t+ 1), we have

‖∇v(t+ 1, ω, v0(ω))‖2 ≤
∫ t+1

t

‖∇v(s, ω, v0(ω))‖2ds+ εc

∫ t+1

t

p2(θτω)dτ

+ c

∫ t+1

t

(
‖∇u(τ, ω, u0(ω))‖2 + ‖u(τ, ω, u0(ω))‖p

p

)
dτ + c.

Now replacing ω by θ−t−1ω, we get that

‖∇v(t+ 1, θ−t−1ω, v0(θ−t−1ω))‖2

≤
∫ t+1

t

‖∇v(s, θ−t−1ω, v0(θ−t−1ω))‖2ds+ εc

∫ t+1

t

p2(θτ−t−1ω)dτ

+ c

∫ t+1

t

(
‖∇u(τ, θ−t−1ω, u0(θ−t−1ω))‖2

+ ‖u(τ, θ−t−1ω, u0(θ−t−1ω))‖p
p

)
dτ + c.

(5.22)

Replacing t by t + 1 in Lemma 5.1, we find that there exists T1 = T1(B,ω) > 0,
independent of ε, such that for all t ≥ T1,

∫ t+1

t

eλ(τ−t−1)‖∇v(τ, θ−t−1ω, v0(θ−t−1ω))‖2dτ ≤ c+ εcr(ω), (5.23)∫ t+1

t

eλ(τ−t−1)‖u(τ, θ−t−1ω, u0(θ−t−1ω))‖p
pdτ ≤ c+ εcr(ω). (5.24)

Since eλ(τ−t−1) ≥ e−λ for τ ∈ (t, t + 1), we obtain from (5.23)-(5.24) that, for all
t ≥ T1,

∫ t+1

t

(‖∇v(τ, θ−t−1ω, v0(θ−t−1ω))‖2 + ‖u(τ, θ−t−1ω, u0(θ−t−1ω))‖p
p)dτ

≤ ceλ(1 + εr(ω)).
(5.25)
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It follows from (5.22), (5.25) and Lemma 5.2 that, there is T2 = T2(B,ω) > 0,
independent of ε, such that for all t ≥ T2,

‖∇v(t+ 1, θ−t−1ω, v0(θ−t−1ω))‖2

≤ c1 + εc2r(ω) + εc

∫ 0

−1

p2(θτω)dτ

≤ c1 + εc2r(ω) + εc3

∫ 0

−1

e−
λ
2 τr(ω)dτ ≤ c1 + εc4r(ω),

(5.26)

where we have used (4.6). From (4.12) and (5.26) we have, for all t ≥ T2,

‖∇u(t+ 1, θ−t−1ω, u0(θ−t−1ω))‖2 ≤ c5 + εc6r(ω). (5.27)

The lemma then follows from (5.26) and (5.27). �

Next, we derive uniform estimates of solutions for large space and time variables.
Particularly, we show how these estimates depend on the small parameter ε.

Lemma 5.4. Let 0 < ε ≤ 1, g ∈ L2(Rn) and (4.8)-(4.11) hold. Suppose B =
{B(ω)}ω∈Ω ∈ D and u0(ω) ∈ B(ω). Then for every η > 0 and P -a.e. ω ∈ Ω, there
exist T = T (B,ω, η) > 0 and R = R(ω, η) > 0 such that for all t ≥ T ,∫

|x|≥R

|u(t, θ−tω, u0(θ−tω))(x)|2 dx ≤ η,

where T (B,ω, η) and R(ω, η) do not depend on ε.

Proof. Let ρ be a smooth function defined on R+ such that 0 ≤ ρ(s) ≤ 1 for all
s ∈ R+, and

ρ(s) =

{
0 for 0 ≤ s ≤ 1;
1 for s ≥ 2.

Then there exists a positive constant c such that |ρ′(s)| ≤ c for all s ∈ R+. Taking
the inner product of (4.7) with ρ( |x|

2

k2 )v in L2(Rn), we obtain

1
2
d

dt

∫
Rn

ρ(
|x|2

k2
)|v|2 dx+ λ

∫
Rn

ρ(
|x|2

k2
)|v|2 dx+

∫
Rn

|∇v|2ρ( |x|
2

k2
) dx

=
∫

Rn

f(x, u)ρ(
|x|2

k2
)v dx−

∫
Rn

vρ′(
|x|2

k2
)
2x
k2

· ∇v dx

+
∫

Rn

(g + ε∆z(θtω)) ρ(
|x|2

k2
)v dx.

(5.28)

By (4.8) and (4.9), the first term on the right-hand side of (5.28) satisfies∫
Rn

f(x, u)ρ(
|x|2

k2
)v dx

=
∫

Rn

f(x, u)ρ(
|x|2

k2
)u dx− ε

∫
Rn

f(x, u)ρ(
|x|2

k2
)z(θtω) dx

≤ −1
2
α1

∫
Rn

|u|pρ( |x|
2

k2
) dx+

∫
Rn

ψ1ρ(
|x|2

k2
) dx

+
1
2

∫
Rn

ψ2
2ρ(

|x|2

k2
) dx+ εc

∫
Rn

(
|z(θtω)|p + |z(θtω)|2

)
ρ(
|x|2

k2
) dx.

(5.29)
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Note that the second term on the right-hand side of (5.28) is bounded by

|
∫

Rn

vρ′(
|x|2

k2
)
2x
k2

· ∇v dx|

= |
∫

k≤|x|≤
√

2k

vρ′(
|x|2

k2
)
2x
k2

· ∇v dx|

≤ 2
√

2
k

∫
k≤|x|≤

√
2k

|v| |ρ′( |x|
2

k2
)| |∇v| dx ≤ c

k
(‖v‖2 + ‖∇v‖2).

(5.30)

For the last term on the right-hand side of (5.28), we have∣∣ ∫
Rn

(g + ε∆z(θtω))ρ(
|x|2

k2
)v dx

∣∣
≤ 1

2
λ

∫
Rn

ρ(
|x|2

k2
)|v|2 dx+

1
λ

∫
Rn

(g2 + ε2|∆z(θtω)|2)ρ( |x|
2

k2
) dx.

(5.31)

It follows from (5.28)-(5.31) that

d

dt

∫
Rn

ρ(
|x|2

k2
)|v|2 dx+ λ

∫
Rn

ρ(
|x|2

k2
)|v|2 dx

≤ c

k
(‖∇v‖2 + ‖v‖2) + c

∫
Rn

(
|ψ1|+ |ψ2|2 + g2

)
ρ(
|x|2

k2
) dx

+ εc

∫
Rn

(
|∆z(θtω)|2 + |z(θtω)|2 + |z(θtω)|p

)
ρ(
|x|2

k2
) dx.

(5.32)

Then using Lemmas 5.1-5.3 and following the process of [4], after detailed calcula-
tions we find that, given η > 0, there exist T = T (B,ω, η) and R = R(B, η), which
are independent of ε, such that for all t ≥ T and k ≥ R,∫

|x|≥k

|v(t, θ−tω, v0(θ−tω))|2 dx ≤ η,

which along with (4.12) implies the lemma. �

6. Upper semicontinuity of random attractors for
Reaction-Diffusion equations on Rn

In this section, we prove the upper semicontinuity of random attractors for the
Reaction-Diffusion equation defined on Rn when the stochastic perturbations ap-
proach zero. To this end, we first establish the convergence of solutions of problem
(4.1)-(4.2) when ε → 0, and then show that the union of all perturbed random
attractors is precompact in L2(Rn).

To indicate dependence of solutions on ε, in this section, we write the solution
of problem (4.1)-(4.2) as uε, and the corresponding cocycle as Φε. Given 0 < ε ≤ 1,
it follows from Lemma 5.2 that, for every B = {B(ω)}ω∈Ω ∈ D and P -a.e. ω ∈ Ω,
there exists T = T (B,ω) > 0, independent of ε, such that for all t ≥ T ,

‖Φε(t, θ−tω,B(θ−tω))‖ ≤M + εMr(ω), (6.1)

where M is a positive deterministic constant independent of ε, and r(ω) is the
tempered function in (4.4). Denote by

Kε(ω) = {u ∈ L2(Rn) : ‖u‖ ≤M + εMr(ω)}, (6.2)
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and
K(ω) = {u ∈ L2(Rn) : ‖u‖ ≤M +Mr(ω)}, (6.3)

where M is the constant in (6.1). Then for every 0 < ε ≤ 1, {Kε(ω)}ω∈Ω is a closed
absorbing set for Φε in D and

∪0<ε≤1Kε(ω) ⊆ K(ω). (6.4)

It follows from the invariance of the random attractor {Aε(ω)}ω∈Ω and (6.4) that

∪0<ε≤1Aε(ω) ⊆ ∪0<ε≤1Kε(ω) ⊆ K(ω). (6.5)

On the other hand, by Lemmas 5.2 and 5.3, we find that, for every 0 < ε ≤ 1 and
P -a.e. ω ∈ Ω, there exists T1 = T1(ω) > 0, independent of ε, such that for all
t ≥ T1,

‖Φε(t, θ−tω,K(θ−tω))‖H1(Rn) ≤M1 + εM1r(ω) ≤M1 +M1r(ω), (6.6)

whereK(ω) is given in (6.3) andM1 is a positive deterministic constant independent
of ε. By (6.5) and (6.6) we obtain that, for every 0 < ε ≤ 1, P -a.e. ω ∈ Ω and
t ≥ T1,

‖Φε(t, θ−tω,Aε(θ−tω))‖H1(Rn) ≤M1 +M1r(ω). (6.7)
By invariance, Aε(ω) = Φε(t, θ−tω,Aε(θ−tω)) for all t ≥ 0 and P -a.e. ω ∈ Ω.
Therefore, by (6.7) we have that, for P -a.e. ω ∈ Ω,

‖u‖H1(Rn) ≤M1 +M1r(ω), ∀ u ∈ ∪0<ε≤1Aε(ω). (6.8)

We remark that (6.8) is important for proving the precompactness of the union
∪0<ε≤1Aε(ω) in L2(Rn).

Lemma 6.1. Let g ∈ L2(Rn) and (4.8)-(4.11) hold. Then the union ∪0<ε≤1Aε(ω)
is precompact in L2(Rn).

Proof. Given η > 0, we want to show that the set ∪0<ε≤1Aε(ω) has a finite covering
of balls of radii less than η. Let R be a positive number and denote by

QR = {x ∈ Rn : |x| < R} and Qc
R = Rn \QR.

Let {K(ω)}ω∈Ω be the random set given in (6.3). By Lemma 5.4, we find that,
given η > 0 and P -a.e. ω ∈ Ω, there exist T = T (ω, η) > 0 and R = R(ω, η) > 0
(independent of ε) such that for all t ≥ T and u0(θ−tω) ∈ K(θ−tω),∫

|x|≥R

|uε(t, θ−tω, u0(θ−tω))(x)|2 dx ≤ η2

16
. (6.9)

By (6.5), u0(θ−tω) ∈ Aε(θ−tω) implies that u0(θ−tω) ∈ K(θ−tω). Therefore it
follows from (6.9) that, for every 0 < ε ≤ 1, P -a.e. ω ∈ Ω, t ≥ T and u0(θ−tω) ∈
Aε(θ−tω), ∫

|x|≥R

|uε(t, θ−tω, u0(θ−tω))(x)|2 dx ≤ η2

16
,

which along with the invariance of {Aε(ω)}ω∈Ω shows that, for P -a.e. ω ∈ Ω,∫
|x|≥R

|u(x)|2 dx ≤ η2

16
, ∀ u ∈ ∪0<ε≤1Aε(ω),

that is for P -a.e. ω,

‖u‖L2(Qc
R) ≤

η

4
, ∀ u ∈ ∪0<ε≤1Aε(ω). (6.10)
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On the other hand, (6.8) implies that the set ∪0<ε≤1Aε(ω) is bounded in H1(QR)
for P -a.e. ω ∈ Ω. By the compactness of embedding H1(QR) ⊆ L2(QR) we find
that, for the given η, the set ∪0<ε≤1Aε(ω) has a finite covering of balls of radii less
than η

4 in L2(QR). This along with (6.10) shows that ∪0<ε≤1Aε(ω) has a finite
covering of balls of radii less than η in L2(Rn). �

Next, we investigate the limiting behavior of solutions of problem (4.1)-(4.2)
when ε → 0. We further assume that the nonlinear function f satisfies, for all
x ∈ Rn and s ∈ R,

|∂f
∂s

(x, s)| ≤ α3|s|p−2 + ψ4(x), (6.11)

where α3 > 0, ψ4 ∈ L∞(Rn) if p = 2, and ψ4 ∈ L
p

p−2 (Rn) if p > 2.
Under condition (6.11), we will show that, as ε → 0, the solutions of the per-

turbed equation (4.1) converge to the limiting deterministic equation:

du

dt
+ λu−∆u = f(x, u) + g(x), x ∈ Rn, t > 0. (6.12)

Lemma 6.2. Suppose g ∈ L2(Rn), (4.8)-(4.11) and (6.11) hold. Given 0 < ε ≤ 1,
let uε and u be the solutions of equation (4.1) and (6.12) with initial conditions uε

0

and u0, respectively. Then for P -a.e. ω ∈ Ω and t ≥ 0, we have

‖uε(t, ω, uε
0)− u(t, u0)‖2 ≤ cect‖uε

0 − u0‖2 + εcect
(
r(ω) + ‖uε

0‖2 + ‖u0‖2
)
,

where c is a positive deterministic constant independent of ε, and r(ω) is the tem-
pered function in (4.4).

Proof. Let vε = uε(t, ω, uε
0)− εz(θtω) and W = vε − u. Since v and u satisfy (4.7)

and (6.12), respectively, we find that W is a solution of the equation:

∂W

∂t
+ λW −∆W = f(x, uε)− f(x, u) + ε∆z(θtω).

Taking the inner product of the above with W in L2(Rn) we get

1
2
d

dt
‖W‖2 + λ‖W‖2 + ‖∇W‖2

=
∫

Rn

(f(x, uε)− f(x, u))W dx+ ε

∫
Rn

∆z(θtω)W dx.
(6.13)

For the first term on the right-hand side of (6.13), by (4.10) and (6.11) we have∫
Rn

(f(x, uε)− f(x, u))W dx

=
∫

Rn

∂f

∂s
(x, s)(uε − u)W dx

=
∫

Rn

∂f

∂s
(x, s)W 2 dx+ ε

∫
Rn

∂f

∂s
(x, s)z(θtω)W dx

≤ β‖W‖2 + εα3

∫
Rn

(|uε|+ |u|)p−2|z(θtω)||W | dx+ ε

∫
Rn

ψ4|z(θtω)||W | dx

≤ β‖W‖2 + εc
(
‖uε‖p

p + ‖u‖p
p + ‖z(θtω)‖p

p + ‖W‖p
p + ‖ψ4‖

p
p−2

p
p−2

)
.

(6.14)
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By the Young inequality, the last term on the right-hand side of (6.13) is bounded
by

ε

∫
Rn

|∆z(θtω)W | dx ≤ 1
2
ε‖∆z(θtω)‖2 +

1
2
ε‖W‖2 ≤ 1

2
ε‖∆z(θtω)‖2 +

1
2
‖W‖2.

(6.15)
It follows from (6.13)-(6.15) that

d

dt
‖W‖2 ≤ c‖W‖2 + εc+ εc

(
‖uε‖p

p + ‖u‖p
p + ‖z(θtω)‖p

p + ‖∆z(θtω)‖2 + ‖W‖p
p

)
≤ c‖W‖2 + εc+ εc

(
‖uε‖p

p + ‖u‖p
p + ‖z(θtω)‖p

p + ‖∆z(θtω)‖2
)

≤ c‖W‖2 + εc+ εc
(
‖uε‖p

p + ‖u‖p
p

)
+ εce

1
2 λ|t|r(ω),

(6.16)
where we have used W = uε(t, ω, uε

0) − εz(θtω) − u, the fact 0 < ε ≤ 1 and (4.6).
Integrating (6.16) on (0,t) we obtain

‖W (t)‖2 ≤ ect‖W (0)‖2 + εc+ εcr(ω)ect

∫ t

0

e(
1
2 λ−c)sds

+ εc

∫ t

0

ec(t−s)
(
‖uε(s, ω, uε

0)‖p
p + ‖u(s, u0)‖p

p

)
ds

≤ ect‖W (0)‖2 + εc1 + εc1r(ω)ec2t

+ εcect

∫ t

0

(
‖uε(s, ω, uε

0)‖p
p + ‖u(s, u0)‖p

p

)
ds.

(6.17)

It follows from (5.8) that∫ t

0

eλ(s−t)‖uε(s, ω, uε
0)‖p

pds ≤ e−λt‖vε
0(ω)‖2 + εc

∫ t

0

eλ(s−t)p1(θsω)ds+ c,

which together with (5.6) implies that, for all t ≥ 0,∫ t

0

eλs‖uε(s, ω, uε
0)‖p

pds ≤ ‖vε
0(ω)‖2 + εc

∫ t

0

eλsp1(θsω)ds+ ceλt

≤ ‖vε
0(ω)‖2 + cr(ω)

∫ t

0

e
3
2 λsds+ ceλt

≤ ‖uε
0 − εz(ω)‖2 + c3r(ω)ec4t + ceλt.

(6.18)

Since eλs ≥ 1 for all s ∈ [0, t], we obtain from (6.18) that∫ t

0

‖uε(s, ω, uε
0)‖p

pds ≤ 2‖uε
0‖2 + 2‖z(ω)‖2 + c3r(ω)ec4t + ceλt. (6.19)

Similarly, by (6.12) for ε = 0, we can also get that∫ t

0

‖u(s, u0)‖p
pds ≤ c‖u0‖2 + ceλt. (6.20)

By (4.4), (6.17) and (6.19)-(6.20) we find that for all t ≥ 0,

‖W (t)‖2 ≤ ect‖W (0)‖2 + εcec5t
(
r(ω) + ‖uε

0‖2 + ‖u0‖2
)
. (6.21)
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Finally, by (4.6) and (6.21) we have, for all t ≥ 0,

‖uε(t, ω, uε
0)− u(t, u0)‖2 = ‖W (t) + εz(θtω)‖2

≤ 2‖W (t)‖2 + c6εe
c7tr(ω)

≤ 2ect‖W (0)‖2 + εcec8t
(
r(ω) + ‖uε

0‖2 + ‖u0‖2
)

≤ 2ect‖uε
0 − u0 − εz(ω)‖2 + εcec8t

(
r(ω) + ‖uε

0‖2 + ‖u0‖2
)

≤ 4ect‖uε
0 − u0‖2 + εc9e

c8t
(
r(ω) + ‖uε

0‖2 + ‖u0‖2
)
.

This completes the proof. �

We are now in a position to establish the upper semicontinuity of the perturbed
random attractors for problem (4.1)-(4.2).

Theorem 6.3. Let g ∈ L2(Rn), (4.8)-(4.11) and (6.11) hold. Then for P -a.e.
ω ∈ Ω,

lim
ε→0

distL2(Rn)(Aε(ω),A) = 0, (6.22)

where
distL2(Rn)(Aε(ω),A) = sup

a∈Aε(ω)

inf
b∈A

‖a− b‖L2(Rn).

Proof. Note that {Kε(ω)}ω∈Ω is a closed absorbing set for Φε in D, where Kε(ω) is
given by (6.2). By (6.2) we find that

lim sup
ε→0

‖Kε(ε)‖ ≤M, (6.23)

where M is the positive deterministic constant in (6.2). Let εn → 0 and u0,n → u0

in L2(Rn). Then by Lemma 6.2 we find that, for P -a.e. ω ∈ Ω and t ≥ 0,

Φεn
(t, ω, u0,n) → Φ(t, u0). (6.24)

Notice that (6.23)-(6.24) and Lemma 6.1 indicate all conditions (3.1)-(3.3) are sat-
isfied, and hence (6.3) follows from Theorem 3.1 immediately. �
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