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PRECISE ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO
DAMPED SIMPLE PENDULUM EQUATIONS

TETSUTARO SHIBATA

ABSTRACT. We consider the simple pendulum equation
—u”(t) + ef(u'(t)) = Asinu(t), tel:=(-1,1),
u(t) >0, tel, wu(£l)=0,
where 0 < ¢ < 1, A > 0, and the friction term is either f(y) = =£|y| or
f(y) = —y. Note that when f(y) = —y and ¢ = 1, we have well known
original damped simple pendulum equation. To understand the dependance
of solutions, to the damped simple pendulum equation with A > 1, upon
the term f(u/(t)), we present asymptotic formulas for the maximum norm of

the solutions. Also we present an asymptotic formula for the time at which
maximum occurs, for the case f(u) = —u.

1. INTRODUCTION

We consider the damped simple pendulum equation

—u"(t) + ef (W' (t)) = Asinu(t), tel:=(-1,1), (1.1)
u(t) >0, tel, (1.2)
u(£1) =0, (1.3)

where 0 < e <1, A > 0, and the damping term is either f(y) = £|y| or f(y) = —v.
It is known that there exists a solution u. ) to f forO0<e<1land A>1,
with [|ue xlleo < 7; see for example [IJ.

The purpose of this paper is to study the asymptotic behavior of wu. x(t) as
A — oo; this is useful for understanding the effect of the damping term on the
asymptotic behavior of . . First, we recall some properties of the solution wug x
for the simple pendulum equation without friction (i.e. the case where e = 0):

—u"(t) = Asinu(t), tel, (1.4)
u(t)y >0, tel, (1.5)
u(£1) = 0. (1.6)
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It is well known that wp  — 7 locally uniformly in I as A — oco. Furthermore (cf.
Lemma in Section 2), as A — oo,

o lloe = 7 — 8™V — 32V e 3VA 4 o(VAe 3V, (1.7)

It should be mentioned that the asymptotic behavior of solutions to the original
and perturbed simple pendulum problems have been studied in [5, 6 [7]. We also
refer the reader to [3] for the basic properties of the solution to simple pendulum
problems. As far as the author knows, there are only a few works concerning the
precise properties of solutions to f. In particular, an asymptotic formulas
such as for ||ue x|l has not been obtained yet. Therefore, it seems worth
considering the precise asymptotic behavior of ||ue x|lco 88 A — o0, for having a
better understanding of the effect of the friction term.

Now we state our main results. We denote by u1 ¢ x, u2,e,x and us ¢ x the solutions

of (LI)-(L.3) with f(y) = —[yl, f(y) = |yl and f(y) = —y, respectively.
Theorem 1.1. Let f(y) = —|y| and let 0 < e < 1 be fivred. Then, as A — o,

ut,ealloo =7 — 8e ‘e VN + O(/\fl/zefﬁ). (1.8)

Since uy e is a super-solution of ([L.4)(L.6), is well understood and rea-
sonable from a viewpoint of . Moreover, the formula gives us the clear
relationship between |lug a|lco and ||u1 e ] co-

The following result can be proved by the same arguments as those used in the
proof of Theorem [1.1

Theorem 1.2. Let f(y) = |y| and 0 < € <1 be fized. Then, as A — oo,
[uz,elloc = —8ece™ VA 4+ O(A" Ve VR), (1.9)

We also note that us  y is a sub-solution of 7, is also reasonable
result.

Now we consider the case f(y) = —y. Let 0 < € < 1 be fixed. Let t. € I be
the unique point satisfying us ¢ x(tex) = ||us,er]loo- Then we know from [2] that
ten <0 for A> 1.

Theorem 1.3. Let f(y) = —y. Then, as A — oo,

€
ter = ——= + O(A73/%), 1.10
A V5 ( ) ( )
[us,exlloo = 77—86_\&4—0()\_1/46_\5). (1.11)

By (1.10)), we obtain a precise asymptotic formula for ¢ as A — oo. Moreover,
since the second term of is the same as that of , the friction term does
not have any effect on the second term of ||usz e ||oo-

The rest of this paper is organized as follows. In Section 2, we prove Theorem
based on the crucial tool Lemma [2.2] which will be proved in Section 3. We prove
Theorem in Section 4 by almost the same argument as that to prove Theorem
[[1] We apply the modified argument for the proof of Theorem [I.I] to the proof of
Theorem [L.3] in Section 5.
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2. PROOF OF THEOREM [[]
In the following two sections, we let f(y) = —|y|. We fix 0 < ¢ < 1. Further,

we assume that A > 1 and we write u. x = uj ¢ for simplicity. We consider the

solution wue x(¢) with |[ue |lco < 7. We know
uea(t) = uen(—t), tel,
ug \(t) >0, te[-1,0),
e, (0) = [[tex oo,

ua(t) =1 as A — oo, (tel).

~ o~~~
T I
sk =

Note that (2.1)-(2.3) follow from [2]. (2.4) is a direct consequence of (1.7), (2.3

and (2.6 below.
By (1.1) and (2.2)), for —1 <t < 0, we have

{ud A(t) + eug \ (1) + Asinuex(¢) bue A (8) = 0.
By this equality and (2.3]), for —1 < ¢ < 0, we have

1 t
iule,A(t)z + e/ |u/€,)\(s)\2d5 — Acosuez(t)
-1

0
= e/ |u;)\(s)|2ds — A 08 ||t || o = constant.
~1
For —1 <t <0, we obtain
1
For —1 <t <0, we put
A(0) == Ax(0) = A(cos ) — cos [[uc,Alloo),
B(t) := By(t /\u“\ )|2ds.
Then by (2.2) and 7- for -1 <t <0,
) = \/2(A(uca () + eB(D)).

Then
_ A0 1
1_/_1 f \/AM e f(1+n)
where
I 0wl y\(h)
Ue, N
11— (“ a— [ MW,
\/A (uea(t)) +eB(t) —1 /A(ue (1))

*EB( Juc (t)

:/_1 VA(ue (1) \/A (ue(t)) + €B(1)

dt.

N NZTTNG) +\/A NOEXZI0)

0
§u;/\(t)2 = A(cos ue x(t) — cos |[ue x]loo) + e/ |u’€7,\(s)|2ds.
t

(2.12)
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Lemma 2.1. Let dy := 7 — |[te|loo- Then, as X — oo,

2 4 1 4 dy
I= \/:(IOgsin(dA/Z) +Z(1+0(1))(logm) sin? ?> (2.13)
Proof. Put 6 = u, x(t). Then

llwe xlloo 1
_ 7/ do
v Jo \/cos 0 — cos [lue x| oo
V3 lierlloe /2 1
~ Vxsin(fluca| /2>/ v
sin(]| ezl oo 1 — sin? ¢/ sin?
\/ o/ sin(| ) (2.14)
\/7/ \/1—s1n (1t x| 0o /2) sin?
2
=/ -K(k
3 (k),

where K is the complete elliptic integral of the first kind and k = sin(||ue x|loo/2)-
Then by [4], we have

4
K(k) =log — o+ (log )k:' (1+o(1)), (2.15)
where k' = V1 — k2 = cos(||te, ]| 00/2) = cos((w — dyx)/2) = sin(dx/2). By this and
, we obtain (2.13]). Thus the proof is complete. |
Since 11 < 0, by (2.10), (2.15) and Lemma 2.1} we have
1 1 dy 4
1< —I<—(1+Csin® =) log ————. 2.16
No \/X( 2 ) gsm(dA/Q) (2.16)

Then

d d
sin ?A < A(1+o0(1))e V2, EA <A(1+0(1))e ™, sin ||uenlloo < 8(1+o0(1))e V2.
(2.17)

Lemma 2.2. As A — oo,

II= % log ('sin d?)‘) +O0\h). (2.18)

The proof of the above lemma will be given in Section 3. We accept Lemma
tentatively to prove Theorem

Proof of Theorem[I.1]. By Lemmas [2.1 and [2.2) ﬂ and (2.17), we have

1 1 4 .o dy 4
1l=—{UI+1])=—(log———— 1 1 2 2 log ———
VoA \a(o sin(dy/2) ( Fo(l))sin” - log sin(d,\/2)>
€ . d)\ -1
+ )\logsm 5 +O(\)
1 d d
\f)\(logll log sin ?)‘) + ilogsin ?A + O\ h).

(2.19)



EJDE-2009/142 PRECISE ASYMPTOTIC BEHAVIOR OF SOLUTIONS 5

This implies
(1- \;}\) log sin — d =log4 — VA + O\ 2. (2.20)
By this,
+ 0N (logd — VA + 0N
fA ) ) (2.21)
= —VA+logd—e+ONY?).

By this and Taylor expansion,

dx
log sin > = (1 + —

d d d?
sin % = ; (1- ?A +o(d})) = de~ eV 1+ O(A /).
By this and ([2.17)), we obtain Theorem O

3. PROOF OF LEMMA

In this section, we focus our attention on the proof of Lemma[2.2] Let 0 < § < 1
be fixed. We define ts :=t) s < 0 by uc x(ts) = ||te,r|lcc — . We set

IT =11, + I,

0 —eB(t)ug () "
ts VA x(t)/A(uer(t —l—eB(t)(\/A (uex(t)) + /A(uc A (t) + eB(t))
/ —eB(t)ug \(¢) i
VAue )/ Aue (1)) + eB(t)(\/A ue A (1) + /Aue (1)) + GB(t))(?) )

To obtain Lemma we estimate 117 and Il by series of lemmas.

Lemma 3.1. For -1 <t <0,
B(t) < 1/2A(ue () (luealloo = we () + 2€(||te A lloo — ue,A(t))2~ (3.2)

Proof. Since [[ue \[loo < 7, we see from (L.1)) that u,(t) <0 for t € I. This along
with (2.8)) and (2.9) implies that for —1 <t <0,
0 < B(t)

< X Ju (5| / (33)
= e (B)([ltelloo = ue(?))

_ @4 (e () + 26B(t) ([ter oo — te(t)).

By (3.3),

B(t)? = 2eB(t)([|uelloe — wen())? = 2A(uen (6) ([[uerlloo — uer(t))? < 0.
Since va+ b < /a + Vb for a,b > 0, by this, we obtain
B(t) < e([Juellos — ue(t))?
+ \/EQ(HUE,AHoo = Uea(t))? + 2A4(ue A (1)) ([[tealloo — uen(®))®  (3.4)
< 2¢([[uelloo = uea(t)? 4 1/2A(uen (1) (luealloo — e (t))-
The proof is complete. O
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By Taylor expansion, for ts <t <0and 0 < k < 1,

€08 e, (1) = €08 ||t Alloo < sin[Juex[[oo ([|uealloo — ue(t))

1 (3.5)
+ 5(”“6,/\”00 - ue,A(t))2»
cos Ue A (t) — 08 [[te A [loo > sin [|ue Alloo ([t Moo — ue A (F))
1 (3.6)
+ 50 = R)(luexllec — ue (1))
Lemma 3.2. For A > 1,
2 d
|[IL| < —%logsin (7)‘) +O0(\h. (3.7)

Proof. By (3.1)) and Lemma

mi<e [ BOwa® oy
|11, _E/tﬁ 2A(u€7)\(t))3/2 = X1+ X9

€ /0 e lloo — e (t) u;)\(t)dt

TV2A Sy, cosuen(t) — cos [[ue oo

0 —u
+62/% (\( R e e(t)d (3.8)

u
€08 Ue A (t) — €08 [[ue alloo)3/2

I [[tte, x|l oo ||u6,/\||oo .y
= do
V2N S s oo —s €080 — €0 [t Al oo

2 e xloo

€

(Hue)\ oo — ‘9)2 do.
A3/2 e lloo—s (cOSE — cos 2] o0)3/2

We first calculate X;. We put

X1 =Q1+ Q2
e [[te, 2 |loo ||ue,/\||oo _9
== — = df
V2 S sl —s COSE — cOSTT (3.9)
e, x oo . B
N i/ (vl =0 lealle =0y
\/i)‘ e Alloo—0 cos f — cos ”ue,)\”oo cosf — cosm
We see that
Q1= Q1+ Q12
e, alloo _ e alloo B 310
= / el L / udlg. (3.10)
VA Jjuerfloo—s  COSO+1 V2X Jjjuc s o—s COSO + 1
Then by (2.17),
_dAG /lus)\loo 1
== —db
O =T st conbi i 1
_ —dxe 01 lluenlloe -
VG [tan 5] e lloo—6 (3.11)
_ —dxe [COS(d)\/2) B sin(m — dy — 5)/2)} _op
© V2 tsin(dy/2)  cos(m—dy—6)/2)° '
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Next,
llue xlloo —0
€ T
Q2 = 7/ —— ds
I

terfloo—s COSO+1

__¢ /d”é vy 4
VA Ja,  1—cosy Y

dy—+6 ’
¢ y
= — —cot=) d
NG /dA Y ( 2) Y (3.12)
dx

€ dy+90

—ﬁ(—(d,\+6)cot 5 +d,\cot?
+ 2logsin (d)‘ +5) — 2logsin (%))
V2e

B N -1
=73 log sin 5 +O(\7).

Now, we calculate Q5.

e, lloo 1 l[uelloo — 0

_scos0+1 cosf — cos lee 2l oo

Q2 do

(1+ cos [luea loc) /

llee, A lloo

€
V2

. by /|um|oc L
< ——(1 — cos —_— —_—
=/ N Tt Sy s cosO+ 1 (3.13)

[te,xlloo

0
< CedyA™'[tan E} lle Al

lle,xlloo—0
_ -1 cos(dr/2) T—dy—0\ 1
= Ce\™"d) (sin(d)\/Q) tan 5 =0(\").

By (3:9) (B-13), we obtain

2
X; < —%logsin% + 0\ ). (3.14)

Finally, we calculate Xo. By (2.17)) and (3.6]),
X, = 2X73/2

y /Iue,xlloo (||Ue,A||oo _ 0)2 »
e lloo—s (511 [ [loo + (1/2)(1 = &) (luealloo = 6))3/2([[ueAlloo — 0)3/2

lwe, x oo _ 1/2
S C€2A73/2/ . (||u€7>\||00 0) 3/2 d9
e Alloo—8 (S| floo + (uenlloc — 6))

= Ce\3/? /5 y'/? dy
o (8in f|uelloo +y)?/2

4
1
SC’EQ)\_3/2/ —dy
o sinfluealloo +y

< CEXNT32|log sin [[uc a|oo] = OATD).
By this and (3.14]), we obtain (3.7]). Thus the proof is complete. d

We estimate 11 from below. To do this, we need the following lemma.
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Lemma 3.3. For A\> 1 and ts <t <0,

B(t) > g\/m(\\ue,x

‘oo - ue)\(t))Q

1~ sinflucalloc (3.15)
— VA——2 ((Juc oo — U (t)-
2 — cos ue » (t)
Proof. We recall that for constants a,b > 0,
/ Vaz? + bxdzx
(3.16)

2 21
= am_’—b\/M—b——log‘Zax—l—b—&—Q a(an—I—bx)’.
4a 8a v/a

By Taylor expansion, for ||ue x|loo — 0 < uea(t) < 6 < ||t x|/, We have

c08 0 — cos [uelloo > sin[luelloo ([[uealloo = ) = 5 cosue () (uello = 6)*.

By this, (2.7)-(2.9) and (3.16), for t5 <t <0,
0
B(t) = / \/QA(uQ,\(t)) + 2eB(t)u, (t)dt
t

N |

llwe,alloo
> V2x \/cose—cosHue))\HoodH

ue (1)

e A lloo —te x (t)
> ﬁ/ \/—x2 08 Ue A (t) + 2z sin [[ue 2| o dT
0

L sinfuey] ,
:\5(72—#)\/722(\08“6 #) + 2z sin [|u.
2 2COS’U,€))\(t) ’)‘() 1 ” ,)\”oo

(3.17)

Y e (R0

+2sin [|ue,xlloo) — log(2sin [|ue,x]l0)

where

Ry (uen(t)) = —2zcos u€7,\(t)+2\/22 c0s? Ue A (t) — 22 coS e (£) sin ||ue A lloo (3.18)
and 2 := [|tue,x]|oo — Ue,A(t). We know that log(l + z) < z for > 0. By this,

log(Rx(ue (1)) + 2sin [[uclloo) — 10g(2sin [[ue alloc)

—22cosUe \(t) + 24/22 cos? ue \(t) — 2z cosue x(t) sin [|te ] oo
(i Al) + 2V F sl NGEDITES
2sin [|ueafloo

_ —#cos Ue A (t) + /= cos ue A (£) /=22 cos ue \ (t) + 2z sin [Jue,z

| o

sin [t A [loo
By this and (3.17)), we obtain (3.15)). Thus the proof is complete. d

Lemma 3.4. For A > 1,

2
|[IL| > —%logsin% + 0. (3.19)
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Proof. By (3.1), we have
0 B(t)u! \(t
11| > e/ (e A1) dt :=1IL, —1II 5
ts 2/ Auex(t)(Auc () + €B(t))

B /° B(t)ug 5 (t)
=€ s 2A(u6,,\(t))3/2

0 B(t)u ,(t) 0 B(t)u, (1)
+€(/t5 2 A(ue,A(t))(A(uE,A(t))+eB(t))dt / 2 A(ue A (1))32 dt)

(3.20)
By Lemma [3.3] we put
IIll 211121_11122
,\f/ V= cosue () ([|uelloo — ur(t))? ue”\(t)dt
203/2(cos ue \ (t) — cos [[ue ]| oo )3/2
Ve 0 (luelloo = we(t))ur 5(t)
- sin || e x| oo 3/2 3 th
ts 2y/— €08 e\ (E)A3/2 (08 e x (£) — €08 [|te A[|o0)?/
(3.21)

By Taylor expansion, for ts <t <0and 0 < n < 1,

1+n .
V= coslluenlleo — /= cosuen(t) < L sinue s (1) (Juelloo —uen(t)),  (3:22)

1
v/ — €08 [t lloo = (cosdy)/? =1 — 4(1 +o(1))d3. (3.23)
By (3), (B21) and (23),

Il > — /lumm Vo cosBlluealo = O
AN e sl —s (sin[[uenlloo + (1/2) (luelloc — 6))3/2

_ e Il o Tuealloo(lluealle =)' )

— A sl Ginfuealloo + (1/2) (e plloo — 6))3/2
e el (/= cos [Juenlloo — v/ cos B) (luel|oo — 6)'/

- do
AN Nuesllo—s  (sinfluelloo + (1/2)([[uea oo — 6))3/2
yt/2
€ /
7)\ —COSHUE )\H(X)/ Sll’l”ue,\”m (1/2) )3/2
_1_77 / 3/2
— esin(||ue xlloo — 0 - d
o cnllueale =9 | G
(3.24)
Then
€ /5 y'/? J € /5 yl/? d
- A Yy = - Y
AN Jo o (sin [Juealloo + (1/2)y)3/2 V2X Jo (2sin [luen oo + )32
V2 /\/6/(2Sin|ue,>\|00) 22 J
= — ———dz

2
= —% log sin || e, ||oo + O\™h).
(3.25)
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Further, by (2.17)),

1+n . /(S Y
€SI || Ue - 5 1
gy sinlllveall =) | o A2

By (20) (20)

2
121 > —% log sin ||ue A [|oo + o™

3/2

dy < Cex™. (3.26)

2
- —% logsindy + O(A 1)

(3.27)
\/56 . d,\ d)\ -1
= —T(log2—|—sm? + cos ?) +O0(A7)
2 d
= —% log sin % +0(\ ™).
Next, by (3.6)),
lwe, oo sin || te x| oo

do

IT 59 < CeX™? / .
lueslloo—s (I [[Uealloo + (e nlloc = 0))3/2(luealloo — 0)1/2

/ §/(sin [Jue,x [ oo) 1

-1
o mdzﬁ S Ce .

< Cel™t
(3.28)

|oo - ue,k(t)v

Finally, by Lemma [3.1 and (3.20), for zx(uex(t)) := [[ue,x
0 B(t)%u 5 (1)
ts Alue(t))>/?
0 4 2, .2 4
(rea()2a a0 + Epfue)
ts Alue(t))? ’ (3.29)
luerle 5, (0)? luealle 4, ()t

= C¢é? 2240+ Ot ————df
_s A(6)3/? ten floo—s A(0)5/2

[T, 5| = €

< Cé?

llwealloo

= Yl + YQ.
Then by (217), (3:6) and (3.25),

[lwe, x oo _ 2
vi—con | (sl —ver)?
llue,Alloo =0 (cosf — cos |ue xlloo) /

e, x|l oo . 1/2
<o [ | (e lloo = e (®) 0
e lloo—s (S0l Alloo + (1/2)(1 = £) (luealloo — uen(t)))?/

5 1/2
< Cez)\’?’/z/ : Y
- o (sin[Juea oo +3)3/2
) = O(AT).

dy

< EXT32(C + logsin [|ue

(3.30)
By the same argument as that just above, by (2.17) and (3.6)), we obtain

llwe,alloo

(”ue,)\“OO - uﬁ,)\(t))4 da
5 (cos O — cos |ue x||o0)?/?

}/2 — C€4A75/2/

llwealloo—
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5
1
< 064)\*5/2</ ——dy + C’)
o sinfluexllos +y
< CANT2 (Jlogsin Juealloo| + C) = O(NT3/2).
Thus the proof is complete. O
Lemma 3.5. For A\ > 1, we have |II] < CA~1.

Proof. By (3.1)) and Lemma3.1]
|1 1]
fo €B(t) en(®)
1 A(ue (1) + €B(t)\/A(ue A (1) (/A(ue A (1) + €B(t) + /Auex(1)))
ts Bt t
S OE/ ( ) E,A( )
1 2A(ue A (t))3/2

< Oe/”“"*'“‘S 2€([[ue,alloo = 0)% + /22 (c05 0 — cos [[te A lloo ) ([ter |0 — 6)
~ o (Acos @ )32

dt

dé

< Ce(A32 4271,
The proof is complete. O
Now Lemma [2.2] follows from Lemmas [3:2H3.5] The proof is complete.

4. PROOF OF THEOREM

Let f(y) = |y| in this section. We fix 0 < € < 1. Further, we assume that A > 1
and we write ue x» = ug for simplicity. We consider the solution ue (t) with
[telloe < 7. We know that the properties (2.1)—(2.4) are also valid. By the same
argument as that to obtain (2.F)), we have

0
%ué)\(tf = Acos ue () — cos [[tex]loo) — e/ ur 5 (s)|*ds. (4.1)
t
Then by (2.6)—(2.8)), for —1 <t <0,
) = \/2(A(uea (1) — eB(1)). (4.2)
By this,
- / (t) dt = (141, (43)
-1 \f \/A uex(t)) — eB(t) V2 ’ ’
where
0wl (t
I 7@*( ) (4.4)
Ue, N
t 0wl (t
1 = ( ) a— [ e,
\/A Ue, A(t) — GB(t) _1 A(ue,,\(t))

_ / eB(t)uz,m
1 VA(ue () /A(ue (1)) — eB(t)
1

(4.5)

dt.

(VA ur®) + Auer®) — BO)
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Let 0 < 6 < 1 be fixed. Further, let —1 < t5 < 0 satisfy ue x(ts) = ||te r]|oo- We
put

11T =111 + 111,

o eB{t)u (1) B
ts \/A(Ue)\ \/A UE)\ 7€B(t)(\/A UE)\ +\/A(UE)\ ))763( ))
ts eB(t)ul(¢) B
—1 VAU [t)/Aluea(t) — €B(t)(\/A ue (1)) + /Alue () — GB(t)24 é)
Lemma 4.1. For A>1 and —1 <t <0,
B(t) < \/2A(ue (1)) ([[uealloo = tex (1)) (4.7)
Proof. By , and ,
0
B(t) = /t ul \(s)%ds
< [ A as)ds
0
< \/2A(u6’)\(t))/t ug 5(s)ds
= \/2A4(uex(®)) (1uerlloo — uen(t)).
Thus the proof if complete. ([

By (3.6) and Lemma we obtain the estimate of I11; from above as follows.
Indeed, for t5 <t <0,

Auer(t)) — eB(t) = A(uex(t)) — ey 2A(uen(t)([[telloo — uea(t))

B ~ V2(|[uerlloo — uea(t))
_ A(u@x(t))(l A (D) ) 48)
. - 2(|[te oo — uen(t)) '
> A( e,/\(t))(l (/\(1 — H)/Q)(H/U/QA”OO _ U,e)\(t))>
> A1~ %),
By this and ,
eB(t)ug ()

Hh < / VA (D) (A(ue () — eB(t))
B / eB(t)u ,(t)
T Jts 20/ Aue () A(ue ()
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By this, Lemma[f.1] and the same argument as that used in Lemma [3.2] for A > 1,
we obtain

2 d
IInL < —¥ log sin ?* +0(\Y). (4.9)

Furthermore, by (4.3) and (4.8),

%\

%\

/ ug 5(t) i
VA )L = C/VA)
( ) / Cua®
Aluea(®)
By this and 7, we obtain

d
sm?A <Ce ™ sinfueafoo < Cem VA, (4.10)

Lemma 4.2. For A > 1 andts <t <0,

lue, A lloo
B(t) > \/5/ \/)\(COSH — €08 ||t \ || 00 )0
Ue,x(t)

— 2v/eA(uea(t)4( —uea(t)?.

Proof. By , and ,

(4.11)

0

B = [ uia(s)ds
z/to\/md ds—/\/%?m

[ V2O s — V2B [

[ V2 AG A A6 ~ VBTl ~ wea0)

0
/t 2t A (5))t 7 (8)dls — 2/€Aute p ()4 ([t a0 — e 7 ()

= W1 - WQ.

v

Y

Y

(4.12)
The proof is complete. O
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Pmof of Theorem . We calculate the estimate of I1I; from below. By (3.6),
(.6, @8, @I and @12

€/0 Waur (1) it
ts 21/ Aue(t))(Aue(t)) — eB(1))

0 A(ue A(t))1/4(||ue Alloo —uen(t)*?
ueA UEA 1 _C/\/>) 6)\(t)dt

( o) W{/Wﬁw (luealls = 0%

e Al (cos B — cos [[ue || 00)?/4

))\ 5/4/ yt/4 (4.13)
8/ sin [[ue,xlloo 1/4
el LT
wIk

(sin e oo + )57+

<c(1+ =5/4| log sin || e x|oo|
< ONTHA
By (4.8 . and Lemmas |3 ﬂ and |3 . for A> 1,
e/ Wit () dt < V2 logsmd— +O0\Y.  (4.14)
ts 20/ A(ue(t))(Auea(t) — eB(t)) A 2
Further, by , and Lemma for A > 1, we obtain
ITI, < CA 7L (4.15)
By , and 7, we obtain
117 = —6V2 log sin %A + O, (4.16)
By this, and the same argument as 7, we obtain . The proof
is complete. O

5. PROOF OF THEOREM [L.3]

In this section, let f(y) = —y. We write ¢t = t. » < 0 for simplicity. The proof
of the Theorem [I.3]is almost the same as those of Theorems[I.1]and [I.2] We begin
with the fundamental properties of u. .

Lemma 5.1. (1) u\(t) >0 for =1 <t <ty and u_,(t) >0 for ty <t <1.
(i) wer(t) — 7 locally uniformly in I as A — oo.
(iii) tx <0 and tx — 0 as A — oo.

Since the proof of Lemma is quite easy, we omit it. To prove Theorem
we repeat the same arguments as those in Sections 3 and 4. We see that

14ty :/ ex (! dt = L(PJr Q) (5.1)
-1 \f \/A uea(t) + €B(1) V2 ’

where

P= /_1 mdu (5.2)
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oM™ u \(t) g /\(t)
Q= /_1 VA(uc(t) + €B(t) = L V/Aun(t)
& —GB( Jug (t) dt
1 \/A(ue,\ \/A ue A (t) + €B(t \/A Ue a( )—|—\/A(u€7,\(t)—|—eB(t))( ’ |
5.3

Then it is clear that P = I in (2.11). Furthermore, by using the same argument
as that in Section 3, it is easy to show that @ = IT + O(A™!). We also find that

! _uek(t) _ 1
1—tA_/Adt 5 Aot 5B 69

where R =T and S = I1T + O(A~3/*). By (5.1)) and (5.4)), we obtain
2ty = vV2Q + O(N¥/*) = V2IT + O(\™3/*) =

which implies

Xe log ('sin %) + 03, (5.5)

d
A= ilog (sin ?A) + O3, (5.6)
By this and (5.1]), we obtain

1= %I + O\, (5.7)

By this and Lemma [2.1] m we obtain . By (1.11) and , we obtain

The proof is complete.
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