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OSCILLATORY BEHAVIOR OF SECOND-ORDER NEUTRAL
DIFFERENCE EQUATIONS WITH POSITIVE AND NEGATIVE

COEFFICIENTS

ETHIRAJU THANDAPANI, KRISHNAN THANGAVELU,

EKAMBARAM CHANDRASEKARAN

Abstract. Oscillation criteria are established for solutions of forced and un-

forced second-order neutral difference equations with positive and negative
coefficients. These results generalize some existing results in the literature.

Examples are provided to illustrate our results.

1. Introduction

Neutral difference and differential equations arise in many areas of applied math-
ematics, such as population dynamics [7], stability theory [13, 14], circuit theory
[4], bifurcation analysis [3], dynamical behavior of delayed network systems [16],
and so on. Therefore, these equations have attracted a great interest during the
last few decades. In the present paper, we focus on the neutral type delay difference
equation

∆(an∆(xn + cnxn−k)) + pnf(xn−l)− qnf(xn−m) = 0, (1.1)

∆(an∆(xn − cnxn−k)) + pnf(xn−l)− qnf(xn−m) = 0, (1.2)

where n ∈ N(n0) = {n0, n0 +1, . . . }, n0 is a nonnegative integer, k, l,m are positive
integers, {an}, {cn}, {pn}, {qn} are real sequences, f : R → R is continuous and
nondecreasing with uf(u) > 0 for u 6= 0.

Let θ = max{k, l, m}. By a solution of equation (1.1) ((1.2)) we mean a real
sequence {xn} which is defined for all n ≥ n0 − θ, and satisfies equation (1.1)
((1.2)) for all n ∈ N(n0). It is also known that equation (1.1) ((1.2)) has a unique
solution {xn} if an initial sequence {x0(n)} is given to hold xn = x0(n), n = n0 −
θ, n0 − θ + 1, . . . , n0. A nontrivial solution {xn} of equation (1.1) ((1.2)) is said to
be oscillatory if it is neither eventually positive nor eventually negative and it is
non-oscillatory otherwise.

Determining oscillation criteria for difference equations has received a great deal
of attention in the last few years, see for example [1, 2] and the references quoted
therein. Sufficient conditions for oscillation of solutions of first order neutral delay
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difference equations with positive and negative coefficients have been investigated
by many authors [2, 9, 10, 11, 13]. On the other hand in the recent papers [5, 6, 8, 12]
the authors obtain some sufficient conditions for the existence of nonoscillatory so-
lutions and oscillation of all bounded solutions of second order linear neutral dif-
ference equations with positive and negative coefficients. To the best knowledge of
the authors, there are no results in literature dealing with the oscillatory behavior
of equations (1.1) and (1.2). The purpose of this paper is to derive sufficient con-
ditions for every solution of equation (1.1) and (1.2) to be oscillatory. Our results
improve and generalize the known results in the literature.

In Section 2, we present sufficient conditions for oscillation of all solutions of
equations (1.1) and (1.2). In Section 3, we establish oscillation results for equations
(1.1) and (1.2) with forcing terms. Examples are provided in Section 4 to illustrate
the results.

2. Oscillation Results for Equations (1.1) and (1.2)

In this section, we obtain oscillation criteria for the solutions of (1.1) and (1.2).
We shall use the following assumptions in this article:

(H1) {an} is a positive sequence such that
∑∞

n=n0

1
an

= ∞;
(H2) {cn}, {pn} and {qn} are nonnegative real sequences;
(H3) l ≥ m;
(H4) pn − qn−m+l ≥ b > 0, where b is a constant;
(H5) there exist positive constants M1 and M2 such that M1 ≤ f(u)

u ≤ M2 for
u 6= 0.

We begin with the following theorem.

Theorem 2.1. With respect to the difference equation (1.1) assume (H1)-(H5). If

m + 1 ≥ k, 0 ≤ cn ≤ c, for n ∈ N(n0), (2.1)

and
∞∑

n=n0

1
an

n−1∑
s=n−l+m

qs ≤
(1 + cn)

M2
, (2.2)

then every solution of (1.1) is oscillatory.

Proof. Suppose that {xn} is a nonoscillatory solution of (1.1). Without loss of
generality, we assume that xn > 0 and xn−θ > 0 for n ≥ n1 ∈ N(n0). We set

zn = xn + cnxn−k −
n−1∑
s=n1

1
as

s−1∑
t=s−l+m

qtf(xt−m)

for n ≥ n1 + θ, then

∆(an ∆zn) = ∆(an∆(xn + cnxn−k))− qnf(xn−m)− qn−l+mf(xn−l)

= −pnf(xn−l) + qn−l+mf(xn−l)

= −(pn − qn−l+m)f(xn−l) ≤ −bM1xn−l,

(2.3)

for n ≥ n1 + θ. Thus, we have {an∆zn} nonincreasing and ∆zn ≥ 0 or ∆zn < 0,
n ≥ N for some N ≥ n1 + θ. We discuss the following two possible cases:
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Case 1: ∆zn ≥ 0 for all n ≥ N . Summing (2.3) from N to n, we obtain

∞ > aN∆ zN ≥ −an+1∆ zn+1 + aN∆ zN ≥ bM1

n∑
s=N

xs−l

and therefore {xn} is summable for n ∈ N(N). Thus, from the condition (2.1), we
have

yn = xn + cnxn−k (2.4)
is also summable. Further, it is clear that for n ≥ N ,

∆yn = ∆(xn + cnxn−k) = ∆zn +
1
an

n−1∑
s=n−l+m

qsf(xs−m),

which implies that {yn} is nondecreasing. Therefore, yn ≥ yN , n ≥ N , which yields
that yn is not summable, a contradiction.
Case 2: ∆zn < 0 for all n ≥ N . Summing an∆zn ≤ aN∆zN < 0, from N to n−1,
we obtain

zn ≤ zN + aN zN

n−1∑
s=N

1
as

, n ≥ N,

and we see from (H1) that limn→∞ zn = −∞. We claim that {xn} is bounded from
above. If this is not the case, then there exists an integer N1 ≥ N + 1 such that

zN1 < 0 and max
N≤n≤N1

xn = xN1 . (2.5)

Then, we have

0 > zN1 = xN1 + cN1xN1−k −
N1−1∑
s=N

1
as

s−1∑
t=s−l+m

qtf(xt−m)

≥
{

1 + cN1 −M2

N1−1∑
s=N

1
as

s−1∑
t=s−l+m

qt

}
xN1 − k

≥
{

1 + cN1 −M2

∞∑
n=n0

1
an

n−1∑
s=n−l+m

qs

}
xN1 − k ≥ 0

which is a contradiction, so that {xn} is bounded from above. Hence for every
L > 0, there exists an integer N2 ≥ N1 such that xn ≤ L for all n ≥ N2. We then
have

zn ≥ −M2L
∞∑

n=n0

1
an

n−1∑
s=n−l+m

qs ≥ −L > −∞, n ≥ N2.

This contradicts the fact that limn→∞ zn = −∞. The proof is now complete. �

Next, we turn to the oscillation theorem for (1.2).

Theorem 2.2. With respect to the difference equation (1.2), assume (H1)-(H5). If

0 ≤ cn ≤ c < 1, (2.6)
and

c + M2

∞∑
n=n0

1
an

n−1∑
s=n−l+m

qs ≤ 1 (2.7)



4 E. THANDAPANI, K. THANGAVELU, E. CHANDRASEKARAN EJDE-2009/145

then every solution of (1.2) oscillates or satisfies limn→∞ xn = 0.

Proof. Let {xn} be a non-oscillatory solution of (1.2). Without loss of generality,
we may assume that xn > 0 and xn−θ > 0 for all n ≤ n1 ∈ N(n0). If we define

zn = xn − cnxn−k −
n−1∑
s=n1

1
as

s−1∑
t=s−l+m

qtf(xt−m) (2.8)

then as in the proof of Theorem 2.1, we have

∆(an∆zn) = −(pn − qn−l+m)f(xn−l) ≤ −bM1xn−l (2.9)

for n ≥ n1 + θ, and conclude that {∆zn} is eventually non-increasing. Therefore,
∆zn < 0 or ∆zn ≥ 0 for all n ≥ N ≥ n1 + θ.
Case 1: ∆zn < 0 for all n ≥ N . Then limn→∞ zn = −∞. We claim that {xn} is
bounded from above. If it is not the case, there exists an integer N1 > N such that
zN1 < 0 and maxN≤n≤N1 xn = xN1 . Then, we have

0 > zN1 = xN1 − cN1xN1−k −
N1−1∑
s=N

1
as

s−1∑
t=s−l+m

qtf(xt−m)

≥
{

1− c−M2

∞∑
n=n0

1
an

n−1∑
s=n−l+m

qs

}
xN1 ≥ 0

which is a contradiction, so that {xn} is bounded from above. From (2.6)-(2.8) we
see that {zn} is bounded which contradicts the fact that limn→∞ zn = −∞.
Case 2: ∆zn ≥ 0 for all n ≥ n1. In this case, we see that L is a nonnegative
constant, where L = limn→∞ an∆zn. Considering (H4) and summing (2.9) from
n1 to ∞ we obtain

∞ > an1∆zn1 − L =
∞∑

n=n1

(pn − qn−l+m)f(xn−l)

≥ M1

∞∑
n=n1

(pn − qn−l+m)xn−l ≥ M1b

∞∑
n=n1

xn−l

which implies that {xn} is summable, and thus limn→∞ xn = 0. This completes
the proof. �

3. Oscillation Results for (1.1) and (1.2) With Forcing Terms

In this section, we consider (1.1) and (1.2) with forcing terms of the form

∆(an∆(xn + cnxn−k)) + pnf(xn−l)− qnf(xn−m) = en, n ∈ N(n0) (3.1)

∆(an∆(xn − cnxn−k)) + pnf(xn−l)− qnf(xn−m) = en, n ∈ N(n0) (3.2)

where {en} is a sequence of real numbers.

Theorem 3.1. With respect to the difference equation (3.1), assume (H1)-(H5),
(2.1) and (2.2). If there exists a sequence {En} such that

lim
n→∞

En is finite and ∆(an ∆En) = en for all n ∈ N(n0), (3.3)

then every solution of (3.1) is oscillatory or satisfies limn→∞ xn = 0.
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Proof. Suppose that {xn} is a nonoscillatory solution of (3.1) such that xn > 0 and
xn−θ > 0 for all n ≥ n1 ∈ N(n0). If we denote

Bn = xn + cnxn−k −
n−1∑
s=n1

1
as

s−1∑
t=s−l+m

qtf(xt−m)− En + A + 1 (3.4)

where limn→∞En = A, then from (3.1) we obtain

∆(an∆Bn) ≤ −bM1xn−l ≤ 0, n ≥ n1 + θ. (3.5)

By (3.5), there exists an integer n2 ≥ n1 + θ such that ∆Bn ≥ 0 or ∆Bn < 0
for n ≥ n2. By hypotheses there exists sufficiently large integer n3 such that
−En + A + 1 > 0 for all n ≥ n3. Let N = max{n2, n3}.

Let ∆Bn < 0 for n ≥ N . Then from (H1) and (3.5), we have limn→∞Bn = −∞.
First we show that {xn} is bounded. If this is not the case, there exists an integer
N1 > N satisfying BN1 < 0 and maxN≤n≤N1 xn = xN1 . Then, we have

0 > BN1 = xN1 + cN1xN1−k −
N1−1∑
s=n1

1
as

s−1∑
t=s−l+m

qtf(xt−m)− EN1 + A + 1

≥
{

1 + cN1 −M2

∞∑
n=n0

1
an

n−1∑
t=n−l+m

qt

}
xN1 − k ≥ 0.

This contradiction shows that {xn} must be bounded. Then there exists constant
L > 0 such that xn ≤ L for all n ≤ N . It follows from (2.2) and (3.4) that {Bn} is
bounded, which contradicts the fact that limn→∞Bn = −∞.

Let ∆Bn ≥ 0 for n ≥ N . Summing (3.5), we have

∞ > aN∆ BN ≥ aN∆ BN − an∆ Bn ≥ bM1

∞∑
n=N

xn−l

which implies that {xn} is summable, and thus limn→∞ xn = 0. This completes
the proof. �

Theorem 3.2. With respect to the difference equation (3.2), assume (H1)-(H5),
(2.6) and (2.7). If (3.3) holds, then every solution of (3.2) is oscillatory or satisfies
limn→∞ xn = 0.

Proof. Suppose that {xn} is nonoscillatory solution of (3.2) such that xn > 0 and
xn−θ > 0 for all n ≥ n1 ∈ N(n0). Let us denote with

Wn = zn − En + A + 1 (3.6)

where zn is defined by (2.8). Then, we have

∆(an∆Wn) ≤ −bM1xn−l ≤ 0, n ≥ n1 + θ. (3.7)

Therefore, we have the following two cases: ∆Wn < 0 for n ≥ N ≥ n1 + θ which
implies that limn→∞Wn = −∞. It is not hard to prove that ∆Wn < 0 is not
possible by following the arguments as in the proof of Theorem 3.1.

Therefore, ∆Wn ≥ 0 for all n ≥ N . From (3.7), we obtain {xn} is summable,
and thus limn→∞ xn = 0. The proof is now complete. �
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4. Examples

In this section, we present some examples to illustrate the results obtained in
the pervious sections.

Example 4.1. Consider the difference equation

∆(n∆(xn + 2xn−1)) +
(
6n + 3 + (

2
3n+2

)
)xn−4(1 + x2

n−4)
(2 + x2

n−4)

− (
2

3n+2
)
xn−2(1 + x2

n−2)
(2 + x2

n−2)
= 0, n ≥ 1 .

(4.1)

Here an = n, cn = 2, l = 4, m = 2, pn = 6n + 3 + 2( 1
3n+2 ), k = 1, qn = 2( 1

3n+2 ),

and f(u) = u(1+u2)
2+u2 . With M1 = 1

2 and M1 = 1, all conditions (H1)-(H5) hold.
Further, we see that

∞∑
1

1
an

=
∞∑
1

1
n

= ∞,

and
∞∑

n=1

1
n

n−1∑
s=n−2

2
( 1

3s+2

)
= 2

∞∑
1

1
n

( 1
3n

+
1

3n+1

)
<

8
3

∞∑
1

1
3n

=
4
3

< 3.

Hence by Theorem 2.1, all solutions of equation (4.1) are oscillatory. In fact {xn} =
{(−1)n} is one such solution of equation (4.1).

Example 4.2. Consider the difference equation

∆(n∆(xn −
1
2
xn−2)) + (

3
2
(2n + 1) +

1
3n+6

)
(xn−3 + x3

n−3)
(2 + x2

n−3)

− 1
3n+6

(xn−1 + x3
n−1)

(2 + x2
n−1)

= 0, n ≥ 1 .

(4.2)

Here an = n, cn = 1
2 , l = 3, m = 1, pn = 3

2 (2n + 1) + 1
3n+6 , qn = 1

3n+6 , and

f(u) = u(1+u2)
2+u2 . With M1 = 1/2 and M1 = 1, it is easy to check that conditions

(H1)-(H5) hold. Further, we see that
∞∑
1

1
an

=
∞∑
1

1
n

= ∞,

and

c +
∞∑

n=1

1
an

n−1∑
s=n−2

qs =
1
2

+
∞∑
1

1
n

n−1∑
s=n−2

1
2
( 1
3s+6

)
=

1
2

+
∞∑
1

1
n

( 1
3n+4

+
1

3n+5

)
<

1
2

+
1
2
( 1
34

+
1
35

)
< 1.

Hence by Theorem 2.2, all solution of equation (4.2) are oscillatory. In fact {xn} =
{(−1)n} is one such solution of equation (4.2).
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Example 4.3. Consider the difference equation

∆2(xn + 2xn−2) + (
n

n + 1
)
xn−3(1 + |xn−3|)

2 + |xn−3|
− 1

2n+3

xn−1(1 + |xn−1|)
2 + |xn−1|

=
1

2(n+1)(n+2)(n+3)
+

1
2n+2

, n ≥ 1.

(4.3)

For this equation, we see that an = 1, cn = 2, l = 3, m = 1, k = 2, pn = n/(n + 1),
qn = 1

2n+2 , en = 1
2(n+1)(n+2)(n+3) + 1

2n+2 and f(u) = u(1+|u|)
2+|u| . We may set M1 = 1

2

and M2 = 1, we may have pn−qn+2 = n
n+1−

1
2n+4 > 15

32 > 0 and En = 1
n+1−

1
2n → 0

as n →∞. It is not hard to see that
∞∑

n=1

1
an

n−1∑
s=n−2

qs =
∞∑
1

n−1∑
s=n−2

1
2s+3

=
3
4

< 3.

Therefore, all conditions of Theorem 3.1 are satisfied, and hence every solution of
equation (4.3) are either oscillatory or tends to zero at infinity.

Example 4.4. Consider the difference equation

∆(n∆(xn −
1
4
xn−2)) + (

n2

n2 + 1
)
xn−4(1 + |xn−4|)

2 + |xn−4|
− 1

4n+2

xn−2(1 + |xn−2|)
2 + |xn−2|

=
n− 1
2n+2

, n ≥ 1.

(4.4)

For this equation, an = n, cn = 1/4, l = 4, m = 2, pn = n2

n2+1 , qn = 1
4n+2 ,

en = n−1
2n+2 and f(u) = u(1+|u|)

2+|u| . We may set M1 = 1
2 and M2 = 1, we may have

pn − qn+2 = n2

n2+1 −
1

4n+4 > 1
4 > 0 and En = n

2n → 0 as n → ∞. It is easy to see
that

c +
∞∑

n=1

1
an

n−1∑
s=n−2

qs =
1
4

+
∞∑
1

1
n

n−1∑
s=n−2

1
4s+2

=
1
4

+
∞∑
1

1
n

( 1
4n

+
1

4n+1

)
<

2
3

< 1.

Therefore, all conditions of Theorem 3.2 are satisfied, and hence every solution of
equation (4.4) are oscillatory or tends to zero at infinity.

Note that the results in [6, 8] cannot be applied to (4.1), (4.4).

Acknowledgements. The authors want to thank the anonymous referee for his
or her suggestions which improve the content of this article.

References

[1] R. P. Agarwal; Difference Equations and Inequalities, Marcel Dekkar, NewYork, 2000.

[2] R. P. Agarwal, M. Bohner, S. R. Grace and D. O. Regan; Discrete Oscillation Theory,

Hindawi Publ. Corporation, NewYork, 2005.
[3] A. G. Balanov, N. B. Janson, P. V. E. McClintock, R. W. Tucks and C.H. T. Wang; Bifur-

cation analysis of a neutral delay differential equation modelling the torsional motion of a
driven drill - string, Chaos, Solitons and Fractals, 15 (2003), 381-394.

[4] A. Bellen, N. Guglielmi and A. E. Ruchli; Methods for linerar systems of circuit delay dif-

ferential equations of neutral type, IEEE Trans. Circ. Syst - I, 46 (1999), 212 - 216.
[5] J. Cheng; Existence of a nonoscillatory solution of a second order linear difference equation,

Appl. Math. Lett. 20(2007), 892 - 899.



8 E. THANDAPANI, K. THANGAVELU, E. CHANDRASEKARAN EJDE-2009/145

[6] H. A. El-Morshely; New Oscillation criteria for second order linear difference equations with

positive and negative coefficients, (submitted for publication).

[7] K. Gopalsamy; Stability and Oscillations in Population Dynamics, Kluwer Acad. Pub.
Boston, 1992.

[8] B. Karpuz, O. Ocalan and M. K. Yildiz; Oscillation of a class of difference equations of

second order, Math. Comp. Modelling 40(2009), 912 - 917.
[9] B. Karpuz; Some oscillation and nonoscillation criteria for neutral delay difference equations

with positive and negative coefficients, Comp. Math. Appl. 57(2009), 633 - 642.

[10] O. Ocalan; Oscillation for a class of nonlinear neutral difference equations, Dynamics cont.
Discrete Impul. syst. sries A 16(2009), 93 - 100.

[11] O. Ocalan and O. Duman; Oscillation analysis of neutral difference equations with delays,

Chaos, Solitons and Fractals 39(2009), 261 - 270.
[12] E. Thandapani and K. Mahalingam; Existence of nonoscillatory solution of a second order

difference equations of neutral type, Indian J. Pure Appl. Math. 33(2002), 625 - 633.
[13] C. J. Tian and S. S. Cheng; Oscillation criteria for delay neutral difference equations with

positive and negative coefficients, Bul. Soc. Parana Math. 21(2003), 1 - 12.

[14] W. Xiong and J. Liang; Novel stability criteria for neutral systems with multiple time delays,
Chaos, Solitons and Fractals, 32(2007), 1735 - 1741.

[15] Q. Zhang, X. Wei and J. Xu; Stability analysis for cellular neutral networks with variable

delays, Chaos, Solitons and Fractals. 28(2006), 331 - 336.
[16] J. Zhou, T. Chen and L. Xiang; Robust synchronization of delayed neutral networks based on

adaptive control and parameters identification, Chaos, Solitons and Fractals. 27(2006), 905

- 913.

Ethiraju Thandapani
Ramanujan Institute for Advanced, Study in Mathematics, University of Madras, Chen-

nai - 600005, India
E-mail address: ethandapani@yahoo.co.in

Krishnan Thangavelu

Department of Mathematics, Pachiappa’s College, Chennai - 600030, India
E-mail address: kthangavelu 14@yahoo.com

Ekambaram Chandrasekaran
Department of Mathematics, Presidency College, Chennai - 600005, India

E-mail address: e chandrasekaran@yahoo.com


	1. Introduction
	2. Oscillation Results for Equations (1.1) and (1.2)
	3. Oscillation Results for (1.1) and (1.2) With Forcing Terms
	4. Examples
	Acknowledgements

	References

