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REMARKS ON THE PHRAGMÉN-LINDELÖF THEOREM FOR
Lp-VISCOSITY SOLUTIONS OF FULLY NONLINEAR PDES

WITH UNBOUNDED INGREDIENTS

SHIGEAKI KOIKE, KAZUSHIGE NAKAGAWA

Abstract. The Phragmén-Lindelöf theorem for Lp-viscosity solutions of fully

nonlinear second order elliptic partial differential equations with unbounded

coefficients and inhomogeneous terms is established.

1. Introduction

The notion of Lp-viscosity solutions was introduced in [5] to study fully nonlinear
second order elliptic partial differential equations (PDEs for short) with unbounded
inhomogeneous terms. We refer to [3] (see also [4]) as a pioneering work for the
regularity theory of viscosity solutions of fully nonlinear PDEs.

It turned out that the Aleksandrov-Bakelman-Pucci (ABP for short) maximum
principle can be extended to Lp-viscosity solutions for fully nonlinear second order
elliptic PDEs with unbounded coefficients and inhomogeneous terms in [14]. See
also [17] for a generalization.

As an application of the ABP maximum principle in [14], it is known that the
(boundary) weak Harnack inequality for Lp-viscosity solutions of the associated
extremal PDEs in [15] (see also [16]) holds, which implies Hölder continuity for
Lp-viscosity solutions of fully nonlinear elliptic PDEs with unbounded ingredients.
We also refer to [19] for Hölder continuity estimates on Lp-viscosity solutions by a
different approach.

On the other hand, qualitative properties of viscosity solutions of fully nonlinear
elliptic PDEs have been investigated as generalizations for classical elliptic PDE
theory. For instance, the ABP maximum principle in unbounded domains in [7]
and [15], the Liouville property in [11, 6], the Hadamard principle in [6], and the
Phragmén-Lindelöf theorem in [8]. We refer to references in [8, 11, 6] for these
qualitative properties of strong/classical solutions.

Our aim here is to extend the Phragmén-Lindelöf theorem in [8] when PDEs
have unbounded coefficients (i.e. µ in this paper). In view of the boundary weak
Harnack inequality in [15], it is natural to relax the hypotheses on coefficients
and inhomogeneous terms. However, for the weak Harnack inequality, we need
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to suppose that the coefficient to the first derivatives is small enough in Ln-norm.
When we work in bounded domains, this is not a restriction. Since we are concerned
with unbounded domains, we will need a bit more delicate analysis than those in
[8].

Since our argument is essential to treat domains of conical type (i.e. the case for
η > 0 in our notation), we will mainly discuss this case. We will add corresponding
results for domains of cylindrical type (i.e. the case for η = 0).

Our paper is organized as follows: section 2 is devoted to showing the definitions
and known results. In section 3, we present the ABP type estimates on Lp-viscosity
subsolutions of fully nonlinear PDEs with unbounded ingredients under appropriate
geometric conditions. We show the Phragmén-Lindelöf theorem in our setting in
section 4. In section 5, we give a proof of an elementary geometric property, which
is needed in the proof of Lemma 3.2.

2. Preliminaries

We consider fully nonlinear second order PDEs in unbounded domains Ω ⊂ Rn:

G(x, u, Du,D2u) = f(x) in Ω, (2.1)

where G : Ω×R×Rn×Sn → R and f : Ω → R are given measurable functions. We
also suppose that (r, p,M) ∈ R×Rn × Sn → G(x, r, p,M) is continuous for almost
all x ∈ Ω. Here, Sn denotes the set of symmetric matrices of order n equipped with
the standard order.

We will use the standard notation from [13]. We denote by Lp
+(Ω) the set of all

nonnegative functions in Lp(Ω).
Throughout this paper, we assume that

p >
n

2
.

We recall two facts: if u ∈ W 2,p
loc (Ω) for p > n

2 , then we may identify u with a
continuous function on Ω, and u is twice differentiable for almost all x ∈ Ω.

First of all, we recall the definition of Lp-viscosity solutions of (2.1).

Definition 2.1. We call u ∈ C(Ω) an Lp-viscosity subsolution (resp., supersolu-
tion) of (2.1) if

ess lim inf
x→x0

{G(x, u(x), Dφ(x), D2φ(x))− f(x)} ≤ 0(
resp., ess lim sup

x→x0

{G(x, u(x), Dφ(x), D2φ(x))− f(x)} ≥ 0
)

whenever φ ∈ W 2,p
loc (Ω) and x0 ∈ Ω is a local maximum (resp., minimum) point of

u − φ. A function u ∈ C(Ω) is called an Lp-viscosity solution of (2.1) if it is both
an Lp-viscosity subsolution and an Lp-viscosity supersolution of (2.1).

To make easier recalling the right inequality, we will often say that u is an Lp-
viscosity solution of

G(x, u, Du,D2u) ≤ f(x) (2.2)(
resp., G(x, u, Du,D2u) ≥ f(x)

)
, (2.3)

if it is an Lp-viscosity subsolution (resp., supersolution) of (2.1).
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Remark 2.2. If u is an Lp-viscosity subsolution (resp., supersolution) of (2.1),
then it is also an Lq-viscosity subsolution (resp., supersolution) of (2.1) provided
q ≥ p.

In what follows, instead of (2.1), we mainly consider PDEs which do not depend
on u-variable:

F (x,Du,D2u) = f(x) in Ω. (2.4)
We will assume that F is (degenerate) elliptic:

F (x, p,M) ≤ F (x, p,N)

for (x, p,M,N) ∈ Ω× Rn × Sn × Sn provided M ≥ N.
(2.5)

For fixed ellipticity constants 0 < λ ≤ Λ, we assume that

there is µ ∈ Lq
+(Ω) such that

P−(M)− µ(x)|p| ≤ F (x, p,M) for (x, p,M) ∈ Ω× Rn × Sn,
(2.6)

where the Pucci operators P± : Sn → R are defined by

P−(M) = min{−trace(AM) : A ∈ Sn
λ,Λ}, P+(M) = −P−(−M).

Here, Sn
λ,Λ := {M ∈ Sn : λI ≤ M ≤ ΛI}. We refer the reader to [8] for examples

of PDEs which satisfy (2.5) and (2.6). We first recall a lemma concerning change
of unknown functions.

Lemma 2.3 ([8, Lemma 1]). Assume (2.5) and (2.6) with µ ∈ Lq
+(Ω) for q > n.

Then, there exist constants hj > 0 (j = 1, 2) satisfying the following property: if
ξ ∈ C2(Ω) satisfies

ξ(x) > 0,
|Dξ|

ξ
(x) ≤ k1(x),

|D2ξ|
ξ

(x) ≤ k2(x) for x ∈ Ω

with some functions kj ∈ C(Ω) (j = 1, 2), then for Lp-viscosity subsolution w ∈
C(Ω) of (2.4) with f ∈ Lp

+(Ω), u := w
ξ is an Lp-viscosity solution of

P−(D2u)− γ1(x)|Du| − γ2(x)u ≤ f(x)
ξ(x)

in Ω[u], (2.7)

where Ω[u] = {x ∈ Ω | u(x) > 0}, γ1(x) = h1k1(x) + µ(x) and γ2(x) = h2k2(x) +
k1(x)µ(x).

We will use the constant p0 = p0(n, λ,Λ) ∈ [n
2 , n), for which we refer to [12]. It

is known that for p > p0, and f ∈ Lp(Br(z)), where Br(x) = {y ∈ Rn : |x−y| < r},
there exists a (unique) strong solution u ∈ C(Br(z)) ∩W 2,p

loc (Br(z)) of

P−(D2v(x)) = f(x) a.e. in Br(z)

under v(x) = 0 for x ∈ ∂Br(z) with estimates:

−C‖f−‖Lp(Br(z)) ≤ v(x) ≤ C‖f+‖Lp(Br(z)) in Br(z),

where C = C(n, λ,Λ, p) > 0 is a constant, and for 0 < s < r,

‖v‖W 2,p(Bs(z)) ≤ C ′‖f‖Lp(Br(z)),

where C ′ = C ′(n, λ,Λ, p, r − s) > 0.
We remark that to prove the ABP maximum principle [14, Theorem 2.9], which

implies the boundary weak Harnack inequality [15, Theorem 6.1], it suffices to
obtain the existence of strong solutions of the above extremal equation only in balls
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although this fact is not clearly mentioned in [14, 15]. In fact, this existence result
holds with local W 2,p-estimates for more general domains satisfying the uniform
exterior cone property but the p0 ∈ [n

2 , n) associated with general domains might
be bigger than the above. We also notice that we may replace cubes by balls in the
(boundary) weak Harnack inequality in [15] by Cabré’s covering argument, which
we will see in the proof of Lemma 3.2 below.

Fix R > 0 and z ∈ Rn. Let T, T ′ ⊂ BR(z) be domains such that

T ⊂ T ′, and θ0 ≤
|T |
|T ′|

≤ 1 for some θ0 > 0.

When we apply our weak Harnack inequality below, our choice of T and T ′ always
satisfies the above condition.

For a given domain A ⊂ Rn and a function v ∈ C(A), we define v−T ′,A on T ′ ∪A
by

v−T ′,A(x) =

{
min{v(x),m} if x ∈ A,

m if x ∈ T ′ \A,

where
m = lim inf

x→T ′∩∂A
v(x).

We note that if T ′ ∩ ∂A 6= ∅, then v−T ′,A is a real-valued function and that if
T ′ ∩ ∂A 6= ∅, v is a nonnegative Lp-viscosity supersolution of (2.4) and f ≤ 0 in
T ′ ∩A, then v−T ′,A is a nonnegative Lp-viscosity supersolution of (2.4) in T ′.

Next, we recall the boundary weak Harnack inequality when PDEs have un-
bounded coefficients and inhomogeneous terms.

Lemma 2.4 ([15, Theorem 6.1]). Let T , T ′, A be as above. Assume that T ∩A 6= ∅
and T ′ \A 6= ∅ and that

q > n, q ≥ p > p0. (2.8)

Then, there exist constants ε0 = ε0(n, λ,Λ) > 0, r = r(n, λ,Λ, p, q) > 0 and
C0 = C0(n, λ,Λ, p, q) > 0 satisfying the following property: if µ ∈ Lq

+(T ′ ∩ A),
f ∈ Lp

+(T ′ ∩A), a nonnegative Lp-viscosity solution w ∈ C(T ′ ∩A) of

P+(D2w) + µ(x)|Dw| ≥ −f(x) in T ′ ∩A,

and
‖µ‖Ln(T ′∩A) ≤ ε0, (2.9)

then it follows that( 1
|T |

∫
T

(w−T ′,A)r dx
)1/r

≤ C0

(
inf
T

w−T ′,A + R‖f‖Ln(T ′∩A)

)
provided that q > n and q ≥ p ≥ n, and( 1

|T |

∫
T

(w−T ′,A)rdx
)1/r

≤ C0

(
inf
T

w−T ′,A + R2−n
p ‖f‖Lp(T ′∩A)

M∑
k=0

R(1−n
q )k‖µ‖k

Lq(T ′∩A)

)
provided that q > n > p > p0, where M = M(n, p, q) ≥ 1 is an integer.
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Remark 2.5. We refer to [16] for the (boundary) weak Harnack inequality for
Lp-viscosity supersolutions of fully nonlinear PDEs with superlinear growth in the
gradient and unbounded ingredients.

In the next section, we will establish some local and global ABP type estimates on
Lp-viscosity subsolutions for (2.4). To this end, we recall the notations concerning
the shape of domains from [8].

Definition 2.6 (Local geometric condition). Let σ, τ ∈ (0, 1). We call y ∈ Ω a
Gσ,τ point in Ω if there exist R = Ry > 0 and z = zy ∈ Rn such that

y ∈ BR(z), and |BR(z)\Ωy,BR(z),τ | ≥ σ|BR(z)|, (2.10)

where Ωy,BR(z),τ is the connected component of BR
τ
(z) ∩ Ω containing y. For

σ, τ ∈ (0, 1), and R0 > 0, η ≥ 0, we call y ∈ Ω a GR0,η
σ,τ point in Ω if y is a Gσ,τ

point in Ω with R = Ry > 0 and z = zy satisfying

R ≤ R0 + η|y|. (2.11)

Remark 2.7. For the sake of simplicity of notations, for a Gσ,τ point y ∈ Ω, we
will write By for BRy

τ

(zy), where Ry > 0 and zy ∈ Rn are from Definition 2.6.

Definition 2.8 (Global geometric condition). We call Ω a ĜR0,η
σ,τ domain if any

y ∈ Ω is a GR0,η
σ,τ point in Ω.

We refer the reader to [20] and [8] for examples of domains Ω satisfying GR0,η
σ,τ .

We also refer to [1] for a generalization.

3. ABP type estimates

We present pointwise estimates on Lp-viscosity subsolutions of (2.4), which is
often referred as the Krylov-Safonov growth lemma.

In what follows, we fix σ, τ ∈ (0, 1) and R0 > 0. Let y ∈ Ω be a GR0,η
σ,τ point with

η ≥ 0. It is possible to apply our weak Harnack inequality in By, which is from
Definition 2.6, if ‖µ‖Ln(By∩Ω) ≤ ε0. Here and later, ε0 > 0 is the constant from
Lemma 2.4.

Even if ‖µ‖Ln(By∩Ω) > ε0, we may use Cabré’s covering argument; we divide By

into small pieces so that we may apply the weak Harnack inequality in each piece.
We then obtain the weak Harnack inequality in By by combining all the inequalities
for small pieces.

However, since we need the estimates uniform in y ∈ Ω, this argument does not
work immediately because of unboundedness of {Ry}y∈Ω when η > 0.

To avoid this difficulty, we will suppose a decay rate of µ: ‖µ‖Lq(Ω\Bt(0)) =
o(t−(1−n

q )). More precisely, for fixed q > n, we suppose that for all δ > 0 there is
Tδ > 0 such that

‖µ‖Lq(Ω\Bt(0)) ≤ δt−(1−n
q ) for t ≥ Tδ. (3.1)

Remark 3.1. It is assumed in [8] that µ(x) = O(|x|−1) as |x| → ∞, which only
implies ‖µ‖Lq(Ω\Bt(0)) = O(t−(1−n

q )).

Of course, if η = 0 (hence Ry ≤ R0), then we can apply directly Cabré’s argu-
ment.
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Lemma 3.2. Assume that (2.5), (2.8) and (2.6) hold with µ ∈ Lq
+(Ω). Let η > 0

and y ∈ Ω be a GR0,η
σ,τ point in Ω with R = Ry > 0 and z = zy ∈ Rn. Then, there

exist κ = κ(n, λ,Λ, σ, τ, R0, η) ∈ (0, 1) and ε = ε(n, σ, η) > 0 satisfying the following
property: if w ∈ C(Ω) is an Lp-viscosity subsolution of (2.4) with f ∈ Lp

+(Ω), then
we have the following properties: (i) Assume that |y| ≤ R0. (a) If p ≥ n, then

w(y) ≤ κ sup
By∩Ω

w+ + (1− κ) lim sup
x→By∩∂Ω

w+ + R0‖f‖Ln(By∩Ω).

(b) If p0 < p < n, then

w(y) ≤ κ sup
By∩Ω

w+ + (1− κ) lim sup
x→By∩∂Ω

w+

+ R
2−n

p

0 ‖f‖Lp(By∩Ω)

M∑
k=0

R
(1−n

q )k

0 ‖µ‖k
Lq(By∩Ω).

(ii) Assume that (3.1) is satisfied and that |y| > R0. (a) If p ≥ n, then

w(y) ≤ κ sup
By∩Ω

w+ + (1− κ) lim sup
x→By∩∂Ω

w+ + R‖f‖Ln(By∩Ω\BεR(0)).

(b) If p0 < p < n, then

w(y) ≤ κ sup
By∩Ω

w+ + (1− κ) lim sup
x→By∩∂Ω

w+

+ R2−n
p ‖f‖Lp(By∩Ω\BεR(0))

M∑
k=0

R(1−n
q )k‖µ‖k

Lq(By∩Ω\BεR(0)).

Here M = M(n, p, q) ≥ 1 is the integer in Lemma 2.4.

Remark 3.3. To get the weak maximum principle (Lemma 4.1 below), it is impor-
tant to have the term ‖f‖Lp(By∩Ω\BεR(0)) instead of ‖f‖Lp(By∩Ω) in the estimates
of the assertion (ii) above.

Proof. First of all, we shall omit giving the proof in the case of ‖µ‖Lq(Ω) = 0 because
it is easy to do it, and we suppose that ‖µ‖Lq(Ω) > 0.

It is enough to show the assertion when Ĉ := lim supx→By∩∂Ω w+(x) = 0. In
fact, after having established the assertion when Ĉ = 0, we may apply the result
to w − Ĉ to prove the assertion in the general case.

Due to (2.6), w is an Lp-viscosity solution of

P−(D2w)− µ(x)|Dw| ≤ f(x) in Ω.

Setting Cw = supBy∩Ω w+, we immediately see that v(x) := Cw − w(x) is an
Lp-viscosity solution of

P+(D2v) + µ(x)|Dv| ≥ −f(x) in Ω.

We shall first prove (ii).
Case (ii) |y| > R0: Fix ε ∈ (0, 1

2 min{ 1
1+η , (σ

4 )
1
n }). Note that 2ε < 1/(1 + η)

and (2ε)n < σ/4. We set T = BR(z)\B2εR(0) and T ′ = By \BεR(0). Observe that

2εR <
R

1 + η
≤ R0 + η|y|

1 + η
< |y|
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and consequently y ∈ T = BR(z) \B2εR(0). Let A be the connected component of
T ′ ∩ Ω which contains y. We have

|T\A| ≥ |T\Ωy,BR(z),τ |
≥ |BR(z)\Ωy,BR(z),τ | − |B2εR(0)|
≥ σ|BR(0)| − (2ε)n|BR(0)|

≥ σ

2
|BR(0)|

≥ σ

2
|T |.

Since
T ′ ∩ ∂A ⊂ T ′ ∩ ∂(T ′ ∩ Ω) ⊂ T ′ ∩ (∂T ′ ∪ ∂Ω) = T ′ ∩ ∂Ω, (3.2)

in view of Ĉ ≤ 0, we have

lim inf
x→T ′∩∂A

v(x) = Cw − lim sup
x→T ′∩∂A

w(x) ≥ Cw. (3.3)

Now, we verify (2.9). By (3.1), we can choose Tε > 0 such that

‖µ‖Lq(Ω\Bt(0)) ≤
ε0

|B1(0)|
1
n (1−n

q )

(τε

t

)1−n
q

for t ≥ Tε.

Assume R ≥ A1 := Tεε
−1. Using the above, we see

‖µ‖Ln(T ′∩A) ≤ |B1(0)|
1
n (1−n

q )

(
R

τ

)1−n
q

‖µ‖Lq(Ω\BεR(0)) ≤ ε0.

Setting m = lim infx→T ′∩∂A v(x), we use (3.3) to show for any r > 0,(σ

2

)1/r

Cw ≤
( |T\A|

|T |

)1/r

Cw ≤
( 1
|T |

∫
T\A

mrdx
)1/r

≤
( 1
|T |

∫
T

(v−T ′,A)rdx
)1/r

.

Since y ∈ A, we have

inf
T

v−T ′,A ≤ v(y) = Cw − w(y). (3.4)

Thus, letting r > 0 be the constant from Lemma 2.4, we have(σ

2

)1/r

Cw ≤ C0

(
inf
T

v−T ′,A + R‖f‖Ln(T ′∩A)

)
≤ C0

(
Cw − w(y) + R‖f‖Ln(T ′∩Ω)

)
if p ≥ n, and(σ

2

)1/r

Cw ≤ C0

(
Cw − w(y) + ‖f‖Lp(T ′∩Ω)

M∑
k=0

R(1−n
q )k+2−n

p ‖µ‖k
Lq(T ′∩Ω)

)
if p ∈ (p0, n). Therefore, we conclude that the assertion (ii) holds with κ = 1 −
(σ

2 )1/r min{C−1
0 , 1} > 0 in the case where R ≥ A1.

Next assume that R < A1. We can choose constants

ρ0 = ρ0(n, q, τ, ε0, ε, A1, ‖µ‖Lq(Ω)),

µ0 = µ0(n, q, τ, ε0, ε, A1, ‖µ‖Lq(Ω)) ∈ (0, 1), N0 = N0(n, q, τ, ε0, ε, A1, ‖µ‖Lq(Ω)) ∈ N
and a finite sequence {xi}N0

i=1 ⊂ T ′ such that

T ⊂ ∪N0
i=1Bρ0R(xi) ⊂ ∪N0

i=1B2ρ0R(xi) ⊂ T ′, (3.5)

|Bρ0R(xi) ∩Bρ0R(xi+1)| ≥ µ0|Bρ0R(0)|, (3.6)
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where Bρ0R(xN0+1) = Bρ0R(x1), and

ρ0 ≤
1

A1|B1(0)|1/n

( ε0

‖µ‖Lq(Ω)

) q
q−n

. (3.7)

We see that

‖µ‖Ln(Bρ0R(xi)) ≤ |Bρ0R(xi)|
1
n−

1
q ‖µ‖Lq(By∩Ω) ≤ ε0.

For the reader’s convenience, we recall Cabré’s covering argument when p ≥ n.
Since v−T ′,A is a nonnegative Lp-viscosity supersolution of P+(D2u) + µ(x)|Du| ≥
−f(x) in T ′, in view of Lemma 2.4, we have

‖v−T ′,A‖Lr(Bρ0R(xi)) ≤ |Bρ0R(xi)|1/rC0

(
inf

Bρ0R(xi)
v−T ′,A + ρ0R‖f‖Ln(A)

)
for i = 1, 2, . . . , N0, where r, C0 > 0 are from Lemma 2.4. Furthermore, for i ∈
{1, 2, . . . , N0}, setting Bi = Bρ0R(xi), we have

inf
Bi

v−T ′,A ≤ inf
Bi∩Bi+1

v−T ′,A

≤
( 1
|Bi ∩Bi+1|

∫
Bi∩Bi+1

(v−T ′,A)rdx
)1/r

≤ C1

(
inf

Bi+1
v−T ′,A + R‖f‖Ln(A)

)
for some C1 ≥ 1. Thus, repeating this argument, for 1 ≤ i < N0, we have

inf
Bi

v−T ′,A ≤ CN0−1
1

(
inf
BN0

v−T ′,A + N0R‖f‖Ln(A)

)
.

Since we may assume that infT v−T ′,A = infBN0
v−T ′,A, there is C2 > 0 such that

‖v−T ′,A‖Lr(T ) ≤
N0∑
i=1

‖v−T ′,A‖Lr(Bi) ≤ R
n
r C2

(
inf
T

v−T ′,A + R‖f‖Ln(A)

)
.

When p0 < p < n, we can easily apply the above argument to show that

‖v−T ′,A‖Lr(T ) ≤ R
n
r C2

(
inf
T

v−T ′,A + R2−n
p ‖f‖Lp(A)

M∑
k=0

R(1−n
q )k‖µ‖k

Lq(A)

)
.

What remains of the proof follows the same argument as in the case of R ≥ A1.
Case (i) |y| ≤ R0: Since we have R ≤ (1 + η)R0 in this case, we may regard Ω

as a bounded domain. Thus, we can use the standard covering argument by Cabré
without using (3.1). Setting T = BR(z), T ′ = BR

τ
(z) and A = Ωy,BR(z),τ , we have

|T\A| = |BR(z) \ Ωy,BR(z),τ | ≥ σ|BR(z)| ≥ σ

2
|T |.

We shall only give a proof when ‖µ‖Ln(T ′∩A) ≤ ε0.
Following the same argument as in case (ii) with the above inequality, and new

A, T, T ′, we have(σ

2

)1/r

Cw ≤ C0

(
inf
T

v−T ′,A + R0‖f‖Ln(By∩Ω)

)
≤ C0

(
Cw − w(y) + R0‖f‖Ln(By∩Ω)

)
provided that p ≥ n, and(σ

2

)1/r

Cw ≤ C0

(
Cw − w(y) + ‖f‖Lp(By∩Ω)

M∑
k=0

R
(1−n

q )k+2−n
p

0 ‖µ‖k
Lq(By∩Ω)

)
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provided that p ∈ (p0, n). Therefore, we conclude that the assertion holds with the
same κ ∈ (0, 1) as in case (ii). �

Remark 3.4. The above proof clearly shows that ε can be any constant satisfying
0 < ε < 1

2 min{ 1
1+η , (σ

4 )1/n}. In the above proof, we have stated that N0 can be
chosen independently of z and R, which may not be trivial. We will give a proof
of this fact in Appendix.

The corresponding result for η = 0 is as follows.

Corollary 3.5. Assume that (2.5), (2.8) and (2.6) with µ ∈ Lq
+(Ω). Let y ∈ Ω

be a GR0,0
σ,τ point in Ω with R = Ry > 0 and z = zy ∈ Rn. Then, there exist

κ = κ(n, λ,Λ, σ, τ, R0) ∈ (0, 1) and ε = ε(n, σ) > 0 satisfying the following property:
if w ∈ C(Ω) is an Lp-viscosity subsolution of (2.4) with f ∈ Lp

+(Ω), then the same
estimates as in Lemma 3.2 (i) hold.

In the case of η = 0, we always have |y| ≤ R0 unlike Lemma 3.2. For the proof
of the above corollary, we just follow the steps in the proof of Lemma 3.2 (i).

When Ω ⊂ Rn is a ĜR0,η
σ,τ domain, we derive the ABP maximum principle for

Lp-viscosity subsolutions bounded from above of (2.4).

Theorem 3.6 (ABP maximum principle in unbounded domains). Assume (2.8),
(2.5) and (2.6) with µ ∈ Lq

+(Ω) satisfying (3.1). Let η > 0 and Ω ⊂ Rn be a ĜR0,η
σ,τ

domain. Assume also
sup

y∈Ω,|y|>R0

Ry‖f‖Ln(Ay∩Ω) < ∞ if p ≥ n,

sup
y∈Ω,|y|>R0

R
2−n

p
y ‖f‖Lp(Ay∩Ω) < ∞ if p0 < p < n.

(3.8)

Let 0 < ε < min{ 1
1+η , (σ

4 )1/n}. Then, there exists

C = C(n, λ,Λ, p, q, ε, σ, τ, R0, η) > 0

satisfying the following properties: if w ∈ C(Ω) is an Lp-viscosity subsolution
bounded from above of (2.4) with f ∈ Lp

+(Ω), then it follows that

sup
Ω

w ≤ lim sup
x→∂Ω

w+(x) + C sup
y∈Ω,|y|>R0

Ry‖f‖Ln(Ay∩Ω)

+ CR0 sup
y∈Ω,|y|≤R0

‖f‖Ln(By∩Ω),
(3.9)

provided that p ≥ n, and

sup
Ω

w ≤ lim sup
x→∂Ω

w+(x) + C sup
y∈Ω,|y|>R0

R
2−n

p
y ‖f‖Lp(Ay∩Ω)

M∑
k=0

R
(1−n

q )k
y ‖µ‖k

Lq(Ay∩Ω)

+ CR
2−n

p

0 sup
y∈Ω,|y|≤R0

‖f‖Lp(By∩Ω)

M∑
k=0

R
(1−n

q )k

0 ‖µ‖k
Lq(By∩Ω)

(3.10)
provided that p ∈ (p0, n). Here, Ay = BRy

τ

(zy) \BεRy (0) and By = BRy
τ

(zy).

Proof. We take the supremum over y ∈ Ω with the estimates in Lemma 3.2 to
conclude the inequalities (3.9) and (3.10). �



10 S. KOIKE, K. NAKAGAWA EJDE-2009/146

Remark 3.7. By following our proof of Lemma 3.2 (ii), it is easy to show that
(3.1) implies

sup
y∈Ω,|y|>R0

R
1−n

q
y ‖µ‖Lq(Ay∩Ω) < ∞. (3.11)

To show the ABP maximum principle in unbounded domains corresponding to
the case η = 0, we do not need to assume (3.8) since Ry ≤ R0.

Corollary 3.8. Assume (2.8), (2.5) and (2.6) with µ ∈ Lq
+(Ω). Let Ω ⊂ Rn be

a ĜR0,0
σ,τ domain. Then, there exists C = C(n, λ,Λ, p, q, ε, σ, τ, R0) > 0 satisfying

the following properties: if w ∈ C(Ω) is an Lp-viscosity subsolution bounded from
above of (2.4) with f ∈ Lp

+(Ω), then it follows that (3.9) holds provided p ≥ n, and
that (3.10) holds provided p ∈ (p0, n).

4. Phragmén-Lindelöf theorem

In this section, we show that the weak maximum principle holds for PDEs with
zero-order terms. As before, assuming that Ω is a ĜR0,η

σ,τ domain, for each y ∈ Ω,
we use the notations Ry > 0 and zy ∈ Rn. Also, By and Ay, respectively, denote
BRy

τ

(zy) and BRy
τ

(zy) \BεRy
(0) for ε ∈ (0, 1

2 min{ 1
1+η , (σ

4 )1/n}).

Lemma 4.1. Assume (2.5), (2.8) and (2.6) with µ ∈ Lq
+(Ω) satisfying (3.1). Let

η > 0 and Ω be a ĜR0,η
σ,τ domain. Then, there exists c0 = c0(n, λ,Λ, p, q, σ, τ, R0, η) >

0 satisfying the following property: if c ∈ Ln
+(Ω), w ∈ C(Ω) is an Lp-viscosity so-

lution bounded from above of

F (x,Dw, D2w)− c(x)w+ ≤ 0 in Ω (4.1)

such that
lim sup
x→∂Ω

w(x) ≤ 0, (4.2)

and

K0 := max
{

sup
y∈Ω,|y|>R0

‖ĉ‖Ln(Ay∩Ω), sup
y∈Ω,|y|≤R0

‖c‖Ln(By∩Ω)

}
≤ c0, (4.3)

where ĉ(x) = (1 + |x|2)1/2c(x), then w ≤ 0 in Ω.

Remark 4.2. Instead of (4.3), it is assumed in [8] that

c(x) ≤ c0

1 + |x|2
for x ∈ Ω. (4.4)

Set c(x) = 1
1+|x|2 . We easily see by following an argument in the proof of Lemma

2.4 (ii) that the K0 associated with this c is finite.

Proof. Note that by (2.6) together with Remark 2.2, w is an Ln-viscosity solution
of

P−(D2w)− µ(x)|Dw| − c(x)w+ ≤ 0.

We apply Theorem 3.6 with f = cw+ to obtain that when |y| ≤ R0,

R0‖cw+‖Ln(By∩Ω) ≤ R0 sup
Ω

w+‖c‖Ln(By∩Ω) ≤ R0K0 sup
Ω

w+.

On the other hand, when |y| > R0, we have

Ry‖cw+‖Ln(Ay∩Ω) ≤
Ry√

1 + (εRy)2
sup
Ω

w+‖ĉ‖Ln(Ay∩Ω) ≤
K0

ε
sup
Ω

w+. (4.5)



EJDE-2009/146 REMARKS ON THE PHRAGMÉN-LINDELÖF THEOREM 11

Choosing ε1 = 1
4 min{ 1

1+η , (σ
4 )1/n} for instance, we have

sup
Ω

w ≤ C3 max
{
R0,

1
ε1

}
c0 sup

Ω
w+

for some constant C3 > 0. Taking c0 < 1/(C3 max{R0,
1
ε1
}), we conclude the

proof. �

The next Corollary can be proved exactly same as above by using Corollary 3.8
instead of Theorem 3.6.

Corollary 4.3. Assume (2.5), (2.8) and (2.6) with µ ∈ Lq
+(Ω). Let Ω be a ĜR0,0

σ,τ

domain. Then, there exists c0 = c0(n, λ,Λ, p, q, σ, τ, R0) > 0 satisfying the following
property: if c ∈ Ln

+(Ω) and w ∈ C(Ω) is an Lp-viscosity solution bounded from above
of (4.1) such that (4.2) and (4.3) hold, then w ≤ 0 in Ω.

Theorem 4.4 (Phragmén-Lindelöf theorem). Assume (2.5), (2.8) and (2.6) with
µ ∈ Lq

+(Ω) satisfying (3.1). Let η > 0 and Ω be a ĜR0,η
σ,τ domain. If w ∈ C(Ω) is

an Lp-viscosity solution of

F (x,Dw, D2w) ≤ 0 in Ω (4.6)

such that (4.2) holds and

w+(x) = O(log |x|) as |x| → ∞, (4.7)

then w ≤ 0 in Ω.

Remark 4.5. In [8], it is assumed that w+(x) = O(|x|α) with a constant α > 0 as
|x| → ∞, which is weaker than (4.7). In fact, to deal with unbounded coefficients
(i.e. µ), we will have to use a different function ξ to apply Lemma 2.3. This is the
reason why we suppose a restrictive growth rate (4.7) in comparison with that in
[8].

Proof of Theorem 4.4. Define a positive smooth function

ξ(x) = log(1 + (1 + |x|2)β/2),

where β > 0 will be fixed later, and set u = w/ξ, which is bounded from above. A
straightforward calculation shows that

|Dξ|
ξ

(x) ≤ β

(1 + |x|2)1/2 log(1 + (1 + |x|2)β/2)
=: k1(x),

|D2ξ|
ξ

(x) ≤ βC4

(1 + |x|2) log(1 + (1 + |x|2)β/2)
=: k2(x)

for some C4 > 0. Thus, in view of Lemma 2.3, we see that u is an Ln-viscosity
solution of

P−(D2u)− γ1(x)|Du| − γ2(x)u+ ≤ 0 in Ω,

where

γ1(x) =
h1β

(1 + |x|2)1/2 log(1 + (1 + |x|2)β/2)
+ µ(x) =: γ11(x) + γ12(x)

γ2(x) =
h2βC4

(1 + |x|2) log(1 + (1 + |x|2)β/2)
+

βµ(x)
(log 2)(1 + |x|2)1/2

=: γ21(x) + γ22(x)
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We first show that γ1 satisfies (3.1). Note that we only need to show that γ11 satisfies
(3.1). Setting g(x) = (|x| log |x|)−1 for |x| > 1, we easily show ‖g‖Lq(Bc

t (0)) =
o(t−(1−n

q )) as t →∞, which implies that γ11 satisfies (3.1).
We next show that (4.3) holds for γ2. We shall observe that

K ′
0 := max

{
sup

y∈Ω,|y|>R0

‖γ̂2‖Ln(Ay∩Ω), sup
y∈Ω,|y|≤R0

‖γ2‖Ln(By∩Ω)

}
(4.8)

is small when β → 0, where γ̂2(x) =
√

1 + |x|2γ2(x).
When y ∈ Ω satisfies |y| ≤ R0, we see that By ⊂ BR0(2+η+τ−1(1+η))(0). Thus,

the second term in (4.8) can be small when β > 0 is small enough.
To estimate the first term of (4.8), we note that Ay = By \BεRy

(0) ⊂ BεRy
(0)c

provided ε < 1
2(1+η) . Setting γ̂22(x) =

√
1 + |x|2γ22(x), by (3.1), we can choose

T0 > 1 such that

‖γ̂22‖Lq(Ω\Bt(0)) ≤ βt−(1−n
q ) for t ≥ T0.

Hence, for Ry > A2 := T0
ε , we have

‖γ̂22‖Ln(Ay∩Ω) ≤ C5R
1−n

q
y ‖γ̂22‖Lq(Ay∩Ω) ≤ C5

β

ε
1−n

q

1

for some C5 > 0, where ε1 = 1
4 min{ 1

1+η , (σ
4 )1/n}. If Ry ≤ A2, then we have

‖γ̂22‖Ln(Ay∩Ω) ≤ C6βR
1−n

q
y ‖µ‖Lq(Ω) ≤ C6βA

1−n
q

2 ‖µ‖Lq(Ω)

for some C6 > 0. Thus, in this case, we may suppose that ‖γ̂22‖Ln(Ay∩Ω) is small
by taking small β > 0.

The remaining case is to prove that supy∈Ω,|y|>R0
‖γ̂21‖Ln(Ay∩Ω) is small, where

γ̂21(x) =
√

1 + |x|2γ21(x). To this end, we shall show that for any c0 > 0, there is
small β > 0 such that ‖γ̂21‖Ln(Rn) ≤ c0. Since∫ ∞

t

1
r(log r)n

dr =
1

(n− 1)(log t)n−1
for t > 1,

we can choose T̂ > 1 independent of β > 0 such that ‖γ̂21‖Ln(BT̂ (0)c) ≤ c0/2.
For this fixed T̂ > 0, we can find small β > 0 such that ‖γ̂21‖Ln(BT̂ (0)) ≤ c0/2.
Therefore, using Lemma 4.1 with µ = γ1 and c = γ2, we get u ≤ 0. This concludes
the proof. �

Our Phragmén-Lindelöf theorem for η = 0 is as follows.

Corollary 4.6 (Phragmén-Lindelöf theorem). Assume (2.5), (2.8) and (2.6) with
µ ∈ Lq

+(Ω). Let Ω be a ĜR0,0
σ,τ domain. If w ∈ C(Ω) is an Lp-viscosity solution of

(4.6) such that (4.2) and (4.7) hold, then w ≤ 0 in Ω.

Proof. The only difference from the proof of Theorem 4.4 is how to estimate γ̂22.
However, since Ry ≤ R0, we can show it immediately. �

5. Appendix: A proof of an elementary geometric property

In the proof of Lemma 3.2, the integer N0 might depend on y ∈ Ω such that
|y| > R0 and R := Ry < A1. We shall show that the integer N0 has an upper
bound independent of such y ∈ Ω. To this end, we recall our domains T and T ′ in
this case: T = BR(z) \B2εR(0) and T ′ = BR

τ
(z) \BεR(0).
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We note that the position of (T, T ′) varies depending on the distance of two
centers; |z|.

For t ∈ [0, 1], we denote by (Tt, T
′
t ) the couple (T, T ′) when |z| = (1− t)( 1

τ +2ε).
For instance, T1 and T ′1 are annuli with the common center at z = 0 while T0 =
BR(z) and T ′0 = BR

τ
(z). All the possible positions of (T, T ′) can be found in

{(Tt, T
′
t ) : t ∈ [0, 1]}. For each (Tt, T

′
t ), it is easy to find an integer N0,t ∈ N

satisfying (3.5), (3.6), (3.7) with N0 = N0t.
For any fixed t ∈ [0, 1], we can choose {xi,t}

N0,t

i=1 ⊂ T ′t such that (3.5), (3.6),
(3.7) with N0 = N0,t, xi = xi,t, T = Tt and T ′ = T ′t . We can find δt > 0 such
that (3.5) holds for T = Ts and T ′ = T ′s for s ∈ It := (t − δt, t + δt) ∩ [0, 1]
because (Tt, T

′
t ) changes continuously in t. Since [0, 1] ⊂ ∪t∈[0,1]It, we can choose

a finite set {tk ∈ [0, 1]}L
k=1 such that [0, 1] ⊂ ∪L

k=1Itk
. Therefore, we can take

N̂ := max{N0,tk
: k = 1, 2, . . . , L} as an upper bound for N0.
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[20] Vitolo, A.; On the Phragmén-Lindelöf principle for second-order elliptic equations, J. Math.

Anal. Appl. 300 (2004), 244–259.

Shigeaki Koike

Department of Mathematics, Saitama University, 255 Shimo-Okubo, Sakura, Saitama

338-8570, Japan
E-mail address: skoike@rimath.saitama-u.ac.jp

Kazushige Nakagawa

Department of Mathematics, Saitama University, 255 Shimo-Okubo, Sakura, Saitama
338-8570, Japan

E-mail address: knakagaw@rimath.saitama-u.ac.jp


	1. Introduction
	2. Preliminaries
	3. ABP type estimates
	4. Phragmén-Lindelöf theorem
	5. Appendix: A proof of an elementary geometric property
	Acknowledgements

	References

