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SYMMETRY IN REARRANGEMENT OPTIMIZATION
PROBLEMS

BEHROUZ EMAMIZADEH, JYOTSHANA V. PRAJAPAT

Abstract. This article concerns two rearrangement optimization problems.
The first problem is motivated by a physical experiment in which an elastic

membrane is sought, built out of several materials, fixed at the boundary,

such that its frequency is minimal. We capture some features of the optimal
solutions, and prove a symmetry property. The second optimization prob-

lem is motivated by the physical situation in which an ideal fluid flows over
a seamount, and this causes vortex formation above the seamount. In this

problem we address existence and symmetry.

1. Introduction

In this article, we consider two rearrangement optimization problems which are
physically relevant. A rearrangement optimization problem is referred to an opti-
mization problem where the admissible set is a rearrangement class, see section 2 for
precise definition. In both problems our focus will be on (radial) symmetry. More
precisely, we will show that when the physical domain is a ball then the optimal
solutions will be radial as well.

The first problem is concerned with the following non-linear eigenvalue problem:

−∆pu+ V (x)|u|p−2u = λg(x)|u|p−2u, in Ω
u = 0 on ∂Ω.

(1.1)

Here V and g are given functions, and λ is an eigenvalue. There are some technical
conditions on V and g, but we prefer to delay stating them until section 3. However,
we mention that in case p = 2 and g = 1, (1.1) is the steady state case of an elastic
membrane, fixed around the boundary, made out of various materials (this justifies
placing V in the differential equation). The constant λ denotes the frequency of
the membrane. There are infinitely many eigenvalues, but we are only interested in
the first one, often referred to as the principal eigenvalue, and denote it by λ(g, V )
to emphasize its dependance on g and V . The following variational formulation for
λ(g, V ) is well known:

λ(g, V ) = inf
{ ∫

Ω

(|∇u|p + V (x)|u|p)dx : u ∈W 1,p
0 (Ω),

∫
Ω

g(x)|u|pdx = 1
}
. (1.2)
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Given g0 and V0, we are interested in the following rearrangement optimization
problem

inf
g∈R(g0), V ∈R(V0)

λ(g, V ), (1.3)

where R(g0) and R(V0) are rearrangement classes generated by g0 and V0, respec-
tively. This problem has already been considered in [7], where amongst other results
the authors show (1.3) is solvable, see also [8, 9]. However, here we focus on some
features of optimal solutions, and prove a symmetry result.

The second problem considered in this paper is motivated by fluids flowing over
seamounts. More precisely, it is well accepted that a two dimensional ideal fluid
flowing over a seamount (e.g. hills located at the bottom of an ocean) gives rise to
vortex formation located above seamounts, see [11]. Existence of such flows turns
out to be equivalent to existence of maximizers for certain functionals, representing
some kind of energy, which can be formulated in terms of vorticity function and
the height function. Mathematically, here is the problem we are interested in: Let
us denote by uf ∈W 1,2

0 (Ω) the unique solution of the Poisson differential equation

−∆u = f in Ω
u = 0 on ∂Ω.

Consider the energy functional:

J(f, h) =
1
2

∫
Ω

fuf dx+
∫

Ω

huf dx.

We are interested in the following rearrangement optimization problem:

sup
f∈R(f0), h∈R(h0)

J(f, h). (1.4)

Here f represents the vorticity function and h the hight function (seamount). De-
tails related to (1.4) are given in section 4, where we discuss existence of optimal
solutions for (1.4), and address the question of symmetry. The reader can refer to
[5, 6] for other examples of rearrangement optimization problems.

2. Preliminaries

In this section we review rearrangement theory with an eye on the optimization
problems (1.3) and (1.4). So we only mention results that are going to assist us
with the two optimization problems in question. The reader can refer to [1, 2] for an
extensive account of rearrangement theory. Henceforth, we assume Ω is a smooth
bounded domain in RN , unless stated otherwise.
Definition. Two functions f : (X,Σ1, µ1) → R, g : (Y,Σ2, µ2) → R are said to be
rearrangements of each other if:

µ1({x ∈ X : f(x) ≥ α}) = µ2({x ∈ Y : g(x) ≥ α}), ∀α ∈ R.

In case µi stands for the Lebesgue measure in RN , we replace it with |·|. When f and
g are rearrangements of each other we write f ∼ g. For a fixed f0 : (X,Σ, µ) → R,
the class of rearrangements generated by f0, denoted R(f0), is defined as follows:

R(f0) = {f : f ∼ f0}.
In case Ω is a ball in RN , say centered at the origin, and f : Ω → R is a Lebesgue
measurable function then f∗ : Ω → R and f∗ : Ω → R denote the Schwarz de-
creasing and increasing rearrangements of f . That is, f∗ ∼ f , f∗ ∼ f , and f∗ is
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a radial function which is decreasing as a function of r := ‖x‖, whereas f∗ is a
radial function which is increasing as a function of r. We will use two well known
rearrangement inequalities.

Lemma 2.1 ([10]). Suppose Ω is a ball in RN . Then∫
Ω

f∗g∗ dx ≤
∫

Ω

fg dx ≤
∫

Ω

f∗g∗ dx, (2.1)

where f and g are non-negative functions.

Lemma 2.2 ([4]). Suppose Ω is a ball in RN . For 0 ≤ u ∈W 1,p
0 (Ω), u∗ ∈W 1,p

0 (Ω),
and ∫

Ω

|∇u|p dx ≥
∫

Ω

|∇u∗|p dx. (2.2)

If the equality holds in (2.2), and the set {x ∈ Ω : ∇u(x) = 0, 0 < u(x) < M},
M := ess supΩ u(x), has zero measure, then u = u∗.

The next two results are fundamental tools in studying rearrangement optimiza-
tion problems, see [1, 2].

Lemma 2.3. Let 1 ≤ p < ∞, and q = p
p−1 . Let f0 ∈ Lp(Ω) be a non-trivial

function and g ∈ Lq(Ω). Then there exist f̂ and f in R(f0) such that∫
Ω

fg dx ≤
∫

Ω

fg dx ≤
∫

Ω

f̂g dx. (2.3)

Lemma 2.4. Let 1 ≤ p <∞, and let Ψ : Lp(Ω) → R be strictly convex, and weakly
sequentially continuous. Then Ψ attains a maximum relative to R(f0). Moreover,
if f̂ is a maximizer of Ψ, and g ∈ ∂Ψ(f̂), the subdifferential of Ψ at f̂ , then

f̂ = φ(g), (2.4)

almost everywhere in Ω, where φ is an increasing function unknown a priori.

We close this section with the following definition.
Definition. Given a measurable function f : Ω → R, the distribution function of
f is defined by:

µf (α) = |{x ∈ Ω : f(x) ≥ α}|.
The function f∆ : [0, |Ω|] → R defined by

f∆(s) = inf{α : µf (α) ≤ s}
is called the decreasing rearrangement of f . On the other hand, f∆ : [0, |Ω|] → R,
the increasing rearrangement of f , is defined as follows:

f∆(s) = f∆(|Ω| − s).

3. Study of Problem (1.3)

This section is devoted to problem (1.3). We begin by introducing the function
space:

S = {(g, V ) ∈ L∞+ (Ω)× L∞+ (Ω) : g(x) ≥ A > 0, ‖V ‖∞ <
A

Cp(A+ ‖g‖∞)
},

where A is a positive constant, and Cp is the constant in the Poincarè inequality:∫
Ω

|u|p dx ≤ Cp

∫
Ω

|∇u|p dx, u ∈W 1,p
0 (Ω).
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Next, we fix (g0, V0) ∈ S, and let R(g0) and R(V0) to denote the rearrangement
classes generated by g0 and V0, respectively. Note that from the definition of
rearrangements, it readily follows that R(g0)×R(V0) ⊂ S.

The question of existence of (optimal) solutions of (1.3) has already been ad-
dressed in [7, 8, 9]; where amongst other results the following result is proved.

Lemma 3.1. (a) Problem (1.3) is solvable; that is, there exists (ĝ, V̂ ) ∈ R(g0) ×
R(V0) such that

λ(ĝ, V̂ ) = inf
g∈R(g0), V ∈R(V0)

λ(g, V ).

(b) If (ĝ, V̂ ) is an optimal solution of (1.3), then

ĝ = φ(û), a.e. in Ω, (3.1)

V̂ = ψ(û), a.e. in Ω, (3.2)

where φ and ψ are increasing and decreasing functions unknown a priori. Here û
stands for the unique eigenfunction corresponding to λ(ĝ, V̂ ).

Let us point out some consequences of (3.1) and (3.2) before addressing the
question of symmetry.

Lemma 3.2. Suppose (ĝ, V̂ ) is an optimal solution of (1.3). Then

(a) The function û attains its smallest values on the support of V̂ := {x ∈ Ω :
V̂ > 0}. In fact, for some t > 0,

{x ∈ Ω : V̂ > 0} = {x ∈ Ω : û < t} . (3.3)

(b) In case Ω is simply connected, the support of V̂ is a connected tubular
domain around ∂Ω.

(c) The functions φ and ψ in (3.1) and (3.2) can be formulated as follows:

φ = ĝ∆(µû), ψ = ĝ∆(µû).

Proof. (a) From (3.2), we obtain

{x ∈ Ω : V̂ > 0} = V̂ −1(0,∞) = û−1(ψ−1(0,∞)).

Since ψ is decreasing, ψ−1(0,∞) must be an interval of the form (−∞, t) or (−∞, t],
for some t ∈ R. Clearly the assertion is proved once we show that the set E := {x ∈
Ω : û = t} has zero measure, since it is obvious that t can not be a non-positive
constant. Let us assume the contrary and derive a contradiction. Specializing the
differential equation (1.1) to the set E, we get:

V̂ (x)ûp−1 = λ(ĝ, V̂ )ĝ(x)ûp−1, in E.

Since û is positive in Ω, in turn, we get V̂ (x) = λ̂ĝ(x), where we have replaced
λ(ĝ, V̂ ) by λ̂, for simplicity. We show that this last equation can not hold. To see
this observe that:

λ̂ =
∫

Ω

(|∇û|p + V̂ (x)ûp) dx ≥
∫

Ω

|∇û|p dx. (3.4)

On the other hand, since û is a normalized function, we have

1 =
∫

Ω

ĝûp dx ≤ ‖g0‖∞,
∫

Ω

ûp dx ≤ Cp‖g0‖∞,
∫

Ω

|∇û|p dx,
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hence ∫
Ω

|∇û|p dx ≥ 1
Cp‖g0‖∞

. (3.5)

Thus, from (3.4) and (3.5), we infer

λ̂ ≥ 1
Cp‖g0‖∞

.

This, in turn, implies λ̂ĝ − V̂ > 0, thanks to the facts that ĝ ≥ A, and ‖V ‖∞ <
A

Cp(A+‖g‖∞) . This completes the proof of part (a).

(b) Since û = 0 on ∂Ω, and û ∈ C(Ω), it follows from part (a) that {x ∈ Ω :
V̂ (x) > 0} contains a tubular domain around ∂Ω. To show that {x ∈ Ω : V̂ (x) > 0}
is connected, it suffices to show that the boundary of every component of the
support of V̂ must intersect ∂Ω. To derive a contradiction, we assume the contrary.
Let us assume E is a component of the support of V̂ such that ∂E ∩ ∂Ω is empty.
From part (a), we observe that ∂E ⊆ {x ∈ Ω : û = t}, for some positive t. We
set w(x) := û(x) − t, so −∆pw = −∆pû = (λ̂ĝ − V̂ )ûp−1 > 0, in E. In addition,
w(x) = 0, for x ∈ ∂E. Therefore, by the strong maximum principle, we derive
w(x) > 0, in E. Hence, û > t in E, which is a contradiction to the assertion in part
(a).

(c) We only show φ = ĝ∆(µû), since ψ = ĝ∆(µû) is proved similarly. As in the
proof of part (a), one can show that the graph of û has no flat sections; that is, sets
of the form {x ∈ Ω : û = β} have zero measure. Thus, û∆ is strictly decreasing;
hence, the inverse of û∆ exists and coincides with µû. On the other hand, from
(3.1), we infer ĝ∆ = φ(û)∆. But, φ(û)∆ = φ(û∆), since φ(û) ∼ φ(û∆). Thus, we
have ĝ∆ = φ(û∆), hence ĝ∆(µû) = φ(û∆ ◦ µû) = φ. �

Now we state the main result of this section.

Theorem 3.3. Suppose Ω is a ball centered at the origin. Suppose that (ĝ, V̂ ) is
an optimal solution of (1.3). Then

ĝ = g0
∗, V̂ = (V0)∗, (3.6)

modulo sets of measure zero.

Proof. Again we write λ̂ in place of λ(ĝ, V̂ ). Recall
∫
Ω
ĝûp dx = 1, hence 1 ≤∫

Ω
ĝ∗(û∗)p dx =: γ. Let v = γ−1/pû∗, so

∫
Ω
ĝ∗vp dx = 1. We also have

λ̂ =
∫

Ω

|∇û|p dx+
∫

Ω

V̂ (x)ûp dx

≥
∫

Ω

|∇û∗|p dx+
∫

Ω

V̂ (x)ûp dx

≥
∫

Ω

|∇û∗|p dx+
∫

Ω

V̂∗(x)(û∗)p dx

= γ
( ∫

Ω

|∇v|p dx+
∫

Ω

V̂∗v
p dx

)
≥

∫
Ω

|∇v|p dx+
∫

Ω

V̂∗v
p dx

≥ λ(ĝ∗, V̂∗) ≥ λ̂,

(3.7)
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where in the first inequality we have used Lemma 2.2, and in the second one we
have used Lemma 2.1. Therefore all inequalities in (3.7) are in fact equalities. In
particular, we infer ∫

Ω

|∇û|p dx =
∫

Ω

|∇û∗|p dx,∫
Ω

V̂ ûp dx =
∫

Ω

V̂∗(û∗)p dx,∫
Ω

ĝûp dx =
∫

Ω

ĝ∗(û∗)p dx.

To complete the proof, by [2, Lemma 2.9 and Lemma 2.4 (ii)], it suffices to show
that û = û∗. From

∫
Ω
|∇û|p dx =

∫
Ω
|∇û∗|p dx, in conjunction with Lemma 2.2, we

need to show the set Q = {x ∈ Ω : ∇û = 0, 0 < û(x) < M} has zero measure.
We will achieve this by showing that in fact Q is empty. To this end, fix x0 ∈ Ω,
such that 0 < û(x0) < M . Next we consider the set N := {x ∈ Ω : û(x) ≥
û(x0)}. Since N is a translation of {x ∈ Ω : û∗(x) ≥ û(x0)}, see [4], N is a ball.
Moreover, because of continuity of û, x0 ∈ ∂N . Now let w(x) := û(x) − û(x0),
hence −∆pw(x) = −∆pû(x) > 0, in N , thanks to the fact that (ĝ, V̂ ) ∈ S. Also,
∂N ⊂ {x ∈ Ω : û(x) = û(x0)}. So by the strong maximum principle we see that
w > 0, in the interior of N . Since w(x0) = 0, we can apply the Hopf boundary
point lemma to conclude that ∂w

∂ν (x0) < 0, where ν stands for the outward unit
normal to ∂N at x0. This, in turn, implies that ∂û

∂ν (x0) < 0, hence ∇û(x0) 6= 0. So
Q is empty, as desired. �

4. Problem (1.4)

In this section we study problem (1.4), where we address both questions of
existence and symmetry. Henceforth we assume 1 ≤ p < ∞, and p > 2N

N+2 , where
N ≥ 2 is the space dimension. We fix two non-negative functions f0 and h0 in
Lp(Ω), and as before let R(f0) and R(h0) denote rearrangement classes generated
by f0 and h0, respectively. The energy functional J : Lp(Ω)×Lp(Ω) → R is defined
by:

J(f, h) =
1
2

∫
Ω

fuf dx+
∫

Ω

huf dx.

Note that J is finite. Indeed, for f, g ∈ Lp(Ω),

|J(f, h)| ≤ 1
2
‖f‖p‖uf‖q + ‖h‖p‖uf‖q,

where q is the conjugate of p; that is, q = p
p−1 . An application of the embedding

W 1,2
0 (Ω) → Lq(Ω), since p > 2N

N+2 , implies

|J(f, h)| ≤ 1
2
C‖f‖2p + C‖h‖p‖f‖p, (4.1)

where C is a positive constant, thus J is finite. Note that from (4.1), we readily
infer that J is bounded on R(f0)×R(h0). Now we prove problem (1.4) is solvable.

Theorem 4.1. Problem (1.4) is solvable; that is, there exists (f, h) ∈ R(f0)×R(h0)
such that

J(f, h) = sup
f∈R(f0), h∈R(h0)

J(f, h) =: I. (4.2)
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Proof. Let (fn, hn) ∈ R(f0) × R(h0) be a maximizing sequence. Since ‖fn‖p =
‖f0‖p and ‖hn‖p = ‖h0‖p, we infer existence of f̂ ∈ R(f0) and ĥ ∈ R(h0) such that

fn ⇀ f̂, hn ⇀ ĥ,

where “⇀” stands for weak convergence in Lp(Ω). Hence we obtain I = J(f̂ , ĥ),
since J is weakly sequentially continuous in Lp(Ω) × Lp(Ω). This, in particular,
implies that J(f̂ , ĥ) ≥ J(f̂ , h), for every h ∈ R(h0). Thus,

1
2

∫
Ω

f̂uf̂ dx+
∫

Ω

ĥuf̂ dx ≥
∫

Ω

f̂uf̂ dx+
∫

Ω

huf̂ dx, ∀h ∈ R(h0).

So,
∫
Ω
ĥuf̂ dx ≥

∫
Ω
huf̂ dx, for every h ∈ R(h0). That is to say, ĥ maximizes the

linear functional l(h) :=
∫
Ω
huf̂ dx, relative to h ∈ R(h0). Hence an application

of Lemma 2.3 implies existence of h ∈ R(h0) such that l(h) ≥ l(h), relative to
h ∈ R(h0). By continuity of l : Lp(Ω) → R, we obtain l(h) ≥ l(h), for every
h ∈ R(h0), the weak closure ofR(h0) in Lp(Ω). In particular, we deduce l(h) ≥ l(ĥ),
hence we must have l(h) = l(ĥ). Whence

J(f̂ , ĥ) =
1
2

∫
Ω

f̂uf̂ dx+
∫

Ω

ĥuf̂ dx =
∫

Ω

f̂uf̂ dx+
∫

Ω

huf̂ dx.

Next, we introduce Φ : Lp(Ω) → R by

Φ(f) =
1
2

∫
Ω

fuf dx+
∫

Ω

huf dx.

It is easy to check that Φ is strictly convex, weakly sequentially continuous in
Lp(Ω). Hence, by Lemma 2.4, Φ has a maximizer, say f , relative to R(f0). By
weak continuity of Φ we deduce Φ(f) ≥ Φ(f̂). Thus,

J(f, h) = Φ(f) ≥ Φ(f̂) =
1
2

∫
Ω

f̂uf̂ dx+
∫

Ω

huf̂ dx = J(f̂ , ĥ) ≥ J(f, h).

Therefore, J(f, h) = I. Hence (f, h) ∈ R(f0)×R(h0) is an optimal solution of the
problem (1.4), as desired. �

Corollary 4.2. Let (f, h) be an optimal solution of (1.4), and assume |{x ∈:
f0(x) > 0}| < |Ω|. Then ∂{x ∈ Ω : f(x) > 0}, boundary of the support of f , does
not intersect ∂Ω.

Proof. Since (f, h) is a solution of (1.4), we deduce, in particular, that J(f, h) ≥
J(f, h), for every f ∈ R(f0). That is, f maximizes J(f, h) relative to f ∈ R(f0).
The functional J(·, h) is strictly convex, and weakly sequentially continuous in
Lp(Ω). For fixed g ∈ Lp(Ω), and t > 0, it is straightforward to obtain

J(f + tg, h) = J(f, h) + t

∫
Ω

fug dx+
1
2
t2

∫
Ω

gug dx+ t

∫
Ω

hug dx

= J(f, h) + t

∫
Ω

(f + h)ug dx+
1
2
t2

∫
Ω

gug dx.

This, in turn, implies, ∂1J(f, h), the subdifferential of J at f̂ , for fixed h, can be
identified with uf+h; note that this is a consequence of the following symmetry:∫

Ω

(f + h)ug dx =
∫

Ω

guf+h dx.
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Now we can apply Lemma 2.4 to deduce that f = φ(uf+h), almost everywhere in
Ω, for some increasing function φ. Hence, the largest values of uf+h are obtained
on {x ∈ Ω : f(x) > 0}. On the other hand, we know that uf+h vanishes on ∂Ω,
hence ∂{x ∈ Ω : f(x) > 0} must avoid ∂Ω, as desired. �

We need the following lemma before stating our symmetry result.

Lemma 4.3. Let Ω be a ball centered at the origin, and f ∈ Lp(Ω). Suppose
u∗f (0) = uf∗(0). Then u∗f (x) = uf∗(x) in Ω.

Proof. Let us denote the distribution function of uf by µ(t); that is,

µ(t) = |{x ∈ Ω : uf (x) ≥ t}|, 0 ≤ t ≤M := sup
Ω

uf .

It is well known that the function

ξ(t) :=
1

N2C
2/N
N

(−µ′(t))µ(t)−2+2/N

∫ µ(t)

0

f∆(s) ds,

where CN is the measure of the the N -dimensional unit ball, satisfies ξ(t) ≥ 1 and∫ u∗f (x)

0

ξ(t) dt = uf∗(x), (4.3)

see [12]. We claim ξ(t) ≡ 1. To prove the claim we assume the contrary and derive
a contradiction. To this end, we assume ξ(t) > 1 on a set of positive measure.
Then, from (4.3), we obtain

uf∗(0) =
∫ u∗f (0)

0

ξ(t) dt > u∗f (0).

This is a contradiction to our hypothesis that uf∗(0) = u∗f (0). Thus we must have
ξ(t) ≡ 1. This, in conjunction with (4.3), implies

uf∗(x) =
∫ u∗f (x)

0

ξ(t) dt =
∫ u∗f (x)

0

dt = u∗f (x).

This completes the proof of the lemma. �

Our symmetry result is the following, compare with [3].

Theorem 4.4. Let Ω be a ball centered at the origin. Let (f, h) be an optimal
solution of (1.4). Then

f = f∗0 , h = h∗0. (4.4)

In particular, we deduce that (1.4) has a unique solution, (f∗0 , h
∗
0).
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Proof. From [12], we know u∗f ≤ uf∗ . Hence, we have

J(f, h) =
∫

Ω

fuf dx+
∫

Ω

huf dx

≤
∫

Ω

f∗u∗f dx+
∫

Ω

huf dx

≤
∫

Ω

f∗uf∗ dx+
∫

Ω

huf dx

≤
∫

Ω

f∗uf∗ dx+
∫

Ω

h∗u∗f

≤
∫

Ω

f∗uf∗ dx+
∫

Ω

h∗uf∗ dx

= J(f∗, h∗) ≤ J(f, h)

(4.5)

where in the first and third inequalities we have used Lemma 2.1, whereas the last
inequality follows from the optimality of (f, h). Hence, all inequalities in (4.5) are
in fact equalities. This, in turn, implies∫

Ω

f∗u∗f dx =
∫

Ω

f∗uf∗ dx, (4.6)∫
Ω

h∗u∗f dx =
∫

Ω

h∗uf∗ . (4.7)

From (4.6), we derive
∫
Ω
f∗(uf∗ − u∗f ) dx = 0. So, we must have uf∗(x) = u∗f (x),

for every x in the support of f∗, thanks to the fact that u∗f ≤ uf∗ . Hence, in
particular, uf∗(0) = u∗f (0). Now we can apply Lemma 4.3 to deduce u∗f = uf∗ ,
in Ω. Note that from (4.5), we get

∫
Ω
fuf dx =

∫
Ω
f∗u∗f dx. This coupled with

u∗f = uf∗ yield
∫
Ω
fuf dx =

∫
Ω
f∗uf∗ dx. This clearly implies

∫
Ω
|∇uf |2 dx =∫

Ω
|∇uf∗ |2 dx =

∫
Ω
|∇u∗f |2 dx. Similarly to the proof of Theorem 3.3, one can show

that the set {x ∈ Ω : ∇uf (x) = 0, 0 < uf (x) < M} is empty, hence its measure is
zero. Therefore by Lemma 2.2, we infer uf = u∗f . Whence, uf = uf∗ , which implies
that f = f∗ = f∗0 . Along the same lines as above one can show that (b) implies
h = h∗ = h∗0, as desired. �
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