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TRIPLE SOLUTIONS FOR MULTI-POINT BOUNDARY-VALUE
PROBLEM WITH p-LAPLACE OPERATOR

HAITAO LI, YANSHENG LIU

Abstract. Using a fixed point theorem due to Avery and Peterson, this article

shows the existence of solutions for multi-point boundary-value problem with
p-Laplace operator and parameters. Also, we present an example to illustrate

the results obtained.

1. Introduction

During the previous two decades, boundary-value problems for second-order dif-
ferential equations with p-Laplace operator have been extensively studied and a lot
of excellent results have been established by using fixed point index theory, upper
and lower solution arguments, fixed point theorem like Leggett-Williams multiple
fixed point theorem and so on (see [2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and references
therein). For example, Ma, Du and Ge [10] studied the following boundary-value
problem (BVP, for short) with p-Laplace operator

(ϕp(u′(t)))′ + q(t)f(t, u(t)) = 0, t ∈ (0, 1);

u′(0) =
n∑

i=1

αiu
′(ξi), u(1) =

n∑
i=1

βiu(ξi),

where ϕp(s) = |s|p−2s, p > 1, ϕ−1
p = ϕq, 1

p + 1
q = 1, and 0 < ξ1 < ξ2 < · · · < ξn < 1.

The nonlinearity f is not depending on u′. Using the upper and lower solutions
method, they obtained sufficient conditions for the existence of one positive solution.

Lv, O’Regan and Zhang [9] considered the following boundary-value problem
(BVP) with p-Laplace operator

(ϕp(y′(t)))′ + q(t)f(y(t)) = 0, t ∈ [0, 1];

y(0) = y(1) = 0.

By Leggett-Williams multiple fixed point theorem, they provided sufficient condi-
tions for the existence of multiple (at least three) positive solutions.
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Recently Ji, Tian and Ge [8] studied the following boundary-value problem, in
which the nonlinearity contains u′,

(ϕp(u′(t)))′ + λf(t, u(t), u′(t)) = 0, t ∈ (0, 1);

u′(0) =
n∑

i=1

αiu
′(ξi), u(1) =

n∑
i=1

βiu(ξi).
(1.1)

Applying Krasnosel’skii fixed point theorem, they obtained the existence of at least
one positive solution.

Wang and Ge [13] studied the multi-point boundary-value problem

(ϕp(u′(t)))′ + q(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1);

u(0) =
n∑

i=1

αiu(ξi), u(1) =
n∑

i=1

βiu(ξi).

Using the fixed point theorem due to Avery and Peterson, they provided sufficient
conditions for the existence of multiple positive solutions.

Motivated by [8, 13], we investigate (1.1). We study boundary value conditions
that are different from those in [9, 13]. We obtain three solutions by the fixed
point theorem due to Avery and Peterson, which is different from the methods in
[8, 9, 10]. To the best of our knowledge, (1.1) has not been studied via this fixed
point theorem.

This article is organized as follows. Section 2 gives some preliminaries. Section 3
is devoted to the existence of triple solutions for (1.1). Finally an example is shown
to illustrate the results obtained. Now, we give some notation which will be used
later.

Let X = C1[0, 1] be a Banach space with the norm

‖u‖ = max
{

max
t∈[0,1]

|u(t)|, max
t∈[0,1]

|u′(t)|
}
.

A function u(t) is called a positive solution of (1.1) if u ∈ X, satisfies (1.1) and
u(t) > 0 for t ∈ (0, 1). Let

C∗[0, 1] = {u ∈ X : u(t) ≥ 0, u′(t) ≤ 0, u′(t) is nonincreasing for t ∈ [0, 1]},
P = {u ∈ X : u(t) ≥ 0, u′(t) ≤ 0, u′(t) is concave on t ∈ [0, 1]}.

It is easy to see P is a cone of X.
In this paper, we assume the following hypotheses:

(H1) αi, βi ≥ 0, 0 <
∑n

i=1 αi,
∑n

i=1 βi < 1.
(H2) f ∈ C([0, 1]× [0,+∞)× (−∞, 0], [0,+∞)).

2. Preliminaries

In this section, we provide some background definitions from the study of cone
in Banach spaces; see for example [4].

Let (E, ‖ · ‖) be a real Banach space. A nonempty, closed, convex set P ⊆ E is
said to be a cone provided the following two conditions are satisfied:

(a) if y ∈ P and λ ≥ 0, then λy ∈ P ;
(b) if y ∈ P and −y ∈ P , then y = 0.
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If P ⊆ E is a cone, we denote the order induced by P on E by ≤, that is, x ≤ y
if and only if y − x ∈ P .

A map α is said to be a nonnegative continuous concave functional on a cone P
of a real Banach space E, provided that α : P → [0,+∞) is continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P and 0 ≤ t ≤ 1.
Similarly, we say a map β is a nonnegative continuous convex functional on a

cone P of a real Banach space E, provided that β : P → [0,+∞) is continuous and

β(tx+ (1− t)y) ≤ tβ(x) + (1− t)β(y)

for all x, y ∈ P and 0 ≤ t ≤ 1.
Let γ and θ be nonnegative continuous convex functionals on P , α be a non-

negative continuous concave functional on P , and ψ be a nonnegative continuous
functional on P . Then for positive real numbers a, b, c and d, we define the following
convex sets:

P (γ, d) = {x ∈ P |γ(x) < d},
P (γ, α, b, d) = {x ∈ P |b ≤ α(x), γ(x) ≤ d},

P (γ, θ, α, b, c, d) = {x ∈ P |b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},

and a closed set

R(γ, ψ, a, d) = {x ∈ P |a ≤ ψ(x), γ(x) ≤ d}.

The following fixed point theorem is fundamental in the proofs of our main
results.

Lemma 2.1 ([1]). Let P be a cone in a real Banach space E. Let γ and θ be
nonnegative continuous convex functionals on P , α be a nonnegative continuous
concave functional on P , and ψ be a nonnegative continuous functional on P sat-
isfying ψ(λx) ≤ λψ(x) for 0 ≤ λ ≤ 1, such that for some positive numbers L and
d,

α(x) ≤ ψ(x) and ‖x‖ ≤ Lγ(x),∀x ∈ P (γ, d).

Suppose T : P (γ, d) → P (γ, d) is completely continuous, and there exist positive
numbers a, b, and c with a < b such that

(S1) {x ∈ P (γ, θ, α, b, c, d)|α(x) > b} 6= ∅ and α(Tx) > b for x ∈ P (γ, θ, α, b, c, d)
(S2) α(Tx) > b for x ∈ P (γ, α, b, d) with θ(Tx) > c
(S3) 0 /∈ R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, d) such that γ(xi) ≤ d for
i = 1, 2, 3; b < α(x1); a < ψ(x2) with α(x2) < b; ψ(x3) < a.

To prove the main results in this paper, we will employ the following lemmas.

Lemma 2.2 ([8]). Assume (H1)-(H2), and let

k =
ϕp(

∑n
i=1 αi)

1− ϕp(
∑n

i=1 αi)
.

For x ∈ C∗[0, 1], if u(t) is a solution of the problem

(ϕp(u′(t)))′ + λf(t, x(t), x′(t)) = 0, t ∈ (0, 1);
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u′(0) =
n∑

i=1

αiu
′(ξi), u(1) =

n∑
i=1

βiu(ξi),

then

u(t) = −
∑n

i=1 βi

∫ 1

ξi
ϕq(Ax−

∫ s

0
λf(r, x(r), x′(r))dr)ds

1−
∑n

i=1 βi

−
∫ 1

t

ϕq(Ax−
∫ s

0

λf(r, x(r), x′(r))dr)ds,

(2.1)

where Ax ∈ [−kλ
∫ 1

0
f(s, x(s), x′(s))ds, 0] is unique and satisfies

ϕq(Ax) =
n∑

i=1

αiϕq(Ax−
∫ ξi

0

λf(s, x(s), x′(s))ds), (2.2)

Define the operator T by

(Tu)(t) = −
∑n

i=1 βi

∫ 1

ξi
ϕq(Au−

∫ s

0
λf(r, u(r), u′(r))dr)ds

1−
∑n

i=1 βi

−
∫ 1

t

ϕq(Au−
∫ s

0

λf(r, u(r), u′(r))dr)ds.

Then by Lemma 2.2 it is easy to see u(t) is a solution of (1.1) if and only if
u(t) = (Tu)(t).

Lemma 2.3 ([8]). For each λ > 0, the operator T : P → P is completely continu-
ous.

Now we give an important property of Ax defined by (2.1).

Lemma 2.4. Assume (H1) holds. Then for each x ∈ C∗[0, 1], τ ∈ (0, ξ1),

ϕp(
∑n

i=1 αi)
1− ϕp(

∑n
i=1 αi)

∫ ξ1

τ

λf(r, x(r), x′(r))dr ≤ −Ax ≤ k

∫ 1

0

λf(r, x(r), x′(r))dr.

(2.3)

Proof. By (2.1), we have

ϕq(Ax) =
n∑

i=1

αiϕq(Ax−
∫ ξi

0

λf(s, x(s), x′(s))ds)

≥
n∑

i=1

αiϕq(Ax−
∫ 1

0

λf(s, x(s), x′(s))ds),

and

ϕq(Ax) =
n∑

i=1

αiϕq(Ax−
∫ ξi

0

λf(s, x(s), x′(s))ds)

≤
n∑

i=1

αiϕq(Ax−
∫ ξ1

τ

λf(s, x(s), x′(s))ds).

From the increasing property of ϕq and the two inequalities above, it is easy to get
the conclusion. �



EJDE-2009/150 TRIPLE SOLUTIONS 5

Set

m :=
2

1
q−1 + 1
ξ1

, l :=

(m+1)ξ1

2
1

q−1
+ ξ−m

1

2
,

N :=
∑n

i=1 βi(1− ξi) + (1−
∑n

i=1 βi)(1− ξ1)
1−

∑n
i=1 βi

.

Choose an τ ∈ (0, ξ1) such that l−1/m < τ < ξ1, and define the functionals:

γ(x) = ψ(x) := ‖x‖, θ(x) := max
t∈[0,τ ]

|x′(t)|, α(x) := min
t∈[τ,ξ1]

x(t), ∀x ∈ P. (2.4)

Then it is easy to get the following lemma.

Lemma 2.5. The four functionals defined by (2.4) satisfy Lemma 2.1. In addition,
for each x ∈ P , θ(x) = −x′(τ), α(x) = x(ξ1), γ(x) = ψ(x) = x(0).

3. Main Results

First we state the following hypotheses to be used in this article.
(H3) There exists a positive constant H such that

f(t, u, v) < ltmϕp(|u|+ |v|),
for t ∈ [0, 1] and (u, v) ∈ R2 satisfying 0 ≤ |u|+ |v| ≤ H.

(H4) There exist positive constants b, d such that

max{ 1
1− ξ1

,
1

2lq−1
,

1
N
}b < d ≤ 1

2
H,

f(t, u, v) > ϕp(b), for (t, u, v) ∈ [τ, ξ1]× [b, d]× [−d, 0].

Now we are ready to state our main results.

Theorem 3.1. Assume (H1)-(H4). Let

M =
1−

∑n
i=1 βiξi

(1−
∑n

i=1 βi)ϕq(1− ϕp(
∑n

i=1 αi))
.

Then for each λ satisfying
1

ξ1M
1

q−1
≤ λ ≤ 1

1
m+12

1
q−1 lM

1
q−1

, (3.1)

and a ∈ (0, b), Equation (1.1) has at least three solutions x1(t), x2(t), x3(t) satisfying
(i) ‖xi‖ ≤ d, i = 1, 2, 3;
(ii) b < min{|x1(t)||t ∈ [0, τ ]};
(iii) ‖x2‖ > a, min{x2(t)|t ∈ [0, τ ]} < b;
(iv) ‖x3‖ < a.

Proof. We divide the proof of this theorem in four steps.
Step 1. Let us show T : P (γ, d) → P (γ, d). In fact, for any u ∈ P (γ, d), it is

not difficult to see
‖Tu‖ = max{(Tu)(0),−(Tu)′(1)}. (3.2)

From (2.3), (3.1), and (H3), we obtain

(Tu)(0) = −
∑n

i=1 βi

∫ 1

ξi
ϕq(Au−

∫ s

0
λf(r, u(r), u′(r))dr)ds

1−
∑n

i=1 βi
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−
∫ 1

0

ϕq(Au−
∫ s

0

λf(r, u(r), u′(r))dr)ds

≤ −
∑n

i=1 βi

∫ 1

ξi
ϕq(−k

∫ 1

0
λf(r, u(r), u′(r))dr −

∫ s

0
λf(r, u(r), u′(r))dr)ds

1−
∑n

i=1 βi

−
∫ 1

0

ϕq(−k
∫ 1

0

λf(r, u(r), u′(r))dr −
∫ s

0

λf(r, u(r), u′(r))dr)ds

≤ λq−1 1−
∑n

i=1 βiξi
(1−

∑n
i=1 βi)ϕq(1− ϕp(

∑n
i=1 αi))

ϕq

( ∫ 1

0

f(r, u(r), u′(r))dr
)

< (
1

m+ 1
)q−12λq−1lq−1M‖u‖

≤ (
1

m+ 1
)q−12λq−1lq−1Md ≤ d

and

−(Tu)′(1) = −ϕq(Au−
∫ 1

0

λf(r, u(r), u′(r))dr)

≤ ϕq(
∫ 1

0

λf(r, u(r), u′(r))dr +
∫ s

0

λf(r, u(r), u′(r))dr)

≤ λq−1 1
ϕq(1− ϕp(

∑n
i=1 αi))

ϕq(
∫ 1

0

f(r, u(r), u′(r))dr)

< (
1

m+ 1
)q−12λq−1lq−1 1

ϕq(1− ϕp(
∑n

i=1 αi))
‖u‖ ≤ d.

Thus ‖Tu‖ = max{(Tu)(0),−(Tu)′(1)} ≤ d. Hence T : P (γ, d) → P (γ, d).
Step 2. Check condition (S1) of Lemma 2.1. Choose an integer w > 0 such that

max{ 1
1−ξ1

, 1
N } < w ≤ d

b . Set u(t) = wb(1− t). Then

b < θ(u) = wb, γ(u) = wb ≤ d, b < α(u) = wb(1− ξ1) < wb.

Therefore, u(t) = wb(1 − t) ∈ P (γ, θ, α, b, wb, d), and α(u) > b. This guarantees
that {u ∈ P (γ, θ, α, b, wb, d)|α(u) > b} 6= ∅. For any u ∈ P (γ, θ, α, b, wb, d), it is
easy to see

b ≤ u(t) ≤ d, −d ≤ u′(t) ≤ 0, ∀t ∈ [τ, ξ1].

Thus by (H4), f(t, u(t), u′(t)) > ϕp(b).
By Lemma 2.2 and Lemma 2.3, it is not difficult to see

α(Tu) = (Tu)(ξ1)

= −
∑n

i=1 βi

∫ 1

ξi
ϕq(Au−

∫ s

0
λf(r, u(r), u′(r))dr)ds

1−
∑n

i=1 βi

−
∫ 1

ξ1

ϕq(Au−
∫ s

0

λf(r, u(r), u′(r))dr)ds

≥
∑n

i=1 βi

∫ 1

ξi
ϕq(k

∫ ξ1

0
λf(r, u(r), u′(r))dr +

∫ s

0
λf(r, u(r), u′(r))dr)ds

1−
∑n

i=1 βi

+
∫ 1

ξ1

ϕq(k
∫ ξ1

0

λf(r, u(r), u′(r))dr +
∫ s

0

λf(r, u(r), u′(r))dr)ds
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≥ λq−1 1−
∑n

i=1 βiξi
(1−

∑n
i=1 βi)ϕq(1− ϕp(

∑n
i=1 αi))

ϕq(
∫ ξ1

τ

f(r, u(r), u′(r))dr)

> λq−1ξq−1
1 Mb ≥ b.

This shows that condition (S1) of Lemma (2.1) is satisfied.
Step 3. Examine (S2) of Lemma 2.1. For any u ∈ P (γ, α, b, d) with θ(Tu) > wb,

we know

θ(Tu) = −(Tu)′(τ) = ϕq

( ∫ τ

0

λf(r, u(r), u′(r))dr −Au
)
> wb. (3.3)

Therefore by (2.3) and (3.3),

α(Tu) = (Tu)(ξ1)

= −
∑n

i=1 βi

∫ 1

ξi
ϕq(Au−

∫ s

0
λf(r, u(r), u′(r))dr)ds

1−
∑n

i=1 βi

−
∫ 1

ξ1

ϕq(Au−
∫ s

0

λf(r, u(r), u′(r))dr)ds

≥

∑n
i=1 βi

∫ 1

ξi
ϕq

(
k

∫ τ

0
λf(r, u(r), u′(r))dr −Au

)
ds

1−
∑n

i=1 βi

+
∫ 1

ξ1

ϕq(k
∫ τ

0

λf(r, u(r), u′(r))dr −Au)ds

=
∑n

i=1 βi(1− ξi) + (1−
∑n

i=1 βi)(1− ξ1)
1−

∑n
i=1 βi

ϕq(
∫ τ

0

λf(r, u(r), u′(r))dr −Au)

> Nwb > b.

Thus, condition (S2) of Lemma (2.1) is satisfied.
Step 4. Finally we show (S3) of Lemma 2.1 holds. Since ψ(0) = 0 < a, we

know 0 /∈ R(γ, ψ, a, d). For each u ∈ R(γ, ψ, a, d), ψ(u) = ‖u‖ = a, by (2.3), (3.1),
and (H3), we obtain

(Tu)(0) = −
∑n

i=1 βi

∫ 1

ξi
ϕq(Au−

∫ s

0
λf(r, u(r), u′(r))dr)ds

1−
∑n

i=1 βi

−
∫ 1

0

ϕq(Au−
∫ s

0

λf(r, u(r), u′(r))dr)ds

≤ λq−1 1−
∑n

i=1 βiξi
(1−

∑n
i=1 βi)ϕq(1− ϕp(

∑n
i=1 αi))

ϕq

( ∫ 1

0

f(r, u(r), u′(r))dr
)

< (
1

m+ 1
)q−12λq−1lq−1M‖u‖

= (
1

m+ 1
)q−12λq−1lq−1Ma ≤ a

and

−(Tu)′(1) = −ϕq(Au−
∫ 1

0

λf(r, u(r), u′(r))dr)

≤ ϕq(k
∫ 1

0

λf(r, u(r), u′(r))dr +
∫ s

0

λf(r, u(r), u′(r))dr)
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≤ λq−1 1
ϕq(1− ϕp(

∑n
i=1 αi))

ϕq

( ∫ 1

0

f(r, u(r), u′(r))dr
)

< (
1

m+ 1
)q−12λq−1lq−1 1

ϕq(1− ϕp(
∑n

i=1 αi))
‖u‖ ≤ a.

Therefore,
ψ(u) = ‖u‖ = max{(Tu)(0),−(Tu)′(1)} < a.

So condition (S3) of Lemma (2.1) is satisfied. Thus an application of Lemma
2.1 implies that the boundary value problem (1.1) has at least three solutions
x1(t), x2(t), x3(t) satisfying (i)–(iv). �

We remark that in Theorem 3.1, the two solutions x1(t) and x2(t) are positive,
while x3(t) may be the trivial solution.

3.1. Example. Consider the differential equation

(ϕp(u′(t)))′ + λf(t, u(t), u′(t)) = 0, t ∈ (0, 1);

u′(0) =
2∑

i=1

αiu
′(ξi), u(1) =

2∑
i=1

βiu(ξi),
(3.4)

where p = 3/2, q = 3, α1 = α2 = β1 = β2 = 1/4, ξ1 = 0.9, ξ2 = 0.95,

f(t, u, v) = 1.8t10(
√

2+1)/9
√
u+ |v|, (t, u, v) ∈ [0, 1]× [0,+∞)× (−∞, 0].

Choose l = 1.835055448, m = 10(
√

2 + 1)/9, H = 20000, d = 10000, b = 100,
a = 50, τ = 0.88, then by simple calculations, it is easy to show (H1)-(H4) are
satisfied. Therefore, by Theorem 3.1, for 9

√
430/430 ≤ λ ≤ 1.461370837, Equation

(3.4) has at least three solutions.

Acknowledgements. The authors want to thank the anonymous referee for the
suggestions on the paper.
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