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Lp-REGULARITY OF SOLUTIONS TO FIRST
INITIAL-BOUNDARY VALUE PROBLEM FOR HYPERBOLIC

EQUATIONS IN CUSP DOMAINS

NGUYEN MANH HUNG, VU TRONG LUONG

Abstract. In this article, we establish well-posedness and Lp-regularity of

solutions to the first initial-boundary value problem for general higher order

hyperbolic equations in cylinders whose base is a cusp domain.

1. Introduction

Initial boundary-value problems for hyperbolic and parabolic type equations in
a cylinder with base containing conical point have been studied by many authors
[8, 9, 10, 13, 14]. The main results are about the uniqueness and existence of
the solutions, and asymptotic expansions of the solution near a neighborhood of
conical point. Those results are mainly based on Galerkin’s approximate method
and L2-theory.

Boundary-value problems for elliptic type equations and systems have also well
studied. The main results, presented in [6, 15, 19, 20], established estimates in Lp

for solutions of elliptic boundary value problems in domains with singular points
on the boundary.

The question is whether similar results can be obtained based on these results
for initial boundary-value problems for non-stationary equations. In this paper, we
find the answer for this question.

Firstly, we show the existence of a sequence of smooth domains {Ωε}ε>0 such
that Ωε ⊂ Ω and limε→0 Ωε = Ω. Furthermore, we proved existence, uniqueness and
smoothness, with respect to time variable, of the generalized solution by approx-
imating boundary method, which can be applied for non-linear equations. Next,
by modifying the arguments in [19], we take the term containing the derivative in
time of the unknown function to the right-hand side of the equation, such that the
problem can be considered as an elliptic problem. With the help of some auxiliary
results, we apply the estimates in Lp for solution of the elliptic boundary value
problem and our previous estimates to deal with the Lp-regularity with respect to
both of time and spatial variables of the solution. Finally, in order to illustrate the
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results above we show an example for the Cauchy-Dirichlet problem for the beam
equation in cylinder with base containing a cuspidal point.

2. Preliminaries

Let Ω be bounded domain in Rn, n ≥ 2, with boundary ∂Ω. Let p, q be real
numbers with 1 < p, q < +∞ and 1

p + 1
q = 1.

We denote by Wm
p (Ω) the space of all u = u(x), x ∈ Ω that have generalized

derivatives Dαu ∈ Lp(Ω), |α| ≤ m. The norm in this space is defined as∥∥u∥∥
m;p

=
( ∫

Ω

m∑
|α|=0

|Dα
xu|p dx

)1/p

.

In particular, W̊ 0
p (Ω) ≡ Lp(Ω). The space W̊m

p (Ω) is the completion of C∞0 (Ω) in
norm of the space Wm

p (Ω).
Setting QT = Ω × (0, T ), 0 < T < +∞. We introduce the partial differential

operator of order 2m,

L = L(x, t;Dx) =
m∑

|α|,|β|=0

Dα
x

(
aαβ(x, t)Dβ

x

)
, (2.1)

where Dα
x = iα∂α

x , aαβ are s × s− matrices of functions with complex values, and
aαβ are infinitely differentiable in QT and aαβ = a∗αβ , where a∗αβ denotes the
transposed conjugate matrix of aαβ . We have the following Green’s formula∫

Ω

Luv dx = B[u, v; t]

which is valid for all u, v ∈ C∞0 (Ω) and a.e. t ∈ [0, T ), where

B[u, v; t] =
m∑

|α|,|β|=0

∫
Ω

aαβ(., t)Dβ
xuD

α
xv dx.

We also assume the Garding’s inequality,

B[u, u ; t] ≥ γ0‖u‖2W m
2 (Ω) (2.2)

which is valid for all u ∈ W̊m
2 (Ω) and a.e. t ∈ [0, T ), where γ0 is a positive constant

independent of u and t.
Now we introduce spaces on QT . Let Wm,1

p (QT ) be the space consisting of func-
tions u = u(x, t), (x, t) ∈ QT having generalized derivatives Dαu ∈ Lp(QT ), |α| ≤
m, and ut ∈ Lp(QT ), with norm∥∥u∥∥

m,1;p
=

( ∫
QT

m∑
|α|=0

|Dα
xu|p dx dt+

∫
QT

|ut|p dx dt
)1/p

.

The space W̊m,1
p (QT ) is the closure inWm,1

p (QT ) of the set consisting of all functions
in C∞(QT ), which vanish near ST denoting by C∞0 (QT ) for convenience.

We introduce the space W−m,−1
p (QT ) of generalized functions on QT ; it means

that if f ∈W−m,−1
p (QT ), the f admits the representation

f =
∑
|α|≤m

Dα
xf

(α) + f
(t)
t (2.3)
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where f (α), f (t) ∈ Lp(QT ), p ∈ (1,+∞). The norm in W−m,−1
p (QT ) can also be

defined by
‖f‖−m,−1;p = inf

∑
|α|≤m

‖f (α)‖Lp(QT ) + ‖f (t)
t ‖Lp(QT ).

Here the infimum is taken over the set of all representations (2.3). It is known that
W−m,−1

p (QT ) and W̊m,1
q (QT ), q = p

p−1 , are dual to one another. We also define

〈f, η〉 =
∫

QT

fη dx dt, f ∈W−m,−1
p (QT ), η ∈ W̊m,1

q (QT ).

It is clear that

‖f‖−m,−1;p = sup{|〈f, η〉| : η ∈ W̊m,1
q (QT ), ‖η‖m,1;q = 1};

‖η‖m,1;q = sup{|〈f, η〉| : f ∈W−m,−1
p (QT ), ‖f‖−m,−1;p = 1}.

In this paper, we consider the problem

Lu− utt = f in QT , (2.4)

u = 0, ut = 0 on Ω, (2.5)

∂j
νu = 0 on ST , j = 0, 1, . . . ,m− 1, (2.6)

where f : QT → C is a given function and ∂j
νu are derivatives with respect to the

outer unit normal of ST = ∂Ω× (0, T ). Setting

B1[u, η] =
m∑

|α|,|β|=0

∫
QT

aαβD
βuDαη dx dt+

∫
QT

utηt dx dt.

for all u ∈ W̊m,1
p (QT ), η ∈ W̊m,1

q (QT ).

Definition 2.1. Let f ∈ W−m,−1
p (QT ); a function u is called a generalized Lp-

solution of problem (2.4)–(2.6) if and only if u belongs to W̊m,1
p (QT ), u(x, 0) =

ut(x, 0) = 0, and the equality

B1[u, η] = 〈f, η〉 (2.7)

holds for all η ∈ W̊m,1
q (QT ).

To prove uniqueness of the generalized Lp-solution of (2.4) -(2.6), we need to
prove the following lemma.

Lemma 2.2. If 1 < p ≤ 2, then there exists a constant γ2 = γ2(p, n,m, |Ω|, T ) > 0,
such that

sup{
∣∣B1[u, η]

∣∣ : η ∈ W̊m,1
q (QT ), ‖η‖m,1;q ≤ 1} ≥ γ2‖u‖m,1;p, (2.8)

for all u ∈ W̊m,1
p (QT ).

Proof. We prove this result with u ∈ C∞0 (QT ). Suppose that there is no γ2 > 0
such that (2.8) holds. Then there is a sequence {uk} ⊂ C∞0 (QT ) with ‖uk‖m,1;p = 1
and

sup{
∣∣B1[uk, η]

∣∣ : η ∈ W̊m,1
q (QT ), ‖η‖m,1;q ≤ 1} ≤ 1

k
, for every k ≥ 1. (2.9)

Using Garding’ inequality (2.2), we obtain∣∣B1[uk, uk]
∣∣ ≥ γ0‖uk‖2m,0;2 +

∫
QT

|ukt|2 dx dt ≥ c1‖u‖2m,1;2. (2.10)
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On the other hand, by using Hölder’s inequality with 1 < p < 2, p∗ = 2
p , q∗ = 2

2−p ,
we have

‖uk‖p
m,1;p =

m∑
|α|=0

∫
QT

|Dα
xu|p dx dt+

∫
QT

|ut|p dx dt ≤ C2‖uk‖p
m,1;2, (2.11)

where C2 = C2(p, |Ω|, T ) > 0. Combining (2.10) and (2.11), we obtain∣∣B1[uk, uk]
∣∣ ≥ C‖uk‖2m,1;p,

where c is a constant independent of k. From the above inequality and (2.9), we
have

‖uk‖2m,1;p ≤
1
k C

, for k = 1, 2, . . . .

which contradicts ‖uk‖m,1;p = 1. Therefore, there is a constant γ2 > 0 such that
(2.8) holds. Since u ∈ C∞0 (QT ) which is dense in W̊m,1

p (QT ), this completes the
proof. �

Lemma 2.2 implies the uniqueness of generalized Lp-solution, according to the
following theorem.

Theorem 2.3. Assume that coefficients of operator (2.1) satisfy (2.2) and f ∈
W−m,−1

p (QT ). Then (2.4) -(2.6) has at most one generalized Lp-solution.

Proof. Firstly, we prove the theorem in the case 1 < p ≤ 2. Suppose that (2.4)-(2.6)
has two generalized Lp-solutions u1, u2. Put u = u1 − u2, then (2.7) implies that

B1[u, η] =
m∑

|α|,|β|=0

∫
QT

aαβ(x, t)Dβ
x uD

α
xη dx dt+

∫
QT

ut ηt dx dt = 0

holds for all η ∈ W̊m,1
q (QT ). Combining inequality (2.8) with the above equality,

we obtain

γ2‖u‖m,1;p ≤ sup{
∣∣B1[u, η]

∣∣ : η ∈ W̊m,1
q (QT ), ‖η‖m,1;q ≤ 1} = 0.

Next, we prove the theorem in the case p > 2. Since p > 2, and QT is bounded,
we have W̊m,1

p (QT ) ↪→ W̊m,1
2 (QT ). Therefore, if u is a generalized Lp-solution,

and then u is a generalized L2-solution. We obtain the uniqueness of a generalized
Lp-solution from the uniqueness of a generalized L2-solution. Hence, u ≡ 0 in QT .
This completes the proof of theorem. �

Next, we prove the approximate boundary lemma, which is the essential tool in
solving (2.4) -(2.6).

Lemma 2.4 ([12]). Let Ω be a bounded domain in Rn; then there exists a sequence
of smooth domains {Ωε} such that Ωε ⊂ Ω and limε→0 Ωε = Ω.

Proof. For ε > 0 arbitrary, set Sε = {x ∈ Ω : dist(x, ∂Ω) ≤ ε},Ωε = Ω \ Sε and
∂Ωε is the boundary of Ωε. Denote by J(x) the characteristic function of Ωε and
by Jh(x) the mollification of J(x); i.e.,

Jh(x) =
∫

Rn

θh(x− y)J(y)dy,

where θh is a mollifier. If h < ε/2, then Jh(x) has following properties:
(1) Jh(x) = 0 if x /∈ Ω

ε
2 ;

(2) 0 ≤ Jh(x) ≤ 1,∀x ∈ Ω;
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(3) Jh(x) = 1 in Ω2ε;
(4) Jh ∈ C∞0 (Rn).

We now fix a constant c ∈ (0, 1), set Ωε
c = {x ∈ Ω : Jh(x) > c}. It is obvious

that Ω
ε
2 ⊃ Ωε

c ⊃ Ω2ε. Therefore, Ωε
c ⊂ Ω and limε→0 Ωε

c = Ω.
Assume that K is the critical set of Jh, i.e. K consisting of all point x, such

that the gradient of Jh at x vanishes. A number c ∈ R such that J−1
h (c) contains

at least one x ∈ K is called a critical value. By Sard’s theorem then the set of
critical values of Jh is of measure zero (see[2, Theorem 1.30]), it implies that there
exists a constant c0 ∈ (0, 1) such that c0 is not a critical value of Jh. Denote
Ωε

c0
= {x ∈ Ω : Jh(x) > c0} and F (x) = Jh(x) − c0. For all x0 ∈ ∂Ωε

c0
, then

F (x0) = Jh(x0)− c0 = 0 and vector gradJh(x0) 6= 0. This implies that there exists
a ∂Jh

∂xi
(x0) 6= 0, without loss of generality we can suppose that ∂Jh

∂xn
(x0) 6= 0. Using

the implicit function theorem, we obtain that there exists a neighborhood W of
(x0

1, . . . , x
0
n−1) in Rn−1 a neighborhood V of x0

n in R and an infinitely differentiable
function z : W → R such that x ∈ Ux0 ∩ ∂Ωε

c0
, where ∂Ωε

c = {x ∈ Ω : Jh(x) = c},
Ux0 = W × V, if and only if x = (x1, . . . , xn) ∈ Ux0 , xn = z(x1, . . . , xn−1). Hence,
Ωε

c0
is smooth and limε→0 Ωε

c0
= Ω. The lemma proved. �

Suppose that {Ωε} is a smooth domain subsequence and limε→0 Ωε = Ω. Set
Qε

T = Ωε × (0, T ), Sε
T = ∂Ωε × (0, T ). It is known that the problem

Lu− utt = f in Qε
T ,

u = 0, ut = 0 on Ωε,

∂j
νu = 0 on Sε

T , j = 0, 1, . . . ,m− 1,

has a unique function uε(x, t) ∈ C∞(Qε
T ); if f ∈ C∞(Qε

T ), ftk

∣∣
t=0

= 0, for k =
0, 1, . . . . Moreover, uε(., t) ∈ W̊m

2 (Ωε), for all t ∈ [0, T ], (see[5, 18, 17]).

3. Main results

3.1. Existence of generalized Lp-solutions. In this subsection, we prove the
existence of generalized Lp-solution. Firstly, we prove the needed following propo-
sitions:

Proposition 3.1. Suppose that 1 < p ≤ 2 and f ∈ C∞(QT ), and ftk

∣∣
t=0

= 0, for
k = 0, 1, . . . ; then uε is a generalized Lp-solution of (2.4)-(2.5) in Qε

T satisfying

‖uε‖m,1;p ≤ C‖f‖−m,−1;p

where the constant C is independent of ε, u and f .

Proof. From uε satisfying system (2.4) in Qε
T ; i. e.,

f = Luε − uε
tt, in Qε

T ,

we have

〈f, η〉 =
∫

Qε
T

Luε η dx dt−
∫

Qε
T

uε
tt η dx dt

valid for all η ∈ W̊m,1
q (Qε

T ).
By using Green’s formula and integrating by parts with respect to t, we obtain

from the equality above that

B1[uε, η] = 〈f, η〉 (3.1)
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valid for all η ∈ W̊m,1
q (Qε

T ). This clearly shows that uε is a generalized Lp-solutions
of problem (2.4) -(2.5) in Qε

T ; otherwise, using inequality (2.8), we conclude from
(3.1) that

‖uε‖m,1;p ≤ C‖f‖−m,−1;p.

�

Now we prove the existence of the generalized Lp-solution of (2.4)-(2.6) in QT ,
when the assumptions of Proposition 3.1 are satisfied.

Proposition 3.2. Let the following hypothesis be satisfied:
(i) 1 < p ≤ 2,
(ii) f ∈ C∞(QT ), and ftk

∣∣
t=0

= 0, for k = 0, 1, . . .

Then (2.4)-(2.6) in cylinder QT has a generalized Lp-solution u ∈
◦

Wm,1
p (QT ) which

satisfies
‖u‖m,1;p ≤ C‖f‖−m,−1;p (3.2)

where C is a constant independent of u and f .

Proof. By Proposition 3.1 we have

‖uε‖m,1;p ≤ C‖f‖−m,−1;p (3.3)

where the constant C does not depend on ε. Setting ũε = uε in Qε
T , and vanishes

outside Qε
T . From the inequality above we obtain

‖ũε‖m,1;p ≤ C‖f‖−m,−1;p (3.4)

where the constant C does not depend on ε.
It implies that the set {ũε}ε>0 is uniformly bounded in the space W̊m,1

p (QT ).
So we can take a subsequence, denoted also by ũε for convenience, which converges
weakly to a function u ∈ W̊m,1

p (QT ). We will show that u is a generalized Lp-
solution of (2.4)-(2.6) in cylinder QT . In fact for all η ∈ W̊m,1

q (QT ), there exists
ηδ ∈ C∞0 (QT ) such that ηδ ≡ 0 in QT \ Qε

T , and ‖ηδ − η‖m,1;q → 0 when δ → 0.
Since ũε is a generalized solution of (2.4)-(2.6) in the smooth cylinder Qε

T , we have

B1[ũε, ηδ] = 〈f, ηδ〉

Passing to the limit when ε→ 0, δ → 0 for the weakly convergent sequence, we get

B1[u, η] = 〈f, η〉

Since W̊m,1
p (QT ) is imbedded continuously into Lp(Ω), the trace sequence {ũε(x, 0)}

of {ũε(x, t)} converges weakly to the trace u(x, 0) of u(x, t) in Lp(Ω). On the
other hand, ũε(x, 0) = 0, so that u(x, 0) = 0;by analogous arguments, we have
ut(x, 0) = 0. Hence, u(x, t) is a generalized Lp-solution of (2.4)-(2.6). Moreover,
from (3.4) we have

‖u‖m,1;p ≤ lim
ε→0

‖ũε‖m,1;p ≤ C‖f‖−m,−1;p.

�

Proposition 3.2 stated the existence of generalized Lp-solutions of (2.4)-(2.6) in
W̊m,1

p (QT ) when f ∈ C∞(QT ) and ftk

∣∣
t=0

= 0, for k = 0, 1, . . . . We now establish
the problem when f ∈W−m,−1

p (QT ).
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Theorem 3.3. Suppose that f ∈ W−m,−1
p (QT ), p ∈ (1,+∞), then (2.4)-(2.6) has

a generalized Lp-solution u ∈ W̊m,1
p (QT ), and

‖u‖p
m,1;p ≤ C‖f‖p

0,p, (3.5)

where C is a constant independent of u and f .

Proof. We start by studying the case 1 < p ≤ 2. Denote

fh(x, t) =


0, outside Qε

T

f(x, t), t > h

0, t ≤ h

for all h > 0. We denote by gh
2

the mollification of fh. Then gh
2
∈ C∞0 (QT ), gh

2
≡

0, t < h
2 and gh

2
→ f in W−m,−1

p (QT ). By Proposition 3.2, problem (2.4)-(2.6) has

a generalized Lp-solution uh ∈
◦
W

m,1

p (QT ) with replacing f by gh
2
, and the following

estimates holds
‖uh‖m,1;p ≤ C‖gh

2
‖−m,−1;p (3.6)

where C is a constant independent of h, u and f . Since {gh
2
} is a Cauchy se-

quence in Lp(QT ) and inequality (3.6), it follows that {uh} is a Cauchy sequence

in
◦
W

m,1

p (QT ). Hence, uh → u ∈
◦
W

m,1

p (QT ), then u is a generalized Lp-solutions of
(2.4)-(2.6) and satisfies

‖u‖m,1;p ≤ C‖f‖−m,−1;p .

Thus, the theorem is proved in the case 1 < p ≤ 2.
Now we study the case p > 2. It is clear that q = p

p−1 ∈ (1, 2); by the proof

above, for any g ∈ W−m,−1
q (QT ) there exists a solution v ∈ W̊m,1

q (QT ) of the
adjoint problem

B1[v, u] = 〈g, u〉 (3.7)
for all u ∈ W̊m,1

p (QT ), and

‖v‖m,1;q ≤ C‖g‖−m,−1;q.

We suppose that f ∈ C∞(QT ), ftk(x, 0) = 0, k = 0, 1, . . . and for u = uε in (3.7).
Then, by (3.7), we have

|〈g, uε〉| = |B1[v, uε]| = |B1[uε, v]| = |〈f, v〉|
≤ ‖f‖−m,−1;p‖v‖m,1;q

≤ C‖f‖−m,−1;p‖g‖−m,−1;q

for any g ∈W−m,−1
q (QT ). This implies

‖uε‖m,1;p = sup
{ |〈g, uε〉|
‖g‖−m,−1;q

: 0 6= g ∈W−m,−1
q (QT )

}
≤ C‖f‖−m,−1;p.

From this inequality and arguments analogous to proofs above, we get the proof of
the theorem in this case. The proof is complete. �

We should remark that by replacing the condition f ∈W−m,−1
p (QT ) by condition

f ∈ Lp(QT ), and noting that

‖f‖W−m,−1
p (QT ) ≤ ‖f‖Lp(QT ),

we obtain the following theorem.
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Theorem 3.4. If f ∈ Lp(QT ), p ∈ (1,+∞), then (2.4)-(2.6), in the cylinder QT ,

has a generalized Lp-solution u ∈
◦

Wm,1
p (QT ) which satisfies

‖u‖m,1;p ≤ C‖f‖Lp(QT )

where C is a constant independent of u and f .

3.2. Smoothness of the generalized Lp-solution with respect to time. The
following theorem shows that the generalized Lp-solution u ∈ W̊m,1

p (QT ) of prob-
lem (2.4)-(2.6) is smooth with respect to time variable t if right hand-side f and
coefficients of operator (2.1) are smooth enough with respect to t.

Theorem 3.5. Let h be a positive integer, and assume that
(1) ftk ∈ Lp(QT ), k ≤ h,
(2) ftk

∣∣
t=0

= 0, x ∈ Ω, k ≤ h− 1,

(3) sup
{∣∣∂kaαβ

∂tk

∣∣, k < h+ 1 : (x, t) ∈ QT , 0 ≤ |α|, |β| ≤ m
}
≤ µ.

Then the generalized solution u ∈ W̊m,1
p (QT ) of (2.4)-(2.6) has generalized deriva-

tives with respect to t up to order h in W̊m,1
p (QT ) and satisfies the estimate

‖uth‖m,1;p ≤ c
h∑

k=0

‖ftk‖Lp(QT ), (3.8)

where c is a constant independent of u and f .

Proof. In the case 1 < p ≤ 2, Clearly, we needed only to show that

‖uε
th‖m,1;p ≤

h∑
k=0

‖ftk‖Lp(QT ) (3.9)

where f ∈ C∞(QT ), ftk(x, 0) = 0, x ∈ Ω. It is proved by induction on h. According
to Proposition 3.1, inequality (3.9) is valid for h = 0. Now let it be true for h− 1;
we will prove that this also holds for h.

From the fact that uε satisfies (2.4) in Qε
T , we have

f = Luε − uε
tt. (3.10)

Differentiating equality (3.10), h times with respect to t, it follows that

fth = Luε
th +

h−1∑
k=0

(
h− 1
k

)
Dα

x (aαβth−kDβ
xu

ε
tk)− uε

th+2 .

Therefore,

〈fth , v〉 =
∫

QT

Luthv dx dt+
h−1∑
k=0

(
h− 1
k

) ∫
QT

m∑
|α|,|β|=0

Dα
x (aαβth−kDβ

xu
ε
tk)v dx dt

−
∫

QT

uε
th+1v dx dt

for all v ∈ W̊m,1
q (QT ).

By using Green’s formula and integrating by parts,

B1[uε
th , v] = 〈fth , v〉 −

h−1∑
k=0

(
h− 1
k

) ∫
QT

m∑
|α|,|β|=0

aαβth−kDβ
xu

ε
tkDα

xv dx dt.
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for all v ∈ W̊m,1
q (QT ).

From the inequality above and Hölder’s inequality, we have

|B1[uε
th , v]| ≤ C(‖fth‖Lp(QT ) +

h−1∑
k=0

‖uε
tk‖m,1;p)‖v‖m,1;q (3.11)

for all v ∈ W̊m,1
q (QT ). By using (2.8), (3.11) and the induction assumption, we

obtain

‖uε
th‖m,1;p ≤ C

h∑
k=0

‖ftk‖Lp(QT )

where C is a constant independent of ε, u. The proof is completed in this case.
In the case p > 2. It is easy to recognize that q = p

p−1 ∈ (1, 2); by Theorem

3.3, for any g ∈ W−m,−1
q (QT ) there exists a solution v ∈ W̊m,1

q (QT ) of the adjoint
problem

B1[v, u] = 〈g, u〉 (3.12)

which for all u ∈ W̊m,1
p (QT ), and

‖v‖m,1;q ≤ C‖g‖−m,−1;q.

We assume that f ∈ C∞(QT ), ftk(x, 0) = 0, k = 0, 1, . . . and for u = uε
th in (3.12).

Then, by (3.12) and (3.11), we have

|〈g, uε
th〉| = |B1[v, uε

th ]| = |B1[uε
th , v]|

≤ C(‖fth‖Lp(QT ) +
h−1∑
k=0

‖uε
tk‖m,1;p)‖v‖m,1;q

≤ C(‖fth‖Lp(QT ) +
h−1∑
k=0

‖uε
tk‖m,1;p)‖g‖−m,−1;q

for any g ∈W−m,−1
q (QT ). Hence,

‖uε
th‖m,1;p = sup

{ |〈g, uε
th〉|

‖g‖−m,−1;q
: 0 6= g ∈W−m,−1

q (QT )
}

≤ C(‖fth‖Lp(QT ) +
h−1∑
k=0

‖uε
tk‖m,1;p).

From this inequality and induction assumption, we have the proof of this case, and
complete the proof. �

3.3. Regularity of the generalized Lp-solution. In this section, we consider
problem (2.4)-(2.6) in cylinders QT = Ω × (0, T ), where its base Ω is described as
follows:

Let ϕ be an infinitely differentiable positive function on the interval (0, 1] satis-
fying the conditions

(i) limτ→0 ϕ(τ)k−1ϕ(τ)(k) <∞ for k = 1, 2, . . . ;
(ii)

∫ 1

0
dτ

ϕ(τ) = +∞
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These conditions are satisfied, for example, by the function ϕ(τ) = τα if α ≥ 1.
Obviously, conditions (i) and (ii) imply ϕ(0) = 0. Suppose that Ω is a bounded
domain in Rn(n ≥ 2), ∂Ω\{O} is smooth, and

{x ∈ Ω : 0 < xn < 1} = {x ∈ Rn : xn < 1, x′ ∈ ϕ(xn)ω},
where x′ = (x1, . . . , xn−1), ω is a smooth domain in Rn−1. Then the mapping

yj =
xj

ϕ(xn)
, if j = 1, . . . , n− 1, and yn =

∫ 1

xn

dτ

ϕ(τ)
(3.13)

takes the set {x ∈ Ω : 0 < xn < 1} onto the half-cylinder C+ = {y ∈ Rn : y′ ∈
ω, yn > 0} = ω × (0,+∞). Moreover, it follows that

det
( ∂yj

∂xk

)
j,k=1,...,n

= ϕ(xn)−n.

It is known that the function ϕ can be extended to an infinitely differentiable
positive function on the interval (0,+∞). To consider the problem, we need to
introduce some weighted Sobolev spaces. The space W l

p,β,γ(Ω) can be defined as
the closure of the set C∞0 (Ω\{O}) with respect to the norm

‖u‖W l
p,β,γ(Ω) =

( ∫
Ω

∑
|α|≤l

epβyn(xn)ϕ(xn)p(γ−l+|α|)|Dαu|p dx
)1/p

.

Let X,Y be Banach spaces, we denote by Lp(0, T ;X) the spaces consisting of all
measurable functions u : (0, T ) → X with norm

‖u‖Lp(0,T ;X) =
( ∫ T

0

‖u(t)‖p
X dt

)1/p

,

and by W k
p (0, T ;X,Y ), k = 1, 2, the spaces consisting of functions u ∈ Lp(0, T ;X)

such that generalized derivatives utk = u(k) exist and belong to Lp(0, T ;Y ), (see
[4]), with norm

‖u‖W k
p (0,T ;X,Y ) =

(
‖u‖2Lp(0,T ;X) +

k∑
j=1

‖utj‖p
Lp(0,T ;Y )

)1/p

.

For short notation, we set

V l
p (Ω) = W l

p,0,0(Ω), V l,k
p (QT ) = W k

p (0, T ;V l
p (Ω), Lp(Ω)),

W l,k
p,β,γ(QT ) = W k

p (0, T ;W l
p,β,γ(Ω), Lp(Ω)).

Finally, we define the weighted Sobolev space W l
p,β,γ(QT ) as the set of functions

defined in QT such that

‖u‖W l
p,β,γ(QT ) =

( ∫
QT

∑
|α|+k≤l

e2βy(xn)ϕ(xn)p(|γ−l+α|+k)|Dαutk |p dx dt
)1/p

< +∞.

To simplify notation, we continue to write V l
p (QT ) instead of W l

p,0,0(QT ).
Moreover, we assume that the functions

âαβ(y, .) = ϕ(x(y))2m−|α|−|β|aαβ(x(y), .) (3.14)

satisfy the condition of stabilization for yn → +∞ for a.e. t in (0, T )(see[19, Sec.9]).
Then the coefficients of the operators L̂(y, t; Dy), which arises from the operators
ϕ(xn)2mL(x, t;Dx) via the coordinate change x → y, stabilize for yn → +∞. If
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we replace the coefficients of the differential operator L̂(y, t; Dy) by their limits
for yn → +∞, we get differential operator (denote also by L̂(y′, t; Dy′ , Dyn) for
convenience) which has coefficients depending only on y′ and t.

By the following proposition, we can apply the results of the Dirichlet problem
to elliptic equations in domains with cuspidal points on boundary.

Proposition 3.6. Suppose that u = u(x, t) is a generalized solution of problem
(2.4) -(2.6) and utt ∈ Lp(QT ). Then for a.e. t ∈ (0, T ), u(t) = u(., t) is a general-
ized solution in W̊m

p (Ω) of the Dirichlet problem for elliptic equation

L(., t;Dx)u = f1(., t) (3.15)

where f1 = utt + f .

Proof. For any ψ ∈ W̊m
q (Ω), θ ∈ C∞0 (0, T ) and setting v(x, t) = ψ(x)θ(t), we

substitute the function v(x, t) into (2.7), we conclude that∫
QT

[ m∑
|α|,|β|=0

aαβD
β
x uD

α
xψ − (utt ψ + fψ)

]
θ(t) dx dt = 0. (3.16)

We will denote by

ξ(t) =
∫

Ω

[ m∑
|α|,|β|=0

aαβD
β
x uD

α
xψ − (utt ψ + fψ)

]
dx,

then ξ(t) ∈ Lp(0, T ). Noting that θ ∈ C∞0 (0, T ), which dense in Lq(0, T ) and using
Fubini’s theorem, we obtain from (3.16) that∫ T

0

ξ(t)θ(t) dt = 0, for any θ ∈ Lq(0, T ), (1/p+ 1/q = 1). (3.17)

Therefore,

‖ξ‖Lp(0,T ) = sup
{ ∫ T

0

ξ(t)θ(t) dt : θ ∈ Lq(0, T ), ‖θ‖Lq(0,T ) = 1
}

= 0.

This implies ξ = 0 for a.e. t ∈ (0, T ). Hence,∫
Ω

m∑
|α|,|β|=0

aαβD
β
x uD

α
xψ dx =

∫
Ω

(utt + f)ψ dx

for all ψ ∈ W̊m
q (Ω), for a.e. t ∈ (0, T ). It follows that u(t) is a generalized solution in

W̊m
p (Ω) of the Dirichlet problem for elliptic equation (3.15), for a.e. t ∈ (0, T ). �

In this section, we present the main results which is based on our previous
subsection and the results for elliptic equations in cusp domains (cf. [19]). For
the start of this section, we denote by U(λ, t)(λ ∈ C, t ∈ (0, T )) the operator
corresponding to the parameter-depending boundary-value problem

L̂(y′, t; Dy′ , λ)v = 0 in ω;

∂j
νv = 0 on ∂ω, j = 1, . . . ,m− 1.

(3.18)

Where L̂(y′, t; Dy′ , λ) is the Fourier transformation yn → λ of L̂(y′, t; Dy′ , Dyn
).

For each t ∈ (0, T ), the operator pencil U(λ, t) is Fredholm, and its spectrum
consists of a countable numbers of isolated eigenvalues. The similarly, to Theorem
9.1 in [19], we have the following lemma.
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Lemma 3.7. Assume that f1 ∈ W k
p,β,γ(Ω), where β, γ are real numbers. Suppose

further that no eigenvalues of U(λ, t), t ∈ (0, T )) line in strip

Imλ− ≤ Imλ ≤ Imλ+; Imλ− < β < Imλ+

where λ+, λ− are eigenvalues of U(λ, t), and Imλ− < 0 < Imλ+. Then the gener-
alized solution u of the Dirichlet problem for the elliptic equation (3.15), u ≡ 0 if
xn > 1, belongs to the space W 2m+k

p,β,γ (Ω) and satisfies the inequality

‖u‖2
W 2m+k

p,β,γ (Ω)
≤ C‖f1‖2W k

p,β,γ(Ω) (3.19)

where the constant C is independent of f1.

Proof. Setting ωτ = ϕ(τ)ω by the Friederichs inequality, we have∫
ωτ

|u|pdx′ ≤ Cϕ(τ)pk
∑
|γ|=k

∫
ωτ

|Dγ
x′u|

pdx′ ;

therefore,

ϕ(xn)p(|γ|−m)

∫
ωxn

|Dγ
x′u|

pdx′ ≤ C
∑
|α|=m

∫
ωxn

|Dα
x′u|pdx′

for all |γ| ≤ m. Hence,∑
|γ|≤m

∫
Ω

ϕ(xn)p(|γ|−m)|Dγ
xu|pdx ≤ C

∑
|α|≤m

∫
Ω

|Dα
xu|pdx (3.20)

Let v = v(y) be the function that arises from ϕ(xn)m−n
p u(x) via the coordinate

change x → y. We set ϕ(yn) = ϕ(xn), from the properties of the mapping (3.13)
and from inequality (3.20), it follows that (ϕ)−m+ n

p v ∈ W̊m
p (C+). Since (ϕ)−m+ n

p v
is the solution of an elliptic equation in C+ with coefficients which stabilize for
yn → +∞, i.e.

L̂(ϕ)−m+ n
p v = f̂1

where f̂1 = (ϕ)2mf1, we obtain (ϕ)−m+ n
p v ∈ W̊ 2m+k

p (C+) (cf. [19, Theorem 8.1,
8.2]). This implies u ∈W 2m+k

p,0,m+k(Ω). Using the fact that

ϕ(xn)γ−m+ke−εyn(xn) → 0

as xn → 0, if 0 < ε < β, we conclude that u ∈ W 2m+k
p,−ε,γ(Ω). In a similar manner,

Theorem 8.2 in [19] it follows that u ∈W 2m+k
p,β,γ (Ω). Furthermore, (3.19) is valid. �

Lemma 3.8. Suppose that f, ft ∈ Lp(QT ), f(x, 0) = 0, and the strip Imλ− ≤
Imλ ≤ Imλ+ does not contain eigenvalues of U(λ, t), t ∈ (0, T )). Then the gener-
alized solution u of problem (2.4)-(2.6), u ≡ 0 if xn > 1, belongs to the V 2m,2

p (QT )
and satisfies the inequality

‖u‖V 2m,2
p (QT ) ≤ C[‖f‖Lp(QT ) + ‖ft‖Lp(QT )], (3.21)

where the constant C is independent of f .

Proof. Using the smoothness of the generalized solution of (2.4)-(2.6) with respect
to t in Theorem 3.5 and Proposition 3.6, we can see that for a.e. t ∈ (0, T ), u ∈
W̊m

p (Ω) is the generalized solution of Dirichlet problem for equation (3.15) with
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compact support, where f1 = utt + f ∈ Lp(Ω) = W 0
p,0,0(Ω) = V 0

p (Ω). From Lemma
3.7, it implies that u ∈ V 2m

p (Ω) for a.e. t ∈ (0, T ) and satisfies the inequality

‖u‖V 2m
p (Ω) ≤ C1‖f1‖Lp(Ω) ≤ C

(
‖f‖Lp(Ω) + ‖utt‖Lp(Ω)

)
.

By integrating the inequality above with respect to t from 0 to T , and using the
estimates for derivatives of u with respect to t again, we obtain u ∈ V 2m,2

p (QT ),
which satisfies (3.21). �

Theorem 3.9. Let the assumptions of Lemma 3.8 be satisfied, and ftk ∈ Lp(QT ),
k ≤ 2m, ftk(x, 0) = 0, for k = 0, 1, . . . , 2m − 1. Then the generalized solution u
of problem (2.4)-(2.6), u ≡ 0 if xn > 1, belongs to the V 2m

p (QT ) and satisfies the
inequality

‖u‖V 2m
p (QT ) ≤ C

2m∑
k=0

‖ftk‖Lp(QT ) (3.22)

where the constant C is independent of f .

Proof. Let us first prove that uts belongs to V 2m,0
p (QT ) for s = 0, . . . , 2m− 1 and

satisfy

‖uts‖V 2m,0
p (QT ) ≤ C

2m∑
k=0

‖ftk‖Lp(QT ). (3.23)

The proof is by done induction on s. According to Lemma 3.8, it is valid for s = 0.
Now let this assertion be true for s − 1, we will prove that this also holds for s.
Due to Lemma 3.8 then u satisfies (2.4), by differentiating both sides of (2.4) with
respect to t, s times, we obtain

Luts = fts + uts+2 −
s∑

k=1

(
s

k

)
Ltkuts−k (3.24)

where

Ltk = Ltk(x, t;Dx) =
m∑

α,β=0

Dα
x

(∂kaαβ(x, t)
∂tk

Dβ
x

)
.

By the supposition of the theorem and the inductive assumption, the right-hand
side of (3.24) belongs to Lp(QT ). By the arguments analogous to the proof of
Lemma 3.8, we get uts ∈ V 2m,0

p (QT ) and

‖uts‖V 2m,0
p (QT ) ≤ C

2m∑
k=0

‖ftk‖Lp(QT ) (3.25)

where C is a constant independent of u, f , and s ≤ m− 1.
Using (3.25) and estimates for derivatives of u with respect to t in Theorem 3.4,

we have

‖u‖V 2m
p (QT ) ≤

2m−1∑
k=0

‖utk‖V 2m,0
p (QT ) + ‖ut2m‖Lp(QT ) ≤ C

2m∑
k=0

‖ftk‖Lp(QT ).

�

Remark. Let β be a sufficiently small positive number. Suppose that

eβyn(xn)f ∈ Lp(QT ), Imλ− < β < Imλ+
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and the strip
Imλ− ≤ Imλ ≤ Imλ+

contains no eigenvalues of U(λ, t), t ∈ (0, T )); then the generalized solution u of
(2.4) -(2.6), u ≡ 0 if xn > 1, belongs to the W 2m

p,β,0(QT ). In fact that, setting
u = e−βyn(xn)U , we obtain the first initial boundary value problem which differs
little from (2.4)-(2.6). Therefore, U ∈ V 2m

p (QT ), and then u ∈ W 2m
p,β,0(QT ). Using

the remark above and Lemma 3.7, we obtain the following theorem.

Theorem 3.10. Let the assumptions of Lemma 3.7 be satisfied. Furthermore, we
assume that ftk ∈ W 0

p,β,γ(QT ), k ≤ 2m and ftk(x, 0) = 0, for k = 0, 1, . . . , 2m− 1.
Then the generalized solution u of (2.4)-(2.6), such that u ≡ 0 if xn > 1, belongs
to the W 2m

p,β,γ(QT ) and satisfies the inequality

‖u‖W 2m
p,β,γ(QT ) ≤ C

2m∑
k=0

‖ftk‖W 0
p,β,γ(QT ) (3.26)

where the constant C is independent of f .

This theorem is proved by arguments analogous to those proofs of Lemma 3.8
and Theorem 3.5. Next, we will prove the regularity of the generalized solution of
problem (2.4)-(2.6).

Theorem 3.11. Let the assumptions of Lemma 3.7 be satisfied. Furthermore, we
assume that ftk ∈Wh

p,β,γ(QT ), k ≤ 2m+h and ftk(x, 0) = 0, for k = 0, 1, . . . , 2m+
h − 1, h ∈ N. Then the generalized solution u of (2.4)-(2.6), such that u ≡ 0 if
xn > 1, belongs to W 2m+h

p,β,γ (QT ) and satisfies the inequality

‖u‖W 2m+h
p,β,γ (QT ) ≤ C

2m∑
k=0

‖ftk‖W h
p,β,γ(QT ) (3.27)

where the constant C is independent of u and f .

Proof. The theorem is proved by induction on h. Thanks to Theorem 3.9, this
theorem is obviously valid for h = 0. Assume that the theorem is true for h − 1,
we will prove that it also holds for h. It is only needed to show that

uts ∈W 2m+h−s,0
p,β,γ (QT ) for s = h, h− 1 . . . , 0;

‖uts‖W 2m+h−s
p,β,γ (QT ) ≤ C

2m∑
k=0

‖ftk‖W h
p,β,γ(QT ).

(3.28)

Differentiating both sides of (2.4) again with respect to t, h times, we obtain

Luth = fth + uth+2 −
h∑

k=1

(
h

k

)
Ltkuth−k (3.29)

By the supposition of the theorem and the inductive assumption, the right-hand
side of (3.29) belongs to W 0

p,β,γ(Ω) for a.e. t ∈ (0, T ). Using Lemma 3.7, we
conclude that uth ∈ W 2m,0

p,β,γ (QT ). It implies that (3.28) holds for s = h. Suppose
that (3.28) is true for s = h, h− 1, . . . , j + 1 and set v = utj , we obtain

Lv = Fj , (3.30)
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where Fj = ftj +vtt−
∑j

k=1

(
j
k

)
Ltkutj−k . By the inductive assumption with respect

to s, vtt belongs to Wh−j
p,β,γ(Ω) for a.e. t ∈ (0, T ). Thus, the right-hand side of (3.30)

belongs to Wh−j
p,β,γ(Ω). Applying Lemma 3.7 again for k = h − j, we get that

v = utj ∈ W 2m+h−j
p,β,γ (Ω) for a.e. t ∈ (0, T ). It means that v = utj belongs to

W 2m+h−j,0
p,β,γ (QT ). Furthermore, we have

‖v‖W 2m+h−j,0
p,β,γ (QT ) ≤ C‖Fj‖W h−j,0

p,β,γ (QT ) ≤ C
2m∑
k=0

‖ftk‖W h
p,β,γ(QT ). (3.31)

Therefore,

‖utj‖W 2m+h−j
p,β,γ (QT ) ≤ ‖utj+1‖W 2m+h−j−1

p,β,γ (QT ) + ‖utj‖W 2m+h−j,0
p,β,γ (QT )

≤ C
2m∑
k=0

‖ftk‖W h
p,β,γ(QT ).

It implies that (3.28) holds for s = j. The proof is complete. �

Now we prove the global regularity of the solution.

Theorem 3.12. Let the hypotheses of Lemma 3.7 be satisfied. Furthermore, as-
sume that ftk ∈ Wh

p,β,γ(QT ), k ≤ 2m+ h and ftk(x, 0) = 0, for k = 0, 1, . . . , 2m+
h−1, h ∈ N. Then the generalized solution u of (2.4)-(2.6) belongs to W 2m+h

p,β,γ (QT )
and satisfies the inequality

‖u‖W 2m+h
p,β,γ (QT ) ≤ C

2m∑
k=0

‖ftk‖W h
p,β,γ(QT ) (3.32)

where the constant C is independent of u and f .

Proof. We denote by B the unit ball and suppose that ζ ∈ C∞0 (B), and ζ ≡ 1 in
the neighborhood of the origin O. We have

L(ζu)− (ζu)tt = ζf + L1u

where L1 is a differential operator, whose coefficients have compact support in a
neighborhood of the origin. By Theorem 3.10, we obtain

‖ζu‖W 2m+h
p,β,γ (QT ) ≤ C

2m∑
k=0

‖ftk‖W h
p,β,γ(QT ).

Setting ζ1u = (1 − ζ)u, then ζ1u ≡ 0 in a neighborhood of the origin and u =
ζu+ (1− ζ)u, and using the smoothness of the solution of this problem in domain
with smooth boundary, we get

‖ζ1u‖W 2m+h
p (QT ) ∼ ‖ζ1u‖W 2m+h

p,β,γ (QT ) ≤ C
2m∑
k=0

‖ftk‖W h
p,β,γ(QT ).

The proof is complete . �
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4. An example

In this section, we apply the results of the previous section to the Cauchy-
Dirichlet problem for the beam equation. Suppose that Ω is a bounded domain in
Rn, ∂Ω\{O} is smooth, and

{x ∈ Ω : 0 < xn < 1} ≡ {x ∈ Rn : 0 < xn < 1, |x′| < ϕ(xn)},
where x′ = (x1, . . . , xn−1), ϕ ∈ C∞[0, 1), ϕ′(xn) → 0, ϕ(xn)ϕ′′(xn) → 0 as xn → 0
and ϕ(0) = 0. Set QT = Ω× (0, T ), ST = ∂Ω \ {O} × (0, T ).

We consider the Cauchy-Dirichlet problem for the beam equation in QT :

∆2u−∆u− utt = −f in QT , (4.1)

u = 0, ut = 0 on Ω, (4.2)

u = 0, ∂νu = 0 on ST (4.3)

where f : QT → C is given and Lu = ∆2
xu −∆xu. By using Green’s formula, we

get

B[u, u; t] =
∫

Ω

(
|D2

xu|2 + |Dxu|2
)
dx

for all u ∈ W̊ 2
2 (Ω). On other hand, by the Friedrich inequality∫

Ω

|u|2 dx ≤ C

∫
Ω

|Dxu|2 dx,

it implies that there exists a constant γ0 > 0 such that

B[u, u; t] =
∫

Ω

(
|D2

xu|2 + |Dxu|2
)
dx ≥ γ0|u|2W 2

2(Ω).

Hence, (2.2) is satisfied for all u ∈ W̊ 2
2 (Ω), for all t ∈ (0, T ).

For simplicity, we consider (4.1)-(4.3) in the two-dimensional case (n = 2), and
let ϕ(τ) = τ2; Then Ω is a bounded domain in R2, ∂Ω\{O} is smooth, and

{(x, y) ∈ Ω : 0 < x < 1} ≡ {(x, y) ∈ R2 : 0 < x < 1, |y| < x2},
on the change of variables

ξ =
∫ 1

x

dτ

τ2
= x−1 − 1, η = yx−2, (4.4)

which transforms {(x, y) ∈ Ω : 0 < x < 1} onto

C+ := {(ξ, η) : ξ > 0, η ∈ (−1, 1)}.
With the notation v(ξ, η, t) = u(x, y, t), we have

u(x, y, t) = v(x−1 − 1, yx−2, t)

and

∂yu = x−2∂ηv,

∂xu = −x−2∂ξv − 2yx−3∂ηv,

∂2
yyu = x−4∂2

ηηv

∂2
xxu = x−3∂ξv + 6yx−4∂ηv + x−4∂2

ξξv + 4yx−5∂2
ξηv + 4y2x−6∂2

ηηv

= x−4
[
x∂ξv + 6y∂ηv + ∂2

ξξv + 4yx−1∂2
ξηv + 4y2x−3∂2

ηηv
]
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= x−4
[
∂2

ξξv + 4η(ξ + 1)−1∂2
ξηv + 4η2(ξ + 1)−2∂2

ηηv

+ (ξ + 1)−1∂ξv + 6η(ξ + 1)−2∂ηv
]
.

Hence, the differential operator ∆̂, which arises from the differential operator
x8∆u, (ϕ(x) = x2, 2m = 4) via the coordinate change (x, y) → (ξ, η), turns out
to be

∆̂v = (ξ + 1)−4
(
∂2

ξξv + ∂2
ηηv

)
+ 4η(ξ + 1)−5∂2

ξηv + 4η2(ξ + 1)−6∂2
ηηv

+ (ξ + 1)−5∂ξv + 6η(ξ + 1)−6∂ηv;

the similar calculation for ∆̂2. Clearly, coefficients of differential operator L̂ =
∆̂2 − ∆̂ stabilize for ξ → +∞ and the limit differential operator of L̂ (denote by L̂
for convenience) is

L̂ = ∆̂2v = ∂4
ξ4v + 2∂4

η2ξ2v + ∂4
η4v.

We denote also by U(λ)(λ ∈ C) the operator corresponding to the parameter-
depending boundary value problem

d4v

dη4
− 2λ2 d

2v

dη2
+ λ4v = 0,

v(−1) = v(1) = 0,

v′(−1) = v′(1) = 0.

It is easy to see that U(λ) is invertible for all λ ∈ C. From arguments above in
combination with Theorem 3.10 and Theorem 3.12, we obtain the following results.

Theorem 4.1. Suppose that eβ( 1
x−1)x2γftk ∈ Lp(QT ), k ≤ 2, β, γ are real num-

bers and ftk(x, 0) = 0, for k = 0, 1. Then (4.1)-(4.3) has a unique solution u in
W 2

p,β,γ(QT ) and

‖u‖W 2
p,β,γ(QT ) ≤ C

2∑
k=0

‖eβ( 1
x−1)x2γftk‖Lp(QT ).

Moreover, if ftk ∈Wh
p,β,γ(QT ), k ≤ 2 + h, and ftk(x, 0) = 0 for k = 0, 1, . . . , 1 + h,

then u ∈W 2+h
p,β,γ(QT ) and satisfies

‖u‖W 2+h
p,β,γ(QT ) ≤ C

2∑
k=0

‖ftk‖W h
p,β,γ(QT ).

In case boundary when Ω has cuspidal points, then by arguments analogous to
Section 3, we obtain the similar results.
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