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EXISTENCE OF SOLUTIONS FOR FOURTH-ORDER PDES
WITH VARIABLE EXPONENTS

ABDELRACHID EL AMROUSS, FOUZIA MORADI, MIMOUN MOUSSAOUI

Abstract. In this article, we study the following problem with Navier bound-

ary conditions

∆2
p(x)u = λ|u|p(x)−2u + f(x, u) in Ω,

u = ∆u = 0 on ∂Ω.

Where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 1,
∆2

p(x)
u := ∆(|∆u|p(x)−2∆u), is the p(x)-biharmonic operator, λ ≤ 0, p is

a continuous function on Ω with infx∈Ω p(x) > 1 and f : Ω × R → R is a
Caratheodory function. Using the Mountain Pass Theorem, we establish the

existence of at least one solution of this problem. Especially, the existence of

infinite many solutions is obtained.

1. Introduction

The study of differential and partial differential involving variable exponent con-
ditions is a new and an interesting topic. The main references in this field can be
found in an overview paper [13].

Fourth order elliptic equations arise in many applications such as: Micro Electro
Mechanical systems, thin film theory, surface diffusion on solids, interface dynamics,
flow in Hele-Shaw cells, and phase field models of multiphase systems (see [16],
[11]) and the references therein. There is also another important class of physical
problems leading to higher order partial differential equations. An example of
this is Kuramoto-Sivashinsky equation which models pattern formation in different
physical contexts, such as chemical reaction -diffusion systems and a cellular gas
flame in the presence of external stabilizing factors (see [20]).

This paper is motivated by recent advances in mathematical modeling of non-
Newtonian fluids and elastic mechanics, in particular, the electro-rheological fluids
(smart fluids). This important class of fluids is characterized by the change of
viscosity which is not easy and which depends on the electric field. These fluids,
which are known under the name ER fluids, have many applications in elastic
mechanics, fluid dynamics etc.. For more information, the reader can refer to
[12, 17].
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These physical problems was facilitated by the development of Lebesgue and
Sobolev spaces with variable exponent. The existence of solutions of p(x)-Laplacian
problems has been studied by several authors (see [5, 6, 8, 9, 14]).

The purpose of the present article is to study the existence of weak solutions of
a elliptic fourth order equation with variable exponent. This is a new topic.

Consider the following problem with Navier boundary conditions

∆2
p(x)u = λ|u|p(x)−2u + f(x, u) in Ω,

u = ∆u = 0 on ∂Ω
(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 1, λ ≤ 0,
p is a continuous function on Ω with infx∈Ω p(x) > 1 and f : Ω × R → R is a
Caratheodory function.

The operator ∆2
p(x)u := ∆(|∆u|p(x)−2∆u), with p(x) > 1 is called the p(x)-

biharmonic which is a natural generalization of the p-biharmonic (where p > 1
is a constant). When p(x) is not constant, the p(x)-biharmonic possesses more
complicated nonlinearity that the p-biharmonic, say, it is inhomogeneous.

In the constant case (p(x) ≡ p), there are many papers devoted the existence of
solutions of the above problem; see for example [4, 18] and the references therein.

Recently, in [2], the authors interested to the spectrum of a fourth order ellip-
tic equation with variable exponent. They proved the existence of infinitely many
eigenvalue sequences and supΛ = +∞, where Λ is the set of all eigenvalues. More-
over, they present some sufficient conditions for inf Λ = 0.

In this paper, we start by proving the following results.

Theorem 1.1. If f(x, u) = f(x), f ∈ Lα(x)(Ω) with α ∈ C+(Ω) satisfies
1

α(x)
+

1
p∗2(x)

< 1, ∀x ∈ Ω,

then, for all λ ≤ 0, problem (1.1) has a unique weak solution.

Theorem 1.2. Suppose that f satisfies the condition

|f(x, s)| ≤ a(x) + b|s|β−1 ∀(x, s) ∈ Ω× R,

with a(x) ≥ 0, a(x) ∈ L
α(x)

α(x)−1 (Ω), b ≥ 0, α ∈ C+(Ω), α(x) < p∗2(x) and 1 ≤ β < p−.
Then, for all λ ≤ 0, problem (1.1) admits at least one weak solution.

The second purpose of this paper is to show the existence of at least one nontrivial
solution of problem (1.1) via Mountain Pass Theorem and the following assumptions
of the function f .

(H1) |f(x, s)| ≤ a(x) + b|s|α(x)−1 for all (x, s) ∈ Ω × R, with a(x) ≥ 0, a(x) ∈
L

α(x)
α(x)−1 (Ω), b ≥ 0, α ∈ C+(Ω) and α(x) < p∗2(x).

(H2) There exist M > 0, θ > p+ such that for all |s| ≥ M and x ∈ Ω,

0 < F (x, s) ≤ s

θ
f(x, s).

(H3) f(x, s) = o(|s|p+−1) as s → 0 and uniformly for x ∈ Ω, with α− > p+.
We can state the following result.

Theorem 1.3. If f satisfies (H1)–(H3), then, for all λ ≤ 0, problem (1.1) has at
least a nontrivial solution.
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Next, we obtain an infinite many pairs of solutions.

Theorem 1.4. Suppose that f satisfies the conditions (H1)–(H2) and the following
condition

(H4) f(x,−s) = −f(x, s), x ∈ Ω, s ∈ R.

Then, problem (1.1) has infinite many weak solutions.

Remark 1.5. (1) Condition (H1) indicates that the nonlinearity f is subcritical
and (H2) indicates f is “superlinear”. These two conditions enable us to use a varia-
tional approach for the study (1.1); they also provide the Palais-Smale compactness
condition.

(2) Beginning with [1], many authors have obtained non trivial solutions of su-
perlinear problems, −∆pu = f(x, u) in Ω; u = 0 on ∂Ω, under various assumptions
of the behavior of f near zero, in the semilinear case p = 2 and quasilinear p 6= 2.

Our work is motivated by [1, 3, 8, 2].
This paper is divided into four sections, organized as follows: In section 2, we

introduce some basic properties of the Lebesgue and Sobolev spaces with variable
exponent. In the third section, we present some important properties of the p(x)-
biharmonic operator. In section 4, we proves our main results.

2. Preliminaries

To study p(x)-Laplacian problems, we need some results on the spaces Lp(x)(Ω)
and W k,p(x)(Ω), and properties of p(x)-Laplacian, which we will use later.

Define the generalized Lebesgue space by

Lp(x)(Ω) :=
{
u : Ω → R measurable and

∫
Ω

|u(x)|p(x)dx < ∞
}
,

where p ∈ C+(Ω) and

C+(Ω) :=
{
p ∈ C(Ω) : p(x) > 1 ∀x ∈ Ω

}
.

Denote

p+ = max
x∈Ω

p(x), p− = min
x∈Ω

p(x),

and for all x ∈ Ω and k ≥ 1,

p∗(x) :=

{
Np(x)

N−p(x) if p(x) < N

+∞ if p(x) ≥ N,

p∗k(x) :=

{
Np(x)

N−kp(x) if kp(x) < N

+∞ if kp(x) ≥ N.

One introduces in Lp(x)(Ω) the norm

|u|p(x) = inf
{
λ > 0 :

∫
Ω

|u(x)
λ
|p(x)dx ≤ 1

}
.

The space (Lp(x)(Ω), |.|p(x)) is a Banach.
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Proposition 2.1 ([10]). The space (Lp(x)(Ω), |.|p(x)) is separable, uniformly convex,
reflexive and its conjugate space is Lq(x)(Ω) where q(x) is the conjugate function of
p(x), i.e

1
p(x)

+
1

q(x)
= 1, ∀x ∈ Ω.

For u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) we have∣∣ ∫
Ω

u(x)v(x)dx
∣∣ ≤ (

1
p−

+
1
q−

)|u|p(x)|v|q(x).

The Sobolev space with variable exponent W k,p(x)(Ω) is defined as

W k,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k

}
,

where Dαu = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αN
N

u, (the derivation in distributions sense) with α =

(α1, . . . , αN ) is a multi-index and |α| =
∑N

i=1 αi. The space W k,p(x)(Ω), equipped
with the norm

‖u‖k,p(x) :=
∑
|α|≤k

|Dαu|p(x),

also becomes a Banach, separable and reflexive space. For more details, we refer
the reader to [7, 10, 15, 19].

Proposition 2.2 ([10]). For p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for all x ∈ Ω,
there is a continuous and compact embedding

W k,p(x)(Ω) ↪→ Lr(x)(Ω).

We denote by W
k,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W k,p(x)(Ω).

3. Properties of p(x)-Biharmonic operator

Note that the weak solutions of the problem (1.1) are considered in the general-
ized Sobolev space

X := W 2,p(x)(Ω) ∩W
1,p(x)
0 (Ω)

equipped with the norm

‖u‖ = inf
{

α > 0 :
∫

Ω

(
|∆u(x)

α
|p(x) − λ|u(x)

α
|p(x)

)
dx ≤ 1

}
.

Remark 3.1. (1) According to [21], the norm ‖.‖2,p(x), cited in the preliminar-
ies, is equivalent to the norm |∆.|p(x) in the space X. Consequently, the norms
‖.‖2,p(x), ‖.‖ and |∆.|p(x) are equivalent.

(2) By the above remark and proposition 2.2, there is a continuous and compact
embedding of X into Lq(x)(Ω), where q(x) < p∗2(x) for all x ∈ Ω.

We consider the functional

J(u) =
∫

Ω

(
|∆u|p(x) − λ|u|p(x)

)
dx,

and give the following fundamental proposition.

Proposition 3.2. For u ∈ X we have
(1) ‖u‖ < (=;> 1) ⇔ J(u) < (=;> 1),
(2) ‖u‖ ≤ 1 ⇒ ‖u‖p+ ≤ J(u) ≤ ‖u‖p− ,
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(3) ‖u‖ ≥ 1 ⇒ ‖u‖p− ≤ J(u) ≤ ‖u‖p+
, for all un ∈ X we have

(4) ‖un‖ → 0 ⇔ J(un) → 0,
(5) ‖un‖ → ∞⇔ J(un) →∞.

The proof of this proposition is similar to the proof in [10, Theorem 1.3].
It is clear that the energy functional associated to (1.1) is defined by

Ψ(u) =
∫

Ω

1
p(x)

(
|∆u|p(x) − λ|u|p(x)

)
dx−

∫
Ω

F (x, u)dx.

where F (x, s) =
∫ s

0
f(x, t)dt. Let us define the functionals

γ(u) =
∫

Ω

1
p(x)

(|∆u|p(x) − λ|u|p(x))dx,

Γ(u) =
∫

Ω

F (x, u)dx.

It is well known that γ is well defined, even and C1 in X. For the operator Γ, if
the function f satisfies condition (H1). Then we have the following result.

Proposition 3.3. (i) Γ ∈ C1(X, R) and for u, v in X, we have

〈Γ′(u), v〉 =
∫

Ω

f(x, u)vdx.

(ii) The operator Γ′ : X → X ′ is completely continuous.

Proof. (i) By condition (H1), we have

|F (x, s)| ≤ a(x)|s|+ b

α(x)
|s|α(x) ≤ A(x) + B|s|α(x)

where A(x) ≥ 0, A ∈ L1(Ω), B ≥ 0 and α < p∗2. Then the Nemytskii operator
properties implies that Γ is a C1 operator in Lα(x)(Ω). Since there is a continuous
embedding of X into Lα(x)(Ω), the function Γ is also C1 in X and

〈Γ′(u), v〉 =
∫

Ω

f(x, u(x))v(x)dx.

(ii) Let (un)n ⊂ X be a sequence such that un ⇀ u. Using the compact em-
bedding of X into Lα(x)(Ω), there exists a subsequence, noted also (un)n, such
that un → u in Lα(x)(Ω). According to the Krasnoselki’s theorem, the Nemytskii
operator

Nf : Lα(x) → L
α(x)

α(x)−1

u 7−→ f(., u)

is continuous. Hence, Nf (un) → Nf (u) in L
α(x)

α(x)−1 (Ω). Also in view of the Holder’s
inequality and the continuous embedding of X into Lα(x)(Ω), we obtain

|〈Γ′(un)− Γ′(u), v〉| =
∣∣ ∫

Ω

(f(x, un)− f(x, u))v(x)dx
∣∣

≤ 2‖Nf (un)−Nf (u)‖ α(x)
α(x)−1

‖v‖α(x)

≤ C‖Nf (un)−Nf (u)‖ α(x)
α(x)−1

‖v‖.

Thus, Γ′(un) → Γ′(u) in X ′. Which completes the proof. �



6 A. R. EL AMROUSS, F. MORADI, M. MOUSSAOUI EJDE-2009/153

Consequently, the weak solutions of (1.1) are the critical points of the functional

Ψ(u) =
∫

Ω

1
p(x)

(
|∆u|p(x) − λ|u|p(x)

)
dx−

∫
Ω

F (x, u)dx.

Moreover, the operator L := γ′ : X → X ′ defined as

〈L(u), v〉 =
∫

Ω

(|∆u|p(x)−2∆u∆v − λ|u|p(x)−2uv)dx ∀u, v ∈ X

satisfies the assertions of the following theorem.

Theorem 3.4. (1) L is continuous, bounded and strictly monotone.
(2) L is of (S+) type.
(3) L is a homeomorphism.

Proof. (1) Since L is the Fréchet derivative of γ, it follows that L is continuous and
bounded. Let us define the sets

Up = {x ∈ Ω : p(x) ≥ 2}, Vp = {x ∈ Ω : 1 < p(x) < 2}.

Using the elementary inequalities

|x− y|γ ≤ 2γ(|x|γ−2x− |y|γ−2y).(x− y) if γ ≥ 2,

|x− y|2 ≤ 1
(γ − 1)

(|x|+ |y|)2−γ(|x|γ−2x− |y|γ−2y).(x− y) if 1 < γ < 2,

for all (x, y) ∈ (RN )2 , where x.y denotes the usual inner product in RN , we obtain
for all u, v ∈ X such that u 6= v

〈L(u)− L(v), u− v〉 > 0,

which means that L is strictly monotone.
(2) Let (un)n be a sequence of X such that

un ⇀ u in X and lim sup
n→+∞

〈L(un), un − u〉 ≤ 0.

From proposition 3.2, it suffices to shows that∫
Ω

(|∆un −∆u|p(x) − λ|un − u|p(x))dx → 0. (3.1)

In view of the monotonicity of L, we have

〈L(un)− L(u), un − u〉 ≥ 0,

and since un ⇀ u in X, it follows that

lim sup
n→+∞

〈L(un)− L(u), un − u〉 = 0. (3.2)

Put

ϕn(x) = (|∆un|p(x)−2∆un − |∆u|p(x)−2∆u).(∆un −∆u),

ξn(x) = (|un|p(x)−2un − |u|p(x)−2u).(un − u).

By the compact embedding of X into Lp(x)(Ω), it follows that

un → u in Lp(x)(Ω),

|un|p(x)−2un → |u|p(x)−2u in Lq(x)(Ω)
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where 1
q(x) + 1

p(x) = 1 for all x ∈ Ω. It results that∫
Ω

ξn(x)dx → 0. (3.3)

It follows by (3.2) and (3.3) that

lim sup
n→+∞

∫
Ω

ϕn(x)dx = 0. (3.4)

Thanks to the above inequalities,∫
Up

|∆un −∆uk|p(x)dx ≤ 2p+
∫

Up

ϕn(x)dx,∫
Up

|un − uk|p(x)dx ≤ 2p+
∫

Up

ξn(x)dx.

Then ∫
Up

(|∆un −∆u|p(x) − λ|un − u|p(x))dx → 0 as n → +∞. (3.5)

On the other hand, in Vp, setting δn = |∆un|+ |∆u|, we have∫
Vp

|∆un −∆u|p(x)dx ≤ 1
p− − 1

∫
Vp

(ϕn)
p(x)

2 (δn)
p(x)

2 (2−p(x))dx .

By Young’s inequality,

d

∫
Vp

|∆un −∆u|p(x)dx ≤
∫

Vp

[d(ϕn)
p(x)

2 ](δn)
p(x)

2 (2−p(x))dx,

≤
∫

Vp

ϕn(d)
2

p(x) dx +
∫

Vp

(δn)p(x)dx.

(3.6)

From (3.4) and since ϕn ≥ 0, one can consider that

0 ≤
∫

Vp

ϕndx < 1.

If
∫

Vp
ϕndx = 0 then

∫
Vp
|∆un −∆u|p(x)dx = 0. If not, we take

d = (
∫

Vp

ϕn(x)dx)−1/2 > 1,

and the fact that 2
p(x) < 2, inequality (3.6) becomes∫

Vp

|∆un −∆u|p(x)dx ≤ 1
d

( ∫
Vp

ϕnd2dx +
∫

Ω

δp(x)
n dx

)
,

≤
( ∫

Vp

ϕndx
)1/2(

1 +
∫

Ω

δp(x)
n dx

)
.

Note that,
∫
Ω

δ
p(x)
n dx is bounded, which implies∫

Vp

|∆un −∆u|p(x)dx → 0 as n → +∞.

A similar method gives∫
Vp

|un − u|p(x)dx → 0 as n → +∞.
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Hence, it result that∫
Vp

(|∆un −∆u|p(x) − λ|un − u|p(x))dx → 0 as n → +∞. (3.7)

Finally, (3.1) is given by combining (3.5) and (3.7).
(3) Note that the strict monotonicity of L implies this injectivity. Moreover, L

is a coercive operator. Indeed, since p− − 1 > 0, for each u ∈ X such that ‖u‖ ≥ 1
we have

〈L(u), u〉
‖u‖

=
J(u)
‖u‖

≥ ‖u‖p−−1 →∞ as ‖u‖ → ∞.

Consequently, thanks to a Minty-Browder theorem [22], the operator L is an sur-
jection and admits an inverse mapping. It suffices then to show the continuity of
L−1. Let (fn)n be a sequence of X ′ such that fn → f in X ′. Let un and u in X
such that

L−1(fn) = un and L−1(f) = u.

By the coercivity of L, one deducts that the sequence (un) is bounded in the
reflexive space X. For a subsequence, we have un ⇀ û in X, which implies

lim
n→+∞

〈L(un)− L(u), un − û〉 = lim
n→+∞

〈fn − f, un − û〉 = 0.

It follows by the second assertion and the continuity of L that

un → û in X and L(un) → L(û) = L(u) in X ′.

Moreover, since L is an injection, we conclude that u = û. This completes the
proof. �

4. Proof of main results

Proof of theorem 1.1. Let A be the linear function

A : X → R
v 7−→

∫
Ω

f(x)vdx.

A is a continuous function , indeed, let β ∈ C+(Ω) such that

1
α(x)

+
1

β(x)
= 1,∀x ∈ Ω,

thus, we have β(x) < p∗2(x) for all x ∈ Ω. Using the second assertion of remark
3.1, there is a continuous embedding X ↪→ Lβ(x)(Ω) which implies that there exists
C > 0 such that

|v|β(x) ≤ C‖v‖ for all v ∈ X.

By proposition 2.1, we conclude that

|A(v)| ≤ (
1

α−
+

1
β−

)|f |α(x)|v|β(x)

≤ C(
1

α−
+

1
β−

)|f |α(x)‖v‖.

Therefore, A is continuous. Since the operator L, in theorem 3.4, is an homeomor-
phism, there exists a unique u ∈ X verifies L(u) = A. The proof is complete. �
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Proof of theorem 1.2. From the condition of theorem 1.2, we have for all (x, s) ∈
Ω× R,

|F (x, s)| ≤ a(x)|s|+ b

β
|s|β ≤ A(x) + B|s|β

where A(x) ≥ 0, A(x) ∈ L1(Ω) and B ≥ 0. It follows that

Ψ(u) =
∫

Ω

1
p(x)

(|∆u|p(x) − λ|u|p(x))dx−
∫

Ω

F (x, u)dx

≥ 1
p+

J(u)−B

∫
Ω

|u|βdx− ‖A‖L1 .

Note that for ‖u‖ large enough we have J(u) ≥ ‖u‖p− , on the other hand, the fact
that β < p− < p∗2(x) gives that there exists C ′ > 0 such that |u|β ≤ C ′‖u‖.
Hence,

Ψ(u) ≥ 1
p+
‖u‖p− − C1‖u‖β − C2,

and this approaches +∞ as ‖u‖ → +∞. Since Ψ is weakly lower semi-continuous,
Ψ admits a minimum point u in X. Then u is a weak solution of (1.1). This
completes the proof. �

Proof of theorem 1.3. For the proof of the above theorem, we will use the
Mountain Pass Theorem. We start by the following lemmas.

Lemma 4.1. Under assumption (H1)–(H2), the functional Ψ satisfies the Palais
Smale condition (P.S).

Proof. Let (un)n be a (P.S) sequence for the functional Ψ: Ψ(un) bounded and
Ψ′(un) → 0. Let us show that (un)n is bounded in X. Using hypothesis (H2), since
Ψ(un) is bounded, we have

C1 ≥
∫

Ω

1
p(x)

(|∆u|p(x) − λ|u|p(x))dx−
∫

Ω

un

θ
f(x, un)dx + C2

≥ 1
p+

J(un)−
∫

Ω

un

θ
f(x, un)dx + C2,

where C1 and C2 are two constants. Note that

〈Ψ′(un), un〉 =
∫

Ω

(|∆un|p(x) − λ|un|p(x))dx−
∫

Ω

f(x, un)undx,

which implies

C1 ≥ (
1

p+
− 1

θ
)J(un) +

1
θ
〈Ψ′(un), un〉+ C2. (4.1)

Suppose, by contradiction that (un)n unbounded in X, so ‖un‖ ≥ 1 for rather large
values of n and it results that

‖un‖p− ≤ J(un) ≤ ‖un‖p+

for rather large values of n. Furthermore, Ψ′(un) → 0 assure that there exists
C3 > 0 such that

−C3‖un‖ ≤ 〈Ψ′(un), un〉 ≤ C3‖un‖
for rather large values of n. Consequently,

C1 ≥ a(un) :=
( 1
p+

− 1
θ

)
‖un‖p− − C3

θ
‖un‖+ C2.
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Since p− > 1 and ( 1
p+ − 1

θ ) > 0, we have a(un) → +∞ as n → +∞, what is a
contradiction. So (un)n is a bounded sequence in X. �

Lemma 4.2. There exist r, C > 0 such that Ψ(u) ≥ C for all u ∈ X such that
‖u‖ = r.

Proof. Conditions (H1) and (H3) assure that

|F (x, s)| ≤ ε|s|p
+

+ C(ε)|s|α(x) for all (x, s) ∈ Ω× R.

For ‖u‖ small enough, we have

Ψ(u) ≥ 1
p+

J(u)−
∫

F (x, u)dx,

≥ 1
p+
‖u‖p+

− ε

∫
|u|p

+
− C(ε)

∫
|u|α(x).

(4.2)

By condition (H1), it follows that

p− ≤ p ≤ p+ < α− ≤ α < p∗2

then X ⊂ Lp+
(Ω) X ⊂ Lα(x)(Ω), with a continuous and compact embedding, what

implies the existence of C4, C5 > 0 such that

‖u‖Lp+ ≤ C4‖u‖ and ‖u‖Lα(x) ≤ C5‖u‖

for all u ∈ X. Since ‖u‖ is small enough, we deduce∫
|u|α(x) ≤ max

(
‖u‖α−

Lα(x) , ‖u‖α+

Lα(x)

)
≤ C6‖u‖α− .

Replacing in (4.2), it results that

Ψ(u) ≥ 1
p+
‖u‖p+

− εCp+

4 ‖u‖p+
− C7‖u‖α− ,

with Ci are positives constants. Let us choose ε > 0 such that εCp+

4 ≤ 1
2p+ , we

obtain

Ψ(u) ≥ 1
2p+

‖u‖p+
− C7‖u‖α−

≥ ‖u‖p+
(

1
2p+

− C7‖u‖α−−p+
).

Since p+ < α−, the function t 7→ ( 1
2p+ − C7t

α−−p+
) is strictly positive in a neigh-

borhood of zero. It follows that there exist r > 0 and C > 0 such that

Ψ(u) ≥ C ∀u ∈ X : ‖u‖ = r.

The proof is complete. �

Proof of theorem 1.3. To apply the Mountain Pass Theorem, we must prove that

Ψ(tu) → −∞ as t → +∞,

for a certain u ∈ X. From condition (H2), we obtain

F (x, s) ≥ c|s|θ for all (x, s) ∈ Ω× R.
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Let u ∈ X and t > 1 we have

Ψ(tu) =
∫

tp(x)

p(x)
[|∆u|p(x) − λ|u|p(x)]dx−

∫
F (x, tu)dx

≤ tp
+

∫
1

p(x)
[|∆u|p(x) − λ|u|p(x)]dx− ctθ

∫
|u|θdx.

The fact θ > p+, implies

Ψ(tu) → −∞ as t → +∞.

It follows that there exists e ∈ X such that ‖e‖ > r and Ψ(e) < 0. According to the
Mountain Pass Theorem, Φ admits a critical value µ ≥ C which is characterized by

µ = inf
h∈Λ

sup
t∈[0,1]

Φ(h(t))

where
Λ = {h ∈ C([0, 1], X) : h(0) = 0 and h(1) = e}.

This completes the proof. �

Proof of theorem 1.4. We use the Bartsch’s fountain theorem [3]. The space X is
a Banach reflexive and separable, then there exists {ei} ⊂ X and {fit} ⊂ X ′ such
that

X = 〈ei, i ∈ N∗〉, X ′ = 〈fi, i ∈ N∗〉, 〈ei, fj〉 = δi,j ,

where δi,j denotes the Kroneker symbol. For k ∈ N∗. Put

Xk = Rek, Yk =
k
⊕

i=1
Xi, Zk =

∞
⊕

i=k
Xi,

βk = sup{|u|α(x)/‖u‖ = 1, u ∈ Zk}.

�

We have the following lemma.

Lemma 4.3. If α ∈ C+(Ω) and α(x) < p∗2(x) for all x ∈ Ω, then limk→+∞ βk = 0.

Proof. It is clear that 0 < βk+1 ≤ βk, so, βk converges to β ≥ 0. Let uk ∈ Zk such
that

‖uk‖ = 1 and 0 ≤ βk − |uk|α(x) <
1
k

.

Then, there exists a subsequence, noted also by (uk)k, such that uk ⇀ u in X and

〈fi, u〉 = lim
k→+∞

〈fi, uk〉 = 0

for all i ∈ N∗. Thus, u = 0 and uk ⇀ 0 in X. According to the remark 3.1, there is
a compact embedding of X into Lα(x)(Ω), which assure that uk → 0 in Lα(x)(Ω).
Hence, it results that βk → 0. �

Proof of theorem 1.4. From conditions (H2) and (H4), Ψ is an even function satis-
fies the Palais-Smale condition. We will prove that for k large enough, there exists
ρk > γk > 0 such that

(A1) bk := inf{Ψ(u)/u ∈ Zk, ‖u‖ = γk} → +∞ as k → +∞,
(A2) ak := max{Ψ(u)/u ∈ Yk, ‖u‖ = ρk} ≤ 0.
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The assertion of theorem 1.4 is then obtained by the fountain theorem.
(A1): For u ∈ Zk such that ‖u‖ = γk > 1, we have by the condition (H1)

Ψ(u) =
∫

1
p(x)

[
|∆u|p(x) − λ|u|p(x)

]
dx−

∫
F (x, u)dx

≥ 1
p+

J(u)−B

∫
|u|α(x)dx− ‖A‖L1

≥ 1
p+
‖u‖p− − C2

∫
|u|α(x)dx− C1.

If |u|α(x) ≤ 1 then
∫
|u|α(x)dx ≤ |u|α−α(x) ≤ 1. However, if |u|α(x) > 1 then∫

|u|α(x)dx ≤ |u|α+

α(x) ≤ (βk‖u‖)α+
. So, we conclude that

Ψ(u) ≥

{
1

p+ ‖u‖p− − (C2 + C1) if |u|α(x) ≤ 1
1

p+ ‖u‖p− − C2(βk‖u‖)α+ − C1 if |u|α(x) > 1

≥ 1
p+
‖u‖p− − C2(βk‖u‖)α+

− C3,

For γk = (C2α
+βα+

k )1/(p−−α+), it follows that

Ψ(u) ≥ γp−

k (
1

p+
− 1

α+
)− C3.

Since βk → 0 and p− ≤ p+ < α+, we have γk → +∞ as k → +∞. Consequently,

Ψ(u) → +∞ as ‖u‖ → +∞, u ∈ Zk

and the assertion (A1) is true.
(A2): Condition (H2) implies

F (x, s) ≥ C1|s|θ − C2.

Let u ∈ Yk such that ‖u‖ = ρk > γk > 1. Then

Ψ(u) ≤ 1
p−

J(u)−
∫

F (x, u)dx

≤ 1
p−
‖u‖p+

− C1

∫
|u|θdx− C3.

Note that the space Yk has finite dimension, then all norms are equivalents and we
obtain

Ψ(u) ≤ 1
p−
‖u‖p+

− C4‖u‖θ − C3.

Finally

Ψ(u) → −∞ as ‖u‖ → +∞, u ∈ Yk

because θ > p+. The assertion (A2) is then satisfied and the proof of theorem 1.4
is complete. �
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