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POSITIVE SOLUTIONS FOR THIRD-ORDER
STURM-LIOUVILLE BOUNDARY-VALUE PROBLEMS WITH

p-LAPLACIAN

CHENGBO ZHAI, CHUNMEI GUO

Abstract. In this article, we consider the third-order Sturm-Liouville bound-
ary value problem, with p-Laplacian,

(φp(u′′(t)))′ + f(t, u(t)) = 0, t ∈ (0, 1),

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0, u′′(0) = 0,

where φp(s) = |s|p−2s, p > 1. By means of the Leggett-Williams fixed-
point theorems, we prove the existence of multiple positive solutions. As an

application, we give an example that illustrates our result.

1. Introduction

In this paper, we study the existence of multiple positive solutions for the fol-
lowing third-order Sturm-Liouville boundary value problem with p-Laplacian

(φp(u′′(t)))′ + f(t, u(t)) = 0, t ∈ (0, 1), (1.1)

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0, u′′(0) = 0, (1.2)

where φp(s) = |s|p−2s, p > 1, (φp)−1 = φq, 1
p + 1

q = 1, α, β, γ, δ ≥ 0.
During the past decades, wide attention has been paid to the study equations

with p-Laplacian operator, which arises in the modelling of different physical and
natural phenomena, non-Newtonian mechanics [3, 9], combustion theory [19], pop-
ulation biology [17, 18], nonlinear flow laws [5, 13, 14], and system of Monge-
Kantorovich partial differential equations [4]. There exist a very large number
of papers devoted to the existence of solutions of the p-Laplacian operator. The
second-order problem,

(φp(u′(t)))′ + f(t, u(t)) = 0, t ∈ (0, 1),

with various boundary conditions has been studied by many authors, see [8, 12,
15, 16, 20, 21, 22, 23] and the references therein. However, to the best of our
knowledge, few papers can be found in the literature on the existence of multiple
positive solutions for the third-order Sturm-Liouville boundary value problem (1.1),
(1.2). The purpose here is to fill this gap in the literature. Motivated by the works
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[1] and [7], we shall establish the existence of at least two or at least three positive
solutions to third-order Sturm-Liouville boundary value problem with p-Laplacian
(1.1), (1.2) by using fixed point theorems in cones.

By a positive solution of (1.1) and (1.2) we understand a function u(t) ∈ C2[0, 1]
which is positive on 0 < t < 1 and satisfies the differential equation (1.1) and the
boundary conditions (1.2).

In this article, we use the following assumptions:
(A1) ρ := γβ + αγ + αδ > 0, 0 < σ := min

{
4δ+γ

4(δ+γ) ,
α+4β

4(α+β)

}
< 1.

(A2) G(t, s) is the Green’s function of the differential equation u′′(t) = 0, t ∈
(0, 1) with respect to the boundary value condition (1.2), i.e.,

G(t, s) =

{
1
ρ (γ + δ − γt)(β + αs), 0 ≤ s ≤ t ≤ 1.
1
ρ (β + αt)(γ + δ − γs), 0 ≤ t ≤ s ≤ 1.

Evidently G(t, s) ≤ G(s, s), 0 ≤ t, s ≤ 1.
(A3) f ∈ C([0, 1]× [0,∞); [0,∞)).

For convenience, we denote

ζ(a) = max{f(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ a},

ψ(b) = min{f(t, u) :
1
4
≤ t ≤ 3

4
, b ≤ u ≤ b

σ2
}.

Where σ is given as in (A1). Our main results are the following.

Theorem 1.1. Assume (A1)–(A3), and that there exist constants 0 < a < b such
that

ζ(a) < (ma)p−1 (1.3)

ψ(b) ≥ (lb)p−1. (1.4)

Then the boundary value problem (1.1), (1.2) has at least two positive solutions
u1, u2 satisfying ‖u1‖ < a, mint∈[ 14 , 3

4 ] u2(t) < b and ‖u2‖ > a, where

m =
( ∫ 1

0

G(s, s)ds
)−1

=
6ρ

αγ + 3αδ + 3βγ + 6βδ
,

l =
2

σ41−q

( ∫ 3/4

1/4

G(
1
2
, s)ds

)−1

=
2

σ41−q
· 32ρ
3αγ + 7αδ + 7βγ + 16βδ

.

Theorem 1.2. Assume (A1)–(A3) and that there exist constants a, b, c such that
0 < a < b < σ2c implies

ζ(a) < (ma)p−1, (1.5)

ψ(b) ≥ (lb)p−1, (1.6)

ζ(c) ≤ (mc)p−1. (1.7)

Then the boundary value problem (1.1), (1.2) has at least three positive solutions
u1, u2 and u3 with ‖u1‖ < a, mint∈[ 14 , 3

4 ] u2(t) > b, ‖u3‖ > a and mint∈[ 14 , 3
4 ] u3(t) <

b, where σ is given as in (A1) and m, l are given as in Theorem 1.1.

The proofs of theorems are based upon the Leggett-Williams fixed-point theo-
rems [10]. These theorems have been useful technique for proving the existence of
three or two solutions for boundary value problems of differential and difference
equations, see [1, 2, 7].
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2. Preliminaries

In this section we summarize some basic concepts and results which are taken
from Guo and Lakshmikantham [6], and from Leggett and Williams [10].

Definition 2.1. Let E be a real Banach space and P be a nonempty, convex closed
set in E. We say that P is a cone if it satisfies the following properties: (i) λu ∈ P
for u ∈ P, λ ≥ 0; (ii) u,−u ∈ P implies u = θ(θ denotes the null element of E).

If P ⊂ E is a cone, we denote the order induced by P on E by ≤. For u, v ∈ P ,
we write u ≤ v if v − u ∈ P .

Definition 2.2. The map ϕ is said to be a nonnegative continuous concave func-
tional on P provided that ϕ : P → [0,∞) is continuous and ϕ(tx + (1 − t)y) ≥
tϕ(x) + (1− t)ϕ(y) for all x, y ∈ P and 0 ≤ t ≤ 1.

Definition 2.3. Let 0 < a < b be given and let ϕ be a nonnegative continuous
concave functional on the cone P . Define the convex sets Pr, P̄r and P (ϕ, a, b) by
Pr = {y ∈ P : ‖y‖ < r}, P̄r = {y ∈ P : ‖y‖ ≤ r}, P (ϕ, a, b) = {y ∈ P : a ≤
ϕ(y), ‖y‖ ≤ b}.

Theorem 2.4 (Leggett-Williams [10]). Let T : P̄c → P̄c be a completely continuous
operator and let ϕ be a nonnegative continuous concave functional on P such that
ϕ(y) ≤ ‖y‖ for all y ∈ P̄c. Suppose that there exist 0 < a < b < d ≤ c such that

(a’) {y ∈ P (ϕ, b, d) : ϕ(y) > b} 6= ∅ and ϕ(Ty) > b for y ∈ P (ϕ, b, d);
(b’) ‖Ty‖ < a for ‖y‖ ≤ a;
(c’) ϕ(Ty) > b for y ∈ P (ϕ, b, c) with ‖Ty‖ > d.

Then T has at least three fixed points y1, y2, y3 in P̄c satisfying ‖y1‖ < a,ϕ(y2) >
b, ‖y3‖ > a and ϕ(y3) < b

Theorem 2.5 ([10]). Let T : P̄c → P be a completely continuous operator and let
ϕ be a nonnegative continuous concave functional on P such that ϕ(y) ≤ ‖y‖ for
all y ∈ P̄c. Suppose that there exist 0 < a < b < c such that

(a”) {y ∈ P (ϕ, b, c) : ϕ(y) > b} 6= ∅, and ϕ(Ty) > b for y ∈ P (ϕ, b, c);
(b”) ‖Ty‖ < a for ‖y‖ ≤ a;
(c”) ϕ(Ty) > b

c‖Ty‖ for y ∈ P̄c with ‖Ty‖ > c.

Then T has at least two fixed points y1, y2 in P̄c satisfying ‖y1‖ < a, ‖y2‖ > a and
ϕ(y2) < b.

In the rest of this section we assume that (A1)-(A3) hold. Let E = C[0, 1] and
C+[0, 1] = {x ∈ E|x(t) ≥ 0, t ∈ [0, 1]}. Define an operator T by

(Tu)(t) =
∫ 1

0

G(t, v)φq

( ∫ v

0

f(s, u(s))ds
)
dv, ∀u ∈ C+[0, 1].

From (A2) and (A3), we can easily get (Tu)(t) ≥ 0, t ∈ [0, 1] for u ∈ C+[0, 1].

Remark 2.6. Suppose that u ∈ C+[0, 1] satisfies of the operator equation, Tu = u.
We can obtain

u′(t) = −γ
ρ

∫ t

0

(β + αv)φq

( ∫ v

0

f(s, u(s))ds
)
dv

+
α

ρ

∫ 1

t

(γ + δ − γv)φq

( ∫ v

0

f(s, u(s))ds
)
dv,
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u′′(t) = (Tu)′′(t) = −φq

( ∫ t

0

f(s, u(s))ds
)
.

So we have

φp(u′′(t)) = −
∫ t

0

f(s, u(s))ds,

and in consequence, (φp(u′′(t)))′ = −f(t, u(t)). Moreover, it is clear that

αu(0)− βu′(0) = α

∫ 1

0

G(0, v)φq

( ∫ v

0

f(s, u(s))ds
)
dv

− β · α
ρ

∫ 1

0

(γ + δ − γv)φq

( ∫ v

0

f(s, u(s))ds
)
dv = 0;

γu(1) + δu′(1) = γ

∫ 1

0

G(1, v)φq

( ∫ v

0

f(s, u(s))ds
)
dv

+
(
− γ

ρ

)
· δ

∫ 1

0

(β + αv)φq

( ∫ v

0

f(s, u(s))ds
)
dv = 0.

Further, u′′(0) = 0, that is to say, all the fixed points of operator T are the solutions
for the problem (1.1), (1.2).

Lemma 2.7 ([11]). Suppose that G(t, s) is defined as in (A2). Then

G(t, s)
G(s, s)

≤ 1 for t ∈ [0, 1], s ∈ [0, 1],

G(t, s)
G(s, s)

≥ σ for t ∈ [
1
4
,
3
4
], s ∈ [0, 1].

Lemma 2.8. The operator T : C+[0, 1] → C+[0, 1] is completely continuous; i.e.,
T is continuous and compact.

Proof. Firstly, we show that T : C+[0, 1] → C+[0, 1] is continuous. From Remark
2.6, we know that T : C+[0, 1] → C+[0, 1]. Suppose {un} ⊂ C+[0, 1], un → ū(n→
∞). Then ū ∈ C+[0, 1] and there exists a constant M0 > 0 such that ‖un‖ ≤ M0,
‖ū‖ ≤ M0. Let M1 = max{f(t, u)|t ∈ [0, 1], u ∈ [0,M0]}. Then for t ∈ [0, 1] we
have

|Tun(t)− T ū(t)| ≤
∫ 1

0

G(t, v)
∣∣φq

( ∫ v

0

f(s, un(s))ds
)
− φq

( ∫ v

0

f(s, ū(s))ds
)∣∣dv

≤
∫ 1

0

G(v, v)
∣∣φq

( ∫ v

0

f(s, un(s))ds
)
− φq

( ∫ v

0

f(s, ū(s))ds
)∣∣dv

≤
∫ 1

0

2φq(M1)G(v, v)dv.

Note that f(t, u) is continuous. We know that φq(
∫ v

0
f(s, u)ds) is continuous in u

on [0,∞). Then for for each ε > 0, there exists δ1 > 0, such that |u1 − u2| < δ1
and we ∣∣φq

( ∫ v

0

f(s, u1(s))ds
)
− φq

( ∫ v

0

f(s, u2(s))ds
)∣∣ < ε

G(v, v)
.
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In view of un(s) → ū(s), as n → ∞, there exists a natural number N > 0, for
n > N with |un(s)− ū(s)| < δ1, we have∣∣φq

( ∫ v

0

f(s, un(s))ds
)
− φq

( ∫ v

0

f(s, ū(s))ds
)∣∣ < ε

G(v, v)
.

Thus for ε > 0, there exists N > 0, such that when n > N ,

G(v, v)
∣∣φq

( ∫ v

0

f(s, un(s))ds
)
− φq

( ∫ v

0

f(s, ū(s))ds
)∣∣ < ε, a.e. [0, 1].

An application of Lebesgue’s dominated convergence theorem implies

|Tun(t)− T ū(t)| → 0(as n→∞), t ∈ [0, 1].

So operator T : C+[0, 1] → C+[0, 1] is continuous.
Next we prove that T is compact. Let Ω ⊂ C+[0, 1] be a bounded set. Then

there exists R > 0 such that Ω ⊂ {u ∈ C+[0, 1]|‖u‖ ≤ R}. Set M = max{f(t, u)|t ∈
[0, 1], u ∈ Ω}. For any u ∈ Ω, we have

|(Tu)(t)| =
∣∣ ∫ 1

0

G(t, v)φq

( ∫ v

0

f(s, u(s))ds
)
dv

∣∣ ≤ ∫ 1

0

G(v, v)φq(M)dv,

which implies that T (Ω) is uniformly bounded.
Furthermore, for any u ∈ Ω and t ∈ [0, 1], we have

|(Tu)′(t)| =
∣∣∣− γ

ρ

∫ t

0

(β + αv)φq

( ∫ v

0

f(s, u(s))ds
)
dv

+
α

ρ

∫ 1

t

(γ + δ − γv)φq

( ∫ v

0

f(s, u(s))ds
)
dv

∣∣∣
≤ φq(M)

[γ
ρ

∫ t

0

(β + αv)dv +
α

ρ

∫ 1

t

(γ + δ − γv)dv
]

= φq(M)t ≤ φq(M).

Hence ‖(Tu)′‖ ≤ φq(M). So we can easily prove that T (Ω) is equicontinuous. The
Arzela-Ascoli Theorem guarantee that T (Ω) is relatively compact and therefore
that T is compact. �

3. Proofs of main results

In this section, we prove the existence of multiplicity results. Let E = C[0, 1] be
endowed with the maximum norm ‖y‖ = maxt∈[0,1] |y(t)|, and the ordering x ≤ y
if x(t) ≤ y(t) for all t ∈ [0, 1]. Define the cone P ⊂ E by

P = {u ∈ C+[0, 1] : min
t∈[ 14 , 3

4 ]
u(t) ≥ σ‖u‖},

where σ is given as in (A1). Next we show that T (P ) ⊂ P . For any u ∈ P and
t ∈ [0, 1], from Lemma 2.7 we have

Tu(t) =
∫ 1

0

G(t, v)φq

( ∫ v

0

f(s, u(s))ds
)
dv ≤

∫ 1

0

G(v, v)φq

( ∫ v

0

f(s, u(s))ds
)
dv.

Consequently,

‖Tu‖ ≤
∫ 1

0

G(v, v)φq

( ∫ v

0

f(s, u(s))ds
)
dv.
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Further, for u ∈ P and t ∈ [ 14 ,
3
4 ], from Lemma 2.7 we obtain

min
t∈[ 14 , 3

4 ]
Tu(t) = min

t∈[ 14 , 3
4 ]

∫ 1

0

G(t, v)φq

( ∫ v

0

f(s, u(s))ds
)
dv

≥ σ

∫ 1

0

G(v, v)φq

( ∫ v

0

f(s, u(s))ds
)
dv ≥ σ‖Tu‖.

From Lemma 2.8, we know that T : P → P is completely continuous. Let ϕ : P →
[0,∞) be the nonnegative continuous concave functional defined by

ϕ(u) = min
t∈[ 14 , 3

4 ]
u(t), u ∈ P.

Evidently, for each u ∈ P , we have ϕ(u) ≤ ‖u‖. We are now in a position to proving
the main results.

Proof of Theorem 1.1. It is easy to see that T : ¯P b
σ2
→ P is completely continuous

and 0 < a < b < b
σ2 . Choose u(t) = b

σ2 , then

u ∈ P
(
ϕ, b,

b

σ2

)
, ϕ(u) =

b

σ2
> b.

So {u ∈ P (ϕ, b, b
σ2 ) : ϕ(u) > b} 6= ∅. Hence, if u ∈ P (ϕ, b, b

σ2 ), then b ≤ u(t) ≤ b
σ2

for t ∈ [ 14 ,
3
4 ]. Thus for t ∈ [ 14 ,

3
4 ], from assumption (1.4), we have

f(t, u(t)) ≥ ψ(b) ≥ (lb)p−1, t ∈ [
1
4
,
3
4
].

Hence

Tu(
1
2
) =

∫ 1

0

G(
1
2
, v)φq

( ∫ v

0

f(s, u(s)
)
ds)dv

≥
∫ 3/4

1/4

G(
1
2
, v)φq

( ∫ v

0

f(s, u(s))ds
)
dv

≥
∫ 3/4

1/4

G(
1
2
, v)lbvq−1dv

≥ (
1
4
)q−1lb

∫ 3/4

1/4

G(
1
2
, v)dv =

2b
σ
>
b

σ
.

Consequently,

min
t∈[ 14 , 3

4 ]
Tu(t) ≥ σ‖Tu‖ > σ × b

σ
= b for b ≤ u(t) ≤ b

σ2
, t ∈ [

1
4
,
3
4
].

That is,

ϕ(Tu) > b,∀ u ∈ P
(
ϕ, b,

b

σ2

)
.

Therefore, condition (a”) of Theorem 2.5 is satisfied. Now if u ∈ P̄a, then ‖u‖ ≤ a.
By assumption (1.3), we have f(t, u(t)) ≤ ζ(a) < (ma)p−1, t ∈ [0, 1]. Consequently,

‖Tu‖ = max
t∈[0,1]

|Tu(t)| = max
t∈[0,1]

∫ 1

0

G(t, v)φq

( ∫ v

0

f(s, u(s))ds
)
dv

< ma max
t∈[0,1]

∫ 1

0

G(t, v)dv ≤ ma

∫ 1

0

G(v, v)dv = a.
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This shows that T : P̄a → Pa. That is, ‖Tu‖ < a for u ∈ P̄a. This shows that
condition (b”) of Theorem 2.5 is satisfied. Finally, we show that (c”) of Theorem
2.5 also holds. Assume that u ∈ ¯P b

σ2
with ‖Tu‖ > b

σ2 , then by the definition of
cone P , we have

ϕ(Tu) = min
t∈[ 14 , 3

4 ]
Tu(t) ≥ σ‖Tu‖ > σ2‖Tu‖ = b/

b

σ2
‖Tu‖.

So condition (c”) of Theorem 2.5 is satisfied. Thus using Theorem 2.5, T has at
least two fixed points. That is to say, problem (1.1),(1.2) has at least two positive
solutions u1, u2 in ¯P b

σ2
satisfying ‖u1‖ < a, mint∈[ 14 , 3

4 ] u2(t) < b and ‖u2‖ > a. �

Proof of Theorem 1.2. It follows from the conditions (1.5)-(1.7) in Theorem 1.2
that a < b < b

σ2 < c. Using the same arguments as in the proof of Theorem 1.1,
we have: T : P̄c → P̄c is a completely continuous operator and T : P̄a → Pa. Also

{u ∈ P
(
ϕ, b,

b

σ2

)
: ϕ(u) > b} 6= ∅, ϕ(Tu) > b ∀u ∈ P

(
ϕ, b,

b

σ2

)
.

Moreover, for u ∈ P (ϕ, b, c) and ‖Tu‖ > b
σ2 , we have

ϕ(Tu) = min
t∈[ 14 , 3

4 ]
Tu(t) ≥ σ‖Tu‖ > b

σ
> b.

So all the conditions of Theorem 2.4 are satisfied. Thus using Theorem 2.4, T has
at least three fixed points. That is to say, the boundary value problem (1.1),(1.2)
has at least three positive solutions u1, u2 u3 with ‖u1‖ < a, mint∈[ 14 , 3

4 ] u2(t) > b,
‖u3‖ > a and mint∈[ 14 , 3

4 ] u3(t) < b. �

Corollary 3.1. Assume (A1)–(A3) and that there exist constants 0 < aj < bj <
σ2aj+1 (j = 1, 2, . . . , n− 1), n ∈ N such that

(B1) ζ(aj) < (maj)p−1, 1 ≤ j ≤ n.
(B2) ψ(bj) ≥ (lbj)p−1, 1 ≤ j ≤ n − 1, where σ is given as in (A1) and m, l are

given as in Theorem 1.1.
Then the boundary value problem (1.1),(1.2) has at least 2n− 1 positive solutions.

The proof of the above corollary is an immediate consequence of Theorem 1.2.

Remark 3.2. When p = 2, problem (1.1), (1.2) is the usual form of third-order
Sturm-Liouville boundary value problem

u′′′(t) + f(t, u(t)) = 0, t ∈ (0, 1),

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0, u′′(0) = 0.

Using the same method, we can present some sufficient conditions that guarantee
the existence of at least two or three positive solutions for the above boundary value
problem. These results are also new and different from previous results.

4. An example

Now we consider an example to illustrate our results. Consider the third-order
Sturm-Liouville boundary value problem, with p-Laplacian,

(φ3(u′′(t)))′ + [ϕ(t)h(u(t))]2 = 0, t ∈ (0, 1), (4.1)

u(0)− u′(0) = 0, u(1) = 0, u′′(0) = 0, (4.2)
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where ϕ(t) = 4t, t ∈ [0, 1] and

h(u) =



u/2, 0 ≤ u ≤ 3/512;
1021

4 u− 3057
2048 ,

3
512 ≤ u ≤ 5

512 ;
1, 5

512 ≤ u ≤ 5
32 ;

8
59u+ 231

236 ,
5
32 ≤ u ≤ 2;

5u/8, u ≥ 2.

In this example, we note that p = 3, α = β = γ = 1, δ = 0. After a simple
calculation, we get q = 3/2, ρ = 2, σ = 1

4 < 1, G(s, s) = 1
2 (1− s2) and

m =
6ρ

αγ + 3αδ + 3βγ + 6βδ
= 3, l =

2
σ41−q

· 32ρ
3αγ + 7αδ + 7βγ + 16βδ

=
512
5
.

We choose a = 3
512 , b = 5

512 , c = 2. Evidently, a < b < σ2c and
(i) for t ∈ [0, 1], 0 ≤ u ≤ 3

512 , we have

f(t, u) = [ϕ(t)h(u)]2 ≤
[
4× 1

2
× 3

512
]2
< (ma)2.

(ii) for t ∈ [ 14 ,
3
4 ], 5

512 ≤ u ≤ b
σ2 = 5

32 , we have

f(t, u) = [ϕ(t)h(u)]2 ≥
[
4× 1

4
× 1

]2 = (lb)2.

(iii) for t ∈ [0, 1], 0 ≤ u ≤ 2, we have

f(t, u) = [ϕ(t)h(u)]2 ≤
[
4× 1×

( 8
59

× 2 +
231
236

)]2 ≤ (mc)2.

Thus, ζ(a) < (ma)2, ψ(b) ≥ (lb)2, ζ(c) ≤ (mc)2.
Hence, all the conditions of Theorem 1.2 are satisfied. An application of Theorem
1.2 implies that (4.1), (4.2) has at least three positive solutions u1, u2 and u3 with
‖u1‖ < 3

512 , mint∈[ 14 , 3
4 ] u2(t) > 5

512 , ‖u3‖ > 3
512 and mint∈[ 14 , 3

4 ] u3(t) < 5
512 .
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