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DYNAMICS OF A NON-AUTONOMOUS THREE-DIMENSIONAL
POPULATION SYSTEM

TA HONG QUANG, TA VIET TON, NGUYEN THI HOAI LINH

Abstract. In this paper, we study a non-autonomous Lotka-Volterra model
with two predators and one prey. The explorations involve the persistence,

extinction and global asymptotic stability of a positive solution.

1. Introduction

The dynamics of Lotka-Volterra models and their permanence, stability, global
attractiveness, coexistence, extinction have been studied by several authors. Takeu-
chi and Adachi [10] showed that some chaotic motions may occur in the model of
three species. Krikorian [5] considered an autonomous system of three species and
obtained some results on global boundedness and stability. Korobeinikov and Wake
[6], Korman [7] investigated a model of two preys, one predator and another one of
two predators, one prey with constant coefficients, where direct competition is ab-
sent. Ahmad [3] obtained necessary and sufficient conditions for survival of species
which rely on the averages of the growth rates and the interaction of coefficients.
Besides, we also refer to [1, 2, 8, 9].

In this paper, we consider the following Lotka-Volterra model of two predators
and one prey

x′1(t) = x1(t)[a1(t)− b11(t)x1(t)− b12(t)x2(t)− b13(t)x3(t)],

x′2(t) = x2(t)[−a2(t) + b21(t)x1(t)− b22(t)x2(t)− b23(t)x3(t)],

x′3(t) = x3(t)[−a3(t) + b31(t)x1(t)− b32(t)x2(t)− b33(t)x3(t)],

(1.1)

where xi(t) represents the population density of species Xi at time t (i ≥ 1),
X1 is the prey and X2, X3 are the predators and they interact with each other.
ai(t), bij(t)(1 ≤ i, j ≤ 3) are continuous functions on R that are bounded above
and below by some positive constants. At time t, a1(t) is the intrinsic growth rate
of X1, and ai(t) is the death rate of Xi(i ≥ 2); bi1(t)

b1i(t)
denotes the coefficient in

conversion X1 into new individual of the Xi(i ≥ 2); bij(t) measures the amount of
competition between Xi and Xj (i 6= j, i, j ≥ 2), and bii(t)(i ≥ 1) measures the
inhibiting effect of environment on Xi.
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This article is organized as follows. Section 2 provides some definitions and
notations. In Section 3, we state some results on invariant set and asymptotic
stability for problem (1.1). In Section 4, we assume that the coefficients bij(t)
(1 ≤ i, j ≤ 3) are constants, then we give some inequalities, involving the average
of the coefficients, which guarantees persistence of the system. Section 5 is a special
case of Section 4 in which the coefficients ai(t) (i ≥ 1) are constants. We also give
some inequalities which imply non-persistence; more specifically, extinction of the
third species with small positive initial values.

2. Definitions and notation

In this section we introduce some basic definitions and facts which will be used
in next sections. Let R3

+ = {(x1, x2, x3) ∈ R3|xi ≥ 0, i ≥ 1}. For a bounded
continuous function g(t) on R, we denote

gu = sup
t∈R

g(t), gl = inf
t∈R

g(t).

The existence and uniqueness of the global solutions of system (1.1) can be found
in [11]. From the uniqueness theorem, it is easy to prove the following result.

Lemma 2.1. Both the non-negative and positive cones of R3 are positively invari-
ant for (1.1).

In the remainder of this paper, for biological reasons, we only consider the solu-
tions (x1(t), x2(t), x3(t)) with positive initial values; i.e., xi(t0) > 0, i ≥ 1.

Definition 2.2. System (1.1) is said to be permanent if there exist positive con-
stants δ,∆ with 0 < δ < ∆ such that lim inft→∞ xi(t) ≥ δ, lim supt→∞ xi(t) ≤ ∆
for all i ≥ 1. System (1.1) is called persistent if lim supt→∞ xi(t) > 0, and strongly
persistent if lim inft→∞ xi(t) > 0 for all i ≥ 1.

Definition 2.3. A set A is called to be an ultimately bounded region of system
(1.1) if for any solution (x1(t), x2(t), x3(t)) of (1.1) with positive initial values, there
exists T1 > 0 such that (x1(t), x2(t), x3(t)) ∈ A for all t ≥ t0 + T1.

Definition 2.4. A bounded non-negative solution (x∗1(t), x
∗
2(t), x

∗
3(t)) of (1.1) is

said to be global asymptotic stable solution (or global attractive solution) if any
other solution (x1(t), x2(t), x3(t)) of (1.1) with positive initial values satisfies

lim
t→∞

3∑
i=1

|xi(t)− x∗i (t)| = 0.

Remark 2.5. It is easy to see that if the system (1.1) has a global asymptotic
stable solution, then so are all solutions of (1.1).

3. The model with general coefficients

Let ε be a positive constant. We put

M ε
1 =

au
1

bl
11

+ ε, M ε
2 =

−al
2 + bu

21M
ε
1

bl
22

,

M ε
3 =

−al
3 + bu

31M
ε
1

bl
33

, mε
1 =

al
1 − bu

12M
ε
2 − bu

13M
ε
3

bu
11

,
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mε
2 =

−au
2 + bl

21m
ε
1 − bu

23M
ε
3

bu
22

, mε
3 =

−au
3 + bl

31m
ε
1 − bu

32M
ε
2

bu
33

,

Bε
1(t) = a1(t)− 2b11(t)mε

1 − b12(t)mε
2 − b13(t)mε

3 + b21(t)M ε
2 + b31(t)M ε

3 ,

Bε
2(t) = −a2(t) + b21(t)M ε

1 − 2b22(t)mε
2 − b23(t)mε

3 + b12(t)M ε
1 + b32(t)M ε

3 ,

Bε
3(t) = −a3(t) + b31(t)M ε

1 − 2b33(t)mε
3 − b32(t)mε

2 + b13(t)M ε
1 + b23(t)M ε

2 .

(3.1)

We have the following theorems.

Theorem 3.1. If mε
i > 0 for all i ≥ 1, then the set Γε defined by

Γε = {(x1, x2, x3) ∈ R3| mε
i ≤ x ≤ M ε

i , i ≥ 1}
is positively invariant with respect to system (1.1).

Proof. We know that the logistic equation

X ′(t) = AX(t)[B −X(t)] (A,B ∈ R, B 6= 0)

has a unique solution

X(t) =
BX0 exp{AB(t− t0)}

X0 exp{AB(t− t0)}+ B −X0
,

where X0 = X(t0).
We now consider the solution of system (1.1) with the initial values (x0

1, x
0
2, x

0
3)

∈ Γε. By Lemma 2.1, we have xi(t) > 0 for all t ≥ t0 and i ≥ 1. We have

x′1(t) ≤ x1(t)[a1(t)− b11(t)x1(t)]

≤ x1(t)[au
1 − bl

11x1(t)]

= bl
11x1(t)[M0

1 − x1(t)].

Using the comparison theorem, we obtain that

x1(t) ≤
x0

1M
0
1 exp{au

1 (t− t0)}
x0

1

[
exp{au

1 (t− t0)} − 1
]
+ M0

1

≤ x0
1M

ε
1 exp{au

1 (t− t0)}
x0

1

[
exp{au

1 (t− t0)} − 1
]
+ M ε

1

·
(3.2)

Then, it follows from x0
1 ≤ M ε

1 that x1(t) ≤ M ε
1 for all t ≥ t0. On the other hand,

from x0
2 ≤ M ε

2 and

x′2(t) ≤ x2(t)[−al
2 + bu

21M
ε
1 − bl

22x2(t)] = bl
22x3(t)[M ε

2 − x2(t)],

it implies that x2(t) ≤ M ε
2 for all t ≥ t0. Similarly, we can prove that x3(t) ≤ M ε

3

for all t ≥ t0. From the above results, we have

x′1(t) ≥ x1(t)[al
1 − bu

12M
ε
2 − bu

13M
ε
3 − bu

11x1(t)] = bu
11x1(t)[mε

1 − x1(t)].

It follows from x0
1 ≥ mε

1 that

x1(t) ≥
mε

1x
0
1 exp{bu

11m
ε
1(t− t0)}

x0
1

[
exp{bu

11m
ε
1(t− t0)} − 1

]
+ mε

1

≥ mε
1 for all t ≥ t0.

Similarly, it is easy to see that x2(t) ≥ mε
2, x3(t) ≥ mε

3 for all t ≥ t0. The proof is
complete. �

Theorem 3.2. If mε
i > 0 (i ≥ 1), then the set Γε is an ultimately bounded region,

i.e., system (1.1) is permanent.
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Proof. From (3.2) we have lim supt→∞ x1(t) ≤ M ε
1 . Thus, there exist ε > 0 and

t1 ≥ t0 such that x1(t) ≤ M ε
1 for all t ≥ t1. By the same argument in Theorem

3.1, it can be shown that lim supt→∞ xi(t) ≤ M ε
i and lim inft→∞ xi(t) ≥ mε

i(i ≥ 2).
Then Γε is an ultimately bounded region with a sufficiently small ε > 0. �

In the following theorem, we give some conditions which ensure the extinction
of the predators

Theorem 3.3. If M0
i < 0 then limt→∞ xi(t) = 0, i ≥ 2.

Proof. We see that if M0
i < 0 then M ε

i < 0 with a sufficiently small ε. Similarly as
in the proof of Theorem 3.1, we get

x′i(t) ≤ bl
iixi(t)[M ε

i − xi(t)] < 0, i ≥ 2. (3.3)

Therefore, 0 < xi(t) ≤ xi(t0) for t ≥ t0 and there exists c ≥ 0 with limt→∞ xi(t) = c.
If c > 0 then 0 < c ≤ xi(t) ≤ xi(t0), t ≥ t0. From (3.3), there exists ν > 0
such that x′i(t) < −ν for all t ≥ t0. It follows xi(t) < −ν(t − t0) + xi(t0) and
limt→∞ xi(t) = −∞ which contradicts the inequality xi(t) > 0 for all t ≥ t0.
Hence, limt→∞ xi(t) = 0. �

Now, to consider the global asymptotic stability of a solution, we need the fol-
lowing result, called Barbalat’s lemma (see [4])

Lemma 3.4. Let h be a real number and f be a non-negative function defined on
[h, +∞) such that f is integrable on [h, +∞) and uniformly continuous on [h, +∞).
Then limt→∞ f(t) = 0.

Proof. We suppose that f(t) 6→ 0 as t → ∞. There exists a sequence (tn), tn ≥ h
such that tn → ∞ as n → ∞ and f(tn) ≥ ε for all n ∈ N. By the uniform
continuity of f , there exists a δ > 0 such that, for all n ∈ N and t ∈ [tn, tn + δ],
|f(tn)− f(t)| ≤ ε

2 . Thus, for all t ∈ [tn, tn + δ] and n ∈ N we have

f(t) = |f(tn)− [f(tn)− f(t)]| ≥ |f(tn)| − |f(tn)− f(t)| ≥ ε− ε

2
=

ε

2
.

Therefore, ∫ tn+δ

tn

f(t)dt =
∫ tn+δ

tn

f(t)dt ≥ εδ

2
> 0

for each n ∈ N. By the existence of the Riemann integral
∫∞

h
f(t)dt, the left hand

side of the above inequality converges to 0 as n →∞ yielding a contradiction. �

Theorem 3.5. Let (x∗1(t), x
∗
2(t), x

∗
3(t)) be a solution of system (1.1). If mε

i > 0
and lim supt→∞Bε

i (t) < 0 for all i ≥ 1, then (x∗1(t), x
∗
2(t), x

∗
3(t)) is globally asymp-

totically stable.

Proof. From the assumptions, there exists t1 > t0 such that supt≥t1 Bε
i (t) < 0,

i ≥ 1. Let (x1(t), x2(t), x3(t)) be any solution of positive initial value system (1.1).
Since Γε is an ultimately bounded region, there exists T1 > t1 such, that for all
t ≥ T1,

(x1(t), x2(t), x3(t)), (x∗1(t), x
∗
2(t), x

∗
3(t)) ∈ Γε.

Now, we consider a Liapunov function defined by V (t) =
∑3

i=1 |xi(t)−x∗i (t)|, t ≥ T1.
For brevity, we denote xi(t), x∗i (t), ai(t) and bij(t) by xi, x∗i , ai and bij , respectively.
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A direct calculation of the right derivative D+V (t) of V (t) along the solution of
system (1.1) gives

D+V (t) =
3∑

i=1

sgn(xi − x∗i )[xi
′ − x∗i

′]

= sgn(x1 − x∗1)[x1(a1 −
3∑

j=1

b1jxj)− x∗1(a1 −
3∑

j=1

b1jx
∗
j )]

+
3∑

i=2

[
xi(−ai + bi1x1 −

3∑
j=2

bijxj)

− x∗i (−ai + bi1x
∗
1 −

3∑
j=1

bijx
∗
j )

]
sgn(xi − x∗i )

=[a1 − b11(x1 + x∗1)]|x1 − x∗1|

− sgn(x1 − x∗1)
3∑

j=2

b1j(x1xj − x∗1x
∗
j )

+
3∑

i=2

[−ai − bii(xi + x∗i )]|xi − x∗i |

+ sgn(x2 − x∗2)[b21(x1x2 − x∗1x
∗
2)− b23(x2x3 − x∗2x

∗
3)]

+ sgn(x3 − x∗3)[b31(x1x3 − x∗1x
∗
3)− b32(x2x3 − x∗2x

∗
3)]

=[a1 − b11(x1 + x∗1)− b12x2 − b13x3]|x1 − x∗1|
+ [−a2 + b21x1 − b22(x2 + x∗2)− b23x

∗
3]|x2 − x∗2|

+ [−a3 + b31x1 − b33(x3 + x∗3)− b32x
∗
2]|x3 − x∗3|

− sgn(x1 − x∗1)
3∑

j=2

b1jx
∗
1(xj − x∗j )

+ sgn(x2 − x∗2)[b21x
∗
2(x1 − x∗1)− b23x2(x3 − x∗3)]

+ sgn(x3 − x∗3)[b31x
∗
3(x1 − x∗1)− b32x3(x2 − x∗2)]

≤[a1 − b11(x1 + x∗1)− b12x2 − b13x3 + b21x
∗
2 + b31x

∗
3]|x1 − x∗1|

+ [−a2 + b21x1 − b22(x2 + x∗2)− b23x
∗
3 + b12x

∗
1 + b32x3]|x2 − x∗2|

+ [−a3 + b31x1 − b33(x3 + x∗3)− b32x
∗
2 + b13x

∗
1 + b23x2]|x3 − x∗3|

≤[a1 − 2b11m
ε
1 − b12m

ε
2 − b13m

ε
3 + b21M

ε
2 + b31M

ε
3 ]|x1 − x∗1|

+ [−a2 + b21M
ε
1 − 2b22m

ε
2 − b23m

ε
3 + b12M

ε
1 + b32M

ε
3 ]|x2 − x∗2|

+ [−a3 + b31M
ε
1 − 2b33m

ε
3 − b32m

ε
2 + b13M

ε
1 + b23M

ε
2 ]|x3 − x∗3|

=
3∑

i=1

Bε
i (t)|xi − x∗i |.

From the above arguments, there exists a positive constant µ > 0 such that

D+V (t) ≤ −µ
3∑

i=1

|xi(t)− x∗i (t)| for all t ≥ T1. (3.4)
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Integrating both sides of (3.4) from T1 to t, we obtain

V (t) + µ

∫ t

T1

[ 3∑
i=1

|xi(t)− x∗i (t)|
]
dt ≤ V (T1) < +∞, t ≥ T1.

Then ∫ t

T1

[ 3∑
i=1

|xi(t)− x∗i (t)|
]
dt ≤ 1

µ
V (T1) < +∞, t ≥ T1.

Hence,
∑3

i=1 |xi(t)− x∗i (t)| ∈ L1([T1,+∞)).
On the other hand, the ultimate boundedness of xi and x∗i imply that both xi and

x∗i (i ≥ 1) have bounded derivatives for t ≥ T1. As a consequence
∑3

i=1 |xi(t)−x∗i (t)|
is uniformly continuous on [T1,+∞). By Lemma 3.4 we have

lim
t→∞

3∑
i=1

|xi(t)− x∗i (t)| = 0

which completes the proof. �

4. The model with constant interaction coefficients

In this section, we assume that the coefficients bij , 1 ≤ i, j ≤ 3 in system (1.1)
are positive constants and the limit

M [ai] = lim
T→∞

1
T

∫ t0+T

t0

ai(t)dt

exists uniformly with respect to t0 in (−∞,∞). First, we consider a predator-prey
system

x′1(t) = x1(t)[a1(t)− b11x1(t)− b12x2(t)],

x′2(t) = x2(t)[−a2(t) + b21x1(t)− b22x2(t)].
(4.1)

Put Zi(T ) = 1
T

∫ t0+T

t0
zi(t)dt. We have the following theorem.

Theorem 4.1. Assume that b11b12a
l
2 + b11b22a

l
1− b12b21a

u
1 > 0. Then inft≥t0 x1(t)

> 0. Furthermore,
(i) If M [a2] < b21

b11
M [a1] then inft≥t0 x2(t) > 0 and

lim
T→∞

X1(T ) =
b22M [a1] + b12M [a2]

b12b21 + b11b22
, lim

T→∞
X2(T ) =

b21M [a1]− b11M [a2]
b12b21 + b11b22

.

ii) If M [a2] > b21
b11

M [a1] then

lim
T→∞

X1(T ) =
M [a1]

b11
, lim

T→∞
X2(T ) = 0.

Proof. The proof for the first statement is similar to that of Theorem 3.1. Let
ε > 0 be a sufficiently small constant. From the comparison theorem and x′1(t) ≤
x1(t)[au

1 − b11x1(t)], it is easy to see that lim supt→∞ x1(t) ≤ au
1

b11
. Then there exists

T1 > t0 such that x1(t) < P ε
1 = au

1
b11

+ ε for all t ≥ T1. Thus

x′2(t) < x2(t)[−al
2 + b21P

ε
1 − b22x2(t)] for t ≥ T1. (4.2)

Let us consider two cases:
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Case 1. There exists ε > 0 such that −al
2+b21P

ε
1 < 0. From (4.2), it follows that

limt→∞ x2(t) = 0. Therefore, there exists T2 > T1 such that a1(t)−b12x2(t) > 1
2al

1.
It follows from the first equation of the system (4.1) that

x′1(t) ≥ x1(t)
[1
2
al
1 − b11x1(t)

]
for t ≥ T2.

Using the comparison theorem, we have lim inft→∞ x1(t) ≥ al
1/2b11.

Case 2. −al
2 + b21P

0
1 ≥ 0. It follows from (4.2) that lim supt→∞ x2(t) ≤ P ε

2 =
−al

2+b21P ε
1

b22
. Then, we can choose a sufficiently small positive ε and T3 > T1 such that

x1(t) ≤ P ε
1 , x2(t) ≤ P ε

2 for all t ≥ T3. From the first equation of the system (4.1),
we have x′1(t) ≥ x1(t)[al

1− b12P
ε
2 − b11x1(t)] for t ≥ T3. Because of our assumption

b11b12a
l
2 + b11b22a

l
1 −b12b21a

u
1 > 0, there exists a sufficiently small positive ε such

that

al
1 − b12P

ε
2 =

b11b12a
l
2 + b11b22a

l
1 − b12b21a

u
1

b11b22
− ε

b12b21

b22
> 0.

Then lim inft→∞ x1(t) > 0.
The conclusions of two above cases implies that inft≥t0 x1(t) > 0. Then there

exists c1 > 0 such that

c1 < x1(t) < d1 for all t ≥ t0. (4.3)

To prove Part i), first, we show that it is impossible to have

lim
t→∞

x2(t) = 0. (4.4)

Assuming the contrary, from (4.3) and (4.4) we get

lim
T→∞

1
T

ln
[x1(t0 + T )

x1(t0)
]

= 0, lim
T→∞

1
T

∫ t0+T

t0

x2(s)ds = 0.

Then, from the first equation of (4.1) we have

lim
T→∞

1
T

∫ t0+T

t0

b11x1(s)ds

= lim
T→∞

1
T

[ ∫ t0+T

t0

a1(s)ds−
∫ t0+T

t0

b12x2(s)ds− ln[
x1(t0 + T )

x1(t0)
]
]

= M [a1].

(4.5)

It follows from (4.4) that 1
T ln[x2(t0+T )

x2(t0)
] < 0 for large values of T . By (4.5), we find

−M [a2] + b21
M [a1]

b11
= lim

T→∞

1
T

[
−

∫ t0+T

t0

a2(s)ds + b21

∫ t0+T

t0

x1(s)ds
]

= lim
T→∞

1
T

[
ln[

x2(t0 + T )
x2(t0)

] + b22

∫ t0+T

t0

x2(s)ds
]
≤ 0,

which contradicts our assumption. This contradiction proves that

lim sup
t→∞

x2(t) = d > 0.

If, contrary to the assertion of the theorem, inft≥t0 x2(t) = 0, then there exists a
sequence of numbers {sn}∞1 such that sn ≥ t0, sn →∞ as n →∞ and x2(sn) → 0
as n →∞. Put

c =
1
2

lim inf
T→∞

1
T

∫ t0+T

t0

x2(t)dt.
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Since x2(t) > c for arbitrarily large values of t and since sn →∞ and x2(sn) →
0 as n → ∞, there exist sequences {pn}∞1 , {qn}∞1 and {τn}∞1 such that for all
n ≥ 1, t0 < pn < τn < qn < pn+1, x2(pn) = x2(qn) = c and 0 < x2(τn) <
c
n exp{−b21d1n}. Further, there exist sequences {tn}∞1 and {t∗n}∞1 such that for
n ≥ 1, tn < τn < t∗n,

x2(tn) = x2(t∗n) =
c

n
, x2(t) ≤

c

n
for t ∈ [tn, t∗n]. (4.6)

Thus

0 <
1

t∗n − tn

∫ t∗n

tn

x2(t)dt ≤ c

n
→ 0 as n →∞. (4.7)

We show that the following inequalities hold:

t∗n − tn > t∗n − τn ≥ n for n ≥ 1. (4.8)

In fact, x′2(t) = x2(t)[−a2(t) + b21x1(t)− b22x2(t)] < b21d1x2(t) for all t ≥ t0, then
for t ≥ τn,

x2(t) =x2(τn) exp{
∫ t

τn

[−a2(s) + b21x1(s)− b22x2(s)]ds}

≤ c

n
exp{−b21d1n} exp{b21d1(t− τn)}

=
c

n
exp{b21d1(t− τn − n)}.

(4.9)

From (4.9) and (4.6), we obtain t∗n − τn ≥ n. It follows from (4.8) that

M [ai] = lim
n→∞

1
t∗n − tn

∫ t∗n

tn

ai(t)dt, i = 1, 2.

Using the first equation of system (4.1) we get

1
t∗n − tn

ln
[x1(t∗n)
x1(tn)

]
=

1
t∗n − tn

[ ∫ t∗n

tn

a1(t)dt− b11

∫ t∗n

tn

x1(t)dt− b12

∫ t∗n

tn

x2(t)dt
]
.

Then, it follows from (4.3), (4.7) and (4.8) that

lim
n→∞

1
t∗n − tn

∫ t∗n

tn

x1(t)dt =
M [a1]

b11
· (4.10)

Similarly, from the second equation of the system (4.1) we have

1
t∗n − tn

ln[
x2(t∗n)
x2(tn)

] =
1

t∗n − tn

[
−

∫ t∗n

tn

a2(t)dt + b21

∫ t∗n

tn

x1(t)dt− b22

∫ t∗n

tn

x2(t)dt
]
.

Taking into account the above relations, (4.6), (4.7) and (4.10) we get

−M [a2] +
b21

b11
M [a1] = 0.

Since this contradicts our assumption, we obtain inft≥t0 x2(t) > 0. Therefore, there
exists c2 > 0 such that

c2 < x2(t) < d2 for all t ≥ t0. (4.11)

Now, by (4.1), for all T > 0, we have

1
T

ln
x1(t0 + T )

x1(t0)
= A1(T )− b11X1(T )− b12X2(T ),
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1
T

ln
x2(t0 + T )

x2(t0)
= −A2(T ) + b21X1(T )− b22X2(T ).

Then

X1(T ) =
b22[A1(T )− 1

T ln x1(t0+T )
x1(t0)

] + b12[ 1
T ln x2(t0+T )

x2(t0)
+ A2(T )]

b12b21 + b11b22
,

X2(T ) =
b21[A1(T )− 1

T ln x1(t0+T )
x1(t0)

]− b11[ 1
T ln x2(t0+T )

x2(t0)
+ A2(T )]

b12b21 + b11b22
.

(4.12)

It follows from (4.3) and (4.11) that

lim
T→∞

1
T

ln
xi(t0 + T )

xi(t0)
= 0 (i = 1, 2).

Then

lim
T→∞

X1(T ) =
b22M [a1] + b12M [a2]

b12b21 + b11b22
,

lim
T→∞

X2(T ) =
b21M [a1]− b11M [a2]

b12b21 + b11b22
.

To prove Part (ii), first, we show that limt→∞ x2(t) = 0. Assuming the contrary we
can find δ > 0 and a sequence of numbers {Tn}∞1 , Tn > 0, Tn → ∞(n → ∞) such
that δ < x2(t0 + Tn) < d2 for all n. Then, from the second equation of (4.12), we
get

lim
n→∞

X2(Tn) =
b21M [a1]− b11M [a2]

b12b21 + b11b22
< 0,

which contradicts X2(T ) ≥ 0 for all T > 0. This implies that limt→∞ x2(t) = 0
and then limT→∞X2(T ) = 0. It follows from the first equation of (4.12) that
limT→∞X1(T ) = M [a1]

b11
. �

Now, we consider the system

x′1(t) = x1(t)[a1(t)− b11x1(t)− b12x2(t)− b13x3(t)],

x′2(t) = x2(t)[−a2(t) + b21x1(t)− b22x2(t)− b23x3(t)],

x′3(t) = x3(t)[−a3(t) + b31x1(t)− b32x2(t)− b33x3(t)].

(4.13)

Proposition 4.2. If

b11b12a
l
2 + b11b22a

l
1 − b12b21a

u
1 > 0,

M [a2] <
b21

b11
M [a1],

M [a3] <
(b31b22 − b32b21)M [a1] + (b31b12 + b11b32)M [a2]

b12b21 + b11b22
,

(4.14)

then lim supt→∞ x3(t) > 0.

Proof. We assume that limt→∞ x3(t) = 0. Then

lim
T→∞

X3(T ) = 0. (4.15)
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Replacing t0 by a larger number, if necessary, we may assume that a1(t)−b13x3(t) >
0 for t ≥ t0 − 1. We put,

a∗1(t) =


a1(t)− b13x3(t), t ≥ t0,

a1(t)− (t− t0 + 1)b13x3(t), t0 − 1 ≤ t < t0,

a1(t), t < t0 − 1,

a∗2(t) =


a2(t) + b23x3(t), t ≥ t0,

a2(t) + (t− t0 + 1)b23x3(t), t0 − 1 ≤ t < t0,

a2(t), t < t0 − 1 .

Then a∗i is continuous on R, a∗li > 0, a∗ui < ∞ for i = 1, 2. Moreover, since
limt→∞ x3(t) = 0, the limit

M [a∗i ] = lim
T→∞

1
T

∫ t∗+T

t∗

a∗i (t)dt = lim
T→∞

1
T

∫ t∗+T

t∗

ai(t)dt = M [ai]

exists uniformly with respect to t∗ ∈ R and i = 1, 2. Then for t ≥ t0, (x1(t), x2(t))
is a solution of the following competitive system

x′1(t) = x1(t)
[
a∗1(t)− b11x1(t)− b12x2(t)

]
,

x′2(t) = x2(t)
[
− a∗2(t)− b21x1(t)− b22x2(t)

]
.

By condition (4.14) and Theorem 4.1, we have

lim
T→∞

X1(T ) =
b22M [a1] + b12M [a2]

b12b21 + b11b22
,

lim
T→∞

X2(T ) =
b21M [a1]− b11M [a2]

b12b21 + b11b22
.

(4.16)

From the third equation of the system (4.13) we have
1
T

ln
[x3(t0 + T )

x3(t0)
]

= −A3(T ) + b31X1(T )− b32X2(T )− b33X3(T ).

Then −A3(T )+b31X1(T )−b32X2(T )−b33X3(T ) < 0 for T sufficiently large. Letting
T →∞ and using (4.15) and (4.16) we obtain

−M [a3] +
(b31b22 − b32b21)M [a1] + (b12b31 + b11b32)M [a2]

b12b21 + b11b22
≤ 0,

which contradicts (4.14). This proves the proposition. �

Proposition 4.3. If the following conditions hold

b11b13a
l
3 + b11b33a

l
1 − b13b31a

u
1 > 0,

M [a3] <
b31

b11
M [a1],

M [a3] <
(b31b33 − b23b31)M [a1] + (b31b13 + b11b23)M [a3]

b13b31 + b11b33

(4.17)

then lim supt→∞ x2(t) > 0.

The proof of the above proposition is similar to that of Proposition 4.2, and it
is omitted.

Theorem 4.4. If conditions (4.14) and (4.17) hold, then system (4.13) is persis-
tent.
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Proof. From Propositions 4.2 and 4.3, we have

lim sup
t→∞

xi(t) > 0, i = 2, 3. (4.18)

Now, we show that lim supt→∞ x1(t) > 0. Assume the contrary, then there exist
t1 > t0 and two positive numbers b2, b3 such that

−ai + bi1x1(t) < −bi, for all t ≥ t1, i = 2, 3.

Then for i = 2, 3 and t ≥ t1, x′i(t) ≤ xi(t)[−bi − biixi(t)]. By the comparison
theorem, it follows that limt→∞ xi(t) = 0 which contradicts (4.18). The proof is
complete. �

5. The model with the constant intrinsic growth rates

In this section, we consider system (1.1) under the condition ai, bij , 1 ≤ i, j ≤ 3
are constants, then (1.1) becomes

x′1(t) = x1(t)[a1 − b11x1(t)− b12x2(t)− b13x3(t)],

x′2(t) = x2(t)[−a2 + b21x1(t)− b22x2(t)− b23x3(t)],

x′3(t) = x3(t)[−a3 + b31x1(t)− b32x2(t)− b33x3(t)].

(5.1)

Put

x∗1 =
a1b22 + a2b12

b11b22 + b12b21
, x∗2 =

a1b21 − a2b11

b11b22 + b12b21
.

Theorem 5.1. If

a2 <
b21

b11
a1 and − a3 + b31x

∗
1 − b32x

∗
2 < 0,

then the stationary solution (x∗1, x
∗
2, 0) of (5.1) is locally asymptotically stable. It

means that if (x1(t), x2(t), x3(t)) is a solution of (5.1) such that (x1(t0), x2(t0)) is
close to (x∗1, x

∗
2) and x3(t0) is sufficiently small and positive, then limt→∞ x1(t) =

x∗1, limt→∞ x2(t) = x∗2, limt→∞ x3(t) = 0.

Proof. It is easy to see that x∗1 > 0, x∗2 > 0 and (x∗1, x
∗
2, 0) is a stationary solution

of system (5.1). Put

f1(x1, x2, x3) = x1(a1 − b11x1 − b12x2 − b13x3),

f2(x1, x2, x3) = x2(−a2 + b21x1 − b22x2 − b23x3),

f3(x1, x2, x3) = x3(−a3 + b31x1 − b32x2 − b33x3),

then system (5.1) becomes x′i = fi(x1, x2, x3) and fi(x∗1, x
∗
2, 0) = 0, i ≥ 1. Consider

A =


∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

 (x∗1, x
∗
2, 0) =

−b11x
∗
1 −b12x

∗
1 −b13x

∗
1

b21x
∗
2 −b22x

∗
2 −b23x

∗
2

0 0 −a3 + b31x
∗
1 − b32x

∗
2

 .

Since

det(A−λI) = (−a3+b31x
∗
1−b32x

∗
2−λ)

[
λ2+(b11x

∗
1+b22x

∗
2)λ+(b11b22+b12b21)x∗1x

∗
2

]
,

it follows that all eigenvalues of A are less than zero. Therefore, (x∗1, x
∗
2, 0) is locally

asymptotically stable. �
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