Electronic Journal of Differential Equations, Vol. 2009(2009), No. 157, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

DYNAMICS OF A NON-AUTONOMOUS THREE-DIMENSIONAL POPULATION SYSTEM

TA HONG QUANG, TA VIET TON, NGUYEN THI HOAI LINH

Abstract

In this paper, we study a non-autonomous Lotka-Volterra model with two predators and one prey. The explorations involve the persistence, extinction and global asymptotic stability of a positive solution.

1. Introduction

The dynamics of Lotka-Volterra models and their permanence, stability, global attractiveness, coexistence, extinction have been studied by several authors. Takeuchi and Adachi [10] showed that some chaotic motions may occur in the model of three species. Krikorian [5] considered an autonomous system of three species and obtained some results on global boundedness and stability. Korobeinikov and Wake [6, Korman [7] investigated a model of two preys, one predator and another one of two predators, one prey with constant coefficients, where direct competition is absent. Ahmad [3] obtained necessary and sufficient conditions for survival of species which rely on the averages of the growth rates and the interaction of coefficients. Besides, we also refer to [1, 2, 8, 9.

In this paper, we consider the following Lotka-Volterra model of two predators and one prey

$$
\begin{gather*}
x_{1}^{\prime}(t)=x_{1}(t)\left[a_{1}(t)-b_{11}(t) x_{1}(t)-b_{12}(t) x_{2}(t)-b_{13}(t) x_{3}(t)\right], \\
x_{2}^{\prime}(t)=x_{2}(t)\left[-a_{2}(t)+b_{21}(t) x_{1}(t)-b_{22}(t) x_{2}(t)-b_{23}(t) x_{3}(t)\right], \tag{1.1}\\
x_{3}^{\prime}(t)=x_{3}(t)\left[-a_{3}(t)+b_{31}(t) x_{1}(t)-b_{32}(t) x_{2}(t)-b_{33}(t) x_{3}(t)\right],
\end{gather*}
$$

where $x_{i}(t)$ represents the population density of species X_{i} at time $t(i \geq 1)$, X_{1} is the prey and X_{2}, X_{3} are the predators and they interact with each other. $a_{i}(t), b_{i j}(t)(1 \leq i, j \leq 3)$ are continuous functions on \mathbb{R} that are bounded above and below by some positive constants. At time $t, a_{1}(t)$ is the intrinsic growth rate of X_{1}, and $a_{i}(t)$ is the death rate of $X_{i}(i \geq 2) ; \frac{b_{i 1}(t)}{b_{1 i}(t)}$ denotes the coefficient in conversion X_{1} into new individual of the $X_{i}(i \geq 2) ; b_{i j}(t)$ measures the amount of competition between X_{i} and $X_{j}(i \neq j, i, j \geq 2)$, and $b_{i i}(t)(i \geq 1)$ measures the inhibiting effect of environment on X_{i}.

[^0]This article is organized as follows. Section 2 provides some definitions and notations. In Section 3, we state some results on invariant set and asymptotic stability for problem 1.1. In Section 4, we assume that the coefficients $b_{i j}(t)$ $(1 \leq i, j \leq 3)$ are constants, then we give some inequalities, involving the average of the coefficients, which guarantees persistence of the system. Section 5 is a special case of Section 4 in which the coefficients $a_{i}(t)(i \geq 1)$ are constants. We also give some inequalities which imply non-persistence; more specifically, extinction of the third species with small positive initial values.

2. Definitions and notation

In this section we introduce some basic definitions and facts which will be used in next sections. Let $\mathbb{R}_{+}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{i} \geq 0, i \geq 1\right\}$. For a bounded continuous function $g(t)$ on \mathbb{R}, we denote

$$
g^{u}=\sup _{t \in \mathbb{R}} g(t), \quad g^{l}=\inf _{t \in \mathbb{R}} g(t) .
$$

The existence and uniqueness of the global solutions of system (1.1) can be found in [11. From the uniqueness theorem, it is easy to prove the following result.

Lemma 2.1. Both the non-negative and positive cones of \mathbb{R}^{3} are positively invariant for (1.1).

In the remainder of this paper, for biological reasons, we only consider the solutions $\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)$ with positive initial values; i.e., $x_{i}\left(t_{0}\right)>0, i \geq 1$.

Definition 2.2. System (1.1) is said to be permanent if there exist positive constants δ, Δ with $0<\delta<\Delta$ such that $\liminf _{t \rightarrow \infty} x_{i}(t) \geq \delta, \limsup _{t \rightarrow \infty} x_{i}(t) \leq \Delta$ for all $i \geq 1$. System (1.1) is called persistent if $\lim \sup _{t \rightarrow \infty} x_{i}(t)>0$, and strongly persistent if $\liminf _{t \rightarrow \infty} x_{i}(t)>0$ for all $i \geq 1$.

Definition 2.3. A set A is called to be an ultimately bounded region of system 1.1) if for any solution $\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)$ of (1.1) with positive initial values, there exists $T_{1}>0$ such that $\left(x_{1}(t), x_{2}(t), x_{3}(t)\right) \in A$ for all $t \geq t_{0}+T_{1}$.

Definition 2.4. A bounded non-negative solution $\left(x_{1}^{*}(t), x_{2}^{*}(t), x_{3}^{*}(t)\right)$ of 1.1 is said to be global asymptotic stable solution (or global attractive solution) if any other solution $\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)$ of (1.1) with positive initial values satisfies

$$
\lim _{t \rightarrow \infty} \sum_{i=1}^{3}\left|x_{i}(t)-x_{i}^{*}(t)\right|=0
$$

Remark 2.5. It is easy to see that if the system (1.1) has a global asymptotic stable solution, then so are all solutions of 1.1.

3. The model with general coefficients

Let ϵ be a positive constant. We put

$$
\begin{gathered}
M_{1}^{\epsilon}=\frac{a_{1}^{u}}{b_{11}^{l}}+\epsilon, \quad M_{2}^{\epsilon}=\frac{-a_{2}^{l}+b_{21}^{u} M_{1}^{\epsilon}}{b_{22}^{l}}, \\
M_{3}^{\epsilon}=\frac{-a_{3}^{l}+b_{31}^{u} M_{1}^{\epsilon}}{b_{33}^{l}}, \quad m_{1}^{\epsilon}=\frac{a_{1}^{l}-b_{12}^{u} M_{2}^{\epsilon}-b_{13}^{u} M_{3}^{\epsilon}}{b_{11}^{u}},
\end{gathered}
$$

$$
\begin{gather*}
m_{2}^{\epsilon}=\frac{-a_{2}^{u}+b_{21}^{l} m_{1}^{\epsilon}-b_{23}^{u} M_{3}^{\epsilon}}{b_{22}^{u}}, \quad m_{3}^{\epsilon}=\frac{-a_{3}^{u}+b_{31}^{l} m_{1}^{\epsilon}-b_{32}^{u} M_{2}^{\epsilon}}{b_{33}^{u}} \\
B_{1}^{\epsilon}(t)=a_{1}(t)-2 b_{11}(t) m_{1}^{\epsilon}-b_{12}(t) m_{2}^{\epsilon}-b_{13}(t) m_{3}^{\epsilon}+b_{21}(t) M_{2}^{\epsilon}+b_{31}(t) M_{3}^{\epsilon} \\
B_{2}^{\epsilon}(t)=-a_{2}(t)+b_{21}(t) M_{1}^{\epsilon}-2 b_{22}(t) m_{2}^{\epsilon}-b_{23}(t) m_{3}^{\epsilon}+b_{12}(t) M_{1}^{\epsilon}+b_{32}(t) M_{3}^{\epsilon} \tag{3.1}\\
B_{3}^{\epsilon}(t)=-a_{3}(t)+b_{31}(t) M_{1}^{\epsilon}-2 b_{33}(t) m_{3}^{\epsilon}-b_{32}(t) m_{2}^{\epsilon}+b_{13}(t) M_{1}^{\epsilon}+b_{23}(t) M_{2}^{\epsilon}
\end{gather*}
$$

We have the following theorems.
Theorem 3.1. If $m_{i}^{\epsilon}>0$ for all $i \geq 1$, then the set Γ_{ϵ} defined by

$$
\Gamma_{\epsilon}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid m_{i}^{\epsilon} \leq x \leq M_{i}^{\epsilon}, i \geq 1\right\}
$$

is positively invariant with respect to system (1.1).
Proof. We know that the logistic equation

$$
X^{\prime}(t)=A X(t)[B-X(t)] \quad(A, B \in \mathbb{R}, B \neq 0)
$$

has a unique solution

$$
X(t)=\frac{B X_{0} \exp \left\{A B\left(t-t_{0}\right)\right\}}{X_{0} \exp \left\{A B\left(t-t_{0}\right)\right\}+B-X_{0}}
$$

where $X_{0}=X\left(t_{0}\right)$.
We now consider the solution of system (1.1) with the initial values $\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right)$ $\in \Gamma_{\epsilon}$. By Lemma 2.1. we have $x_{i}(t)>0$ for all $t \geq t_{0}$ and $i \geq 1$. We have

$$
\begin{aligned}
x_{1}^{\prime}(t) & \leq x_{1}(t)\left[a_{1}(t)-b_{11}(t) x_{1}(t)\right] \\
& \leq x_{1}(t)\left[a_{1}^{u}-b_{11}^{l} x_{1}(t)\right] \\
& =b_{11}^{l} x_{1}(t)\left[M_{1}^{0}-x_{1}(t)\right] .
\end{aligned}
$$

Using the comparison theorem, we obtain that

$$
\begin{align*}
x_{1}(t) & \leq \frac{x_{1}^{0} M_{1}^{0} \exp \left\{a_{1}^{u}\left(t-t_{0}\right)\right\}}{x_{1}^{0}\left[\exp \left\{a_{1}^{u}\left(t-t_{0}\right)\right\}-1\right]+M_{1}^{0}} \tag{3.2}\\
& \leq \frac{x_{1}^{0} M_{1}^{\epsilon} \exp \left\{a_{1}^{u}\left(t-t_{0}\right)\right\}}{x_{1}^{0}\left[\exp \left\{a_{1}^{u}\left(t-t_{0}\right)\right\}-1\right]+M_{1}^{\epsilon}} .
\end{align*}
$$

Then, it follows from $x_{1}^{0} \leq M_{1}^{\epsilon}$ that $x_{1}(t) \leq M_{1}^{\epsilon}$ for all $t \geq t_{0}$. On the other hand, from $x_{2}^{0} \leq M_{2}^{\epsilon}$ and

$$
x_{2}^{\prime}(t) \leq x_{2}(t)\left[-a_{2}^{l}+b_{21}^{u} M_{1}^{\epsilon}-b_{22}^{l} x_{2}(t)\right]=b_{22}^{l} x_{3}(t)\left[M_{2}^{\epsilon}-x_{2}(t)\right]
$$

it implies that $x_{2}(t) \leq M_{2}^{\epsilon}$ for all $t \geq t_{0}$. Similarly, we can prove that $x_{3}(t) \leq M_{3}^{\epsilon}$ for all $t \geq t_{0}$. From the above results, we have

$$
x_{1}^{\prime}(t) \geq x_{1}(t)\left[a_{1}^{l}-b_{12}^{u} M_{2}^{\epsilon}-b_{13}^{u} M_{3}^{\epsilon}-b_{11}^{u} x_{1}(t)\right]=b_{11}^{u} x_{1}(t)\left[m_{1}^{\epsilon}-x_{1}(t)\right] .
$$

It follows from $x_{1}^{0} \geq m_{1}^{\epsilon}$ that

$$
x_{1}(t) \geq \frac{m_{1}^{\epsilon} x_{1}^{0} \exp \left\{b_{11}^{u} m_{1}^{\epsilon}\left(t-t_{0}\right)\right\}}{x_{1}^{0}\left[\exp \left\{b_{11}^{u} m_{1}^{\epsilon}\left(t-t_{0}\right)\right\}-1\right]+m_{1}^{\epsilon}} \geq m_{1}^{\epsilon} \quad \text { for all } t \geq t_{0}
$$

Similarly, it is easy to see that $x_{2}(t) \geq m_{2}^{\epsilon}, x_{3}(t) \geq m_{3}^{\epsilon}$ for all $t \geq t_{0}$. The proof is complete.

Theorem 3.2. If $m_{i}^{\epsilon}>0(i \geq 1)$, then the set Γ_{ϵ} is an ultimately bounded region, i.e., system (1.1) is permanent.

Proof. From (3.2) we have $\lim \sup _{t \rightarrow \infty} x_{1}(t) \leq M_{1}^{\epsilon}$. Thus, there exist $\epsilon>0$ and $t_{1} \geq t_{0}$ such that $x_{1}(t) \leq M_{1}^{\epsilon}$ for all $t \geq t_{1}$. By the same argument in Theorem 3.1. it can be shown that $\limsup _{t \rightarrow \infty} x_{i}(t) \leq M_{i}^{\epsilon}$ and $\liminf _{t \rightarrow \infty} x_{i}(t) \geq m_{i}^{\epsilon}(i \geq 2)$. Then Γ_{ϵ} is an ultimately bounded region with a sufficiently small $\epsilon>0$.

In the following theorem, we give some conditions which ensure the extinction of the predators

Theorem 3.3. If $M_{i}^{0}<0$ then $\lim _{t \rightarrow \infty} x_{i}(t)=0, i \geq 2$.
Proof. We see that if $M_{i}^{0}<0$ then $M_{i}^{\epsilon}<0$ with a sufficiently small ϵ. Similarly as in the proof of Theorem 3.1, we get

$$
\begin{equation*}
x_{i}^{\prime}(t) \leq b_{i i}^{l} x_{i}(t)\left[M_{i}^{\epsilon}-x_{i}(t)\right]<0, i \geq 2 \tag{3.3}
\end{equation*}
$$

Therefore, $0<x_{i}(t) \leq x_{i}\left(t_{0}\right)$ for $t \geq t_{0}$ and there exists $c \geq 0$ with $\lim _{t \rightarrow \infty} x_{i}(t)=c$. If $c>0$ then $0<c \leq x_{i}(t) \leq x_{i}\left(t_{0}\right), t \geq t_{0}$. From 3.3), there exists $\nu>0$ such that $x_{i}^{\prime}(t)<-\nu$ for all $t \geq t_{0}$. It follows $x_{i}(t)<-\nu\left(t-t_{0}\right)+x_{i}\left(t_{0}\right)$ and $\lim _{t \rightarrow \infty} x_{i}(t)=-\infty$ which contradicts the inequality $x_{i}(t)>0$ for all $t \geq t_{0}$. Hence, $\lim _{t \rightarrow \infty} x_{i}(t)=0$.

Now, to consider the global asymptotic stability of a solution, we need the following result, called Barbalat's lemma (see [4)

Lemma 3.4. Let h be a real number and f be a non-negative function defined on $[h,+\infty)$ such that f is integrable on $[h,+\infty)$ and uniformly continuous on $[h,+\infty)$. Then $\lim _{t \rightarrow \infty} f(t)=0$.

Proof. We suppose that $f(t) \nrightarrow 0$ as $t \rightarrow \infty$. There exists a sequence $\left(t_{n}\right), t_{n} \geq h$ such that $t_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $f\left(t_{n}\right) \geq \varepsilon$ for all $n \in \mathbb{N}$. By the uniform continuity of f, there exists a $\delta>0$ such that, for all $n \in \mathbb{N}$ and $t \in\left[t_{n}, t_{n}+\delta\right]$, $\left|f\left(t_{n}\right)-f(t)\right| \leq \frac{\varepsilon}{2}$. Thus, for all $t \in\left[t_{n}, t_{n}+\delta\right]$ and $n \in \mathbb{N}$ we have

$$
f(t)=\left|f\left(t_{n}\right)-\left[f\left(t_{n}\right)-f(t)\right]\right| \geq\left|f\left(t_{n}\right)\right|-\left|f\left(t_{n}\right)-f(t)\right| \geq \varepsilon-\frac{\varepsilon}{2}=\frac{\varepsilon}{2}
$$

Therefore,

$$
\int_{t_{n}}^{t_{n}+\delta} f(t) d t=\int_{t_{n}}^{t_{n}+\delta} f(t) d t \geq \frac{\varepsilon \delta}{2}>0
$$

for each $n \in \mathbb{N}$. By the existence of the Riemann integral $\int_{h}^{\infty} f(t) d t$, the left hand side of the above inequality converges to 0 as $n \rightarrow \infty$ yielding a contradiction.

Theorem 3.5. Let $\left(x_{1}^{*}(t), x_{2}^{*}(t), x_{3}^{*}(t)\right)$ be a solution of system 1.1. If $m_{i}^{\epsilon}>0$ and $\limsup \operatorname{sum}_{t \rightarrow \infty} B_{i}^{\epsilon}(t)<0$ for all $i \geq 1$, then $\left(x_{1}^{*}(t), x_{2}^{*}(t), x_{3}^{*}(t)\right)$ is globally asymptotically stable.

Proof. From the assumptions, there exists $t_{1}>t_{0}$ such that $\sup _{t \geq t_{1}} B_{i}^{\epsilon}(t)<0$, $i \geq 1$. Let $\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)$ be any solution of positive initial value system (1.1). Since Γ_{ϵ} is an ultimately bounded region, there exists $T_{1}>t_{1}$ such, that for all $t \geq T_{1}$,

$$
\left(x_{1}(t), x_{2}(t), x_{3}(t)\right),\left(x_{1}^{*}(t), x_{2}^{*}(t), x_{3}^{*}(t)\right) \in \Gamma_{\epsilon}
$$

Now, we consider a Liapunov function defined by $V(t)=\sum_{i=1}^{3}\left|x_{i}(t)-x_{i}^{*}(t)\right|, t \geq T_{1}$. For brevity, we denote $x_{i}(t), x_{i}^{*}(t), a_{i}(t)$ and $b_{i j}(t)$ by x_{i}, x_{i}^{*}, a_{i} and $b_{i j}$, respectively.

A direct calculation of the right derivative $D^{+} V(t)$ of $V(t)$ along the solution of system (1.1) gives

$$
\begin{aligned}
& D^{+} V(t)=\sum_{i=1}^{3} \operatorname{sgn}\left(x_{i}-x_{i}^{*}\right)\left[x_{i}{ }^{\prime}-x_{i}^{* \prime}\right] \\
& =\operatorname{sgn}\left(x_{1}-x_{1}^{*}\right)\left[x_{1}\left(a_{1}-\sum_{j=1}^{3} b_{1 j} x_{j}\right)-x_{1}^{*}\left(a_{1}-\sum_{j=1}^{3} b_{1 j} x_{j}^{*}\right)\right] \\
& +\sum_{i=2}^{3}\left[x_{i}\left(-a_{i}+b_{i 1} x_{1}-\sum_{j=2}^{3} b_{i j} x_{j}\right)\right. \\
& \left.-x_{i}^{*}\left(-a_{i}+b_{i 1} x_{1}^{*}-\sum_{j=1}^{3} b_{i j} x_{j}^{*}\right)\right] \operatorname{sgn}\left(x_{i}-x_{i}^{*}\right) \\
& =\left[a_{1}-b_{11}\left(x_{1}+x_{1}^{*}\right)\right]\left|x_{1}-x_{1}^{*}\right| \\
& -\operatorname{sgn}\left(x_{1}-x_{1}^{*}\right) \sum_{j=2}^{3} b_{1 j}\left(x_{1} x_{j}-x_{1}^{*} x_{j}^{*}\right) \\
& +\sum_{i=2}^{3}\left[-a_{i}-b_{i i}\left(x_{i}+x_{i}^{*}\right)\right]\left|x_{i}-x_{i}^{*}\right| \\
& +\operatorname{sgn}\left(x_{2}-x_{2}^{*}\right)\left[b_{21}\left(x_{1} x_{2}-x_{1}^{*} x_{2}^{*}\right)-b_{23}\left(x_{2} x_{3}-x_{2}^{*} x_{3}^{*}\right)\right] \\
& +\operatorname{sgn}\left(x_{3}-x_{3}^{*}\right)\left[b_{31}\left(x_{1} x_{3}-x_{1}^{*} x_{3}^{*}\right)-b_{32}\left(x_{2} x_{3}-x_{2}^{*} x_{3}^{*}\right)\right] \\
& =\left[a_{1}-b_{11}\left(x_{1}+x_{1}^{*}\right)-b_{12} x_{2}-b_{13} x_{3}\right]\left|x_{1}-x_{1}^{*}\right| \\
& +\left[-a_{2}+b_{21} x_{1}-b_{22}\left(x_{2}+x_{2}^{*}\right)-b_{23} x_{3}^{*}\right]\left|x_{2}-x_{2}^{*}\right| \\
& +\left[-a_{3}+b_{31} x_{1}-b_{33}\left(x_{3}+x_{3}^{*}\right)-b_{32} x_{2}^{*}\right]\left|x_{3}-x_{3}^{*}\right| \\
& -\operatorname{sgn}\left(x_{1}-x_{1}^{*}\right) \sum_{j=2}^{3} b_{1 j} x_{1}^{*}\left(x_{j}-x_{j}^{*}\right) \\
& +\operatorname{sgn}\left(x_{2}-x_{2}^{*}\right)\left[b_{21} x_{2}^{*}\left(x_{1}-x_{1}^{*}\right)-b_{23} x_{2}\left(x_{3}-x_{3}^{*}\right)\right] \\
& +\operatorname{sgn}\left(x_{3}-x_{3}^{*}\right)\left[b_{31} x_{3}^{*}\left(x_{1}-x_{1}^{*}\right)-b_{32} x_{3}\left(x_{2}-x_{2}^{*}\right)\right] \\
& \leq\left[a_{1}-b_{11}\left(x_{1}+x_{1}^{*}\right)-b_{12} x_{2}-b_{13} x_{3}+b_{21} x_{2}^{*}+b_{31} x_{3}^{*}\right]\left|x_{1}-x_{1}^{*}\right| \\
& +\left[-a_{2}+b_{21} x_{1}-b_{22}\left(x_{2}+x_{2}^{*}\right)-b_{23} x_{3}^{*}+b_{12} x_{1}^{*}+b_{32} x_{3}\right]\left|x_{2}-x_{2}^{*}\right| \\
& +\left[-a_{3}+b_{31} x_{1}-b_{33}\left(x_{3}+x_{3}^{*}\right)-b_{32} x_{2}^{*}+b_{13} x_{1}^{*}+b_{23} x_{2}\right]\left|x_{3}-x_{3}^{*}\right| \\
& \leq\left[a_{1}-2 b_{11} m_{1}^{\epsilon}-b_{12} m_{2}^{\epsilon}-b_{13} m_{3}^{\epsilon}+b_{21} M_{2}^{\epsilon}+b_{31} M_{3}^{\epsilon}\right]\left|x_{1}-x_{1}^{*}\right| \\
& +\left[-a_{2}+b_{21} M_{1}^{\epsilon}-2 b_{22} m_{2}^{\epsilon}-b_{23} m_{3}^{\epsilon}+b_{12} M_{1}^{\epsilon}+b_{32} M_{3}^{\epsilon}\right]\left|x_{2}-x_{2}^{*}\right| \\
& +\left[-a_{3}+b_{31} M_{1}^{\epsilon}-2 b_{33} m_{3}^{\epsilon}-b_{32} m_{2}^{\epsilon}+b_{13} M_{1}^{\epsilon}+b_{23} M_{2}^{\epsilon}\right]\left|x_{3}-x_{3}^{*}\right| \\
& =\sum_{i=1}^{3} B_{i}^{\epsilon}(t)\left|x_{i}-x_{i}^{*}\right| .
\end{aligned}
$$

From the above arguments, there exists a positive constant $\mu>0$ such that

$$
\begin{equation*}
D^{+} V(t) \leq-\mu \sum_{i=1}^{3}\left|x_{i}(t)-x_{i}^{*}(t)\right| \quad \text { for all } t \geq T_{1} \tag{3.4}
\end{equation*}
$$

Integrating both sides of (3.4) from T_{1} to t, we obtain

$$
V(t)+\mu \int_{T_{1}}^{t}\left[\sum_{i=1}^{3}\left|x_{i}(t)-x_{i}^{*}(t)\right|\right] d t \leq V\left(T_{1}\right)<+\infty, t \geq T_{1}
$$

Then

$$
\int_{T_{1}}^{t}\left[\sum_{i=1}^{3}\left|x_{i}(t)-x_{i}^{*}(t)\right|\right] d t \leq \frac{1}{\mu} V\left(T_{1}\right)<+\infty, \quad t \geq T_{1}
$$

Hence, $\sum_{i=1}^{3}\left|x_{i}(t)-x_{i}^{*}(t)\right| \in L^{1}\left(\left[T_{1},+\infty\right)\right)$.
On the other hand, the ultimate boundedness of x_{i} and x_{i}^{*} imply that both x_{i} and $x_{i}^{*}(i \geq 1)$ have bounded derivatives for $t \geq T_{1}$. As a consequence $\sum_{i=1}^{3}\left|x_{i}(t)-x_{i}^{*}(t)\right|$ is uniformly continuous on $\left[T_{1},+\infty\right)$. By Lemma 3.4 we have

$$
\lim _{t \rightarrow \infty} \sum_{i=1}^{3}\left|x_{i}(t)-x_{i}^{*}(t)\right|=0
$$

which completes the proof.

4. The model with constant interaction coefficients

In this section, we assume that the coefficients $b_{i j}, 1 \leq i, j \leq 3$ in system 1.1) are positive constants and the limit

$$
M\left[a_{i}\right]=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{t_{0}}^{t_{0}+T} a_{i}(t) d t
$$

exists uniformly with respect to t_{0} in $(-\infty, \infty)$. First, we consider a predator-prey system

$$
\begin{gather*}
x_{1}^{\prime}(t)=x_{1}(t)\left[a_{1}(t)-b_{11} x_{1}(t)-b_{12} x_{2}(t)\right] \\
x_{2}^{\prime}(t)=x_{2}(t)\left[-a_{2}(t)+b_{21} x_{1}(t)-b_{22} x_{2}(t)\right] \tag{4.1}
\end{gather*}
$$

Put $Z_{i}(T)=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} z_{i}(t) d t$. We have the following theorem.
Theorem 4.1. Assume that $b_{11} b_{12} a_{2}^{l}+b_{11} b_{22} a_{1}^{l}-b_{12} b_{21} a_{1}^{u}>0$. Then $\inf _{t \geq t_{0}} x_{1}(t)$ >0. Furthermore,
(i) If $M\left[a_{2}\right]<\frac{b_{21}}{b_{11}} M\left[a_{1}\right]$ then $\inf _{t \geq t_{0}} x_{2}(t)>0$ and
$\lim _{T \rightarrow \infty} X_{1}(T)=\frac{b_{22} M\left[a_{1}\right]+b_{12} M\left[a_{2}\right]}{b_{12} b_{21}+b_{11} b_{22}}, \quad \lim _{T \rightarrow \infty} X_{2}(T)=\frac{b_{21} M\left[a_{1}\right]-b_{11} M\left[a_{2}\right]}{b_{12} b_{21}+b_{11} b_{22}}$.
ii) If $M\left[a_{2}\right]>\frac{b_{21}}{b_{11}} M\left[a_{1}\right]$ then

$$
\lim _{T \rightarrow \infty} X_{1}(T)=\frac{M\left[a_{1}\right]}{b_{11}}, \quad \lim _{T \rightarrow \infty} X_{2}(T)=0
$$

Proof. The proof for the first statement is similar to that of Theorem 3.1. Let $\epsilon>0$ be a sufficiently small constant. From the comparison theorem and $x_{1}^{\prime}(t) \leq$ $x_{1}(t)\left[a_{1}^{u}-b_{11} x_{1}(t)\right]$, it is easy to see that $\lim \sup _{t \rightarrow \infty} x_{1}(t) \leq \frac{a_{1}^{u}}{b_{11}}$. Then there exists $T_{1}>t_{0}$ such that $x_{1}(t)<P_{1}^{\epsilon}=\frac{a_{1}^{u}}{b_{11}}+\epsilon$ for all $t \geq T_{1}$. Thus

$$
\begin{equation*}
x_{2}^{\prime}(t)<x_{2}(t)\left[-a_{2}^{l}+b_{21} P_{1}^{\epsilon}-b_{22} x_{2}(t)\right] \quad \text { for } t \geq T_{1} \tag{4.2}
\end{equation*}
$$

Let us consider two cases:

Case 1. There exists $\epsilon>0$ such that $-a_{2}^{l}+b_{21} P_{1}^{\epsilon}<0$. From 4.2, it follows that $\lim _{t \rightarrow \infty} x_{2}(t)=0$. Therefore, there exists $T_{2}>T_{1}$ such that $a_{1}(t)-b_{12} x_{2}(t)>\frac{1}{2} a_{1}^{l}$. It follows from the first equation of the system (4.1) that

$$
x_{1}^{\prime}(t) \geq x_{1}(t)\left[\frac{1}{2} a_{1}^{l}-b_{11} x_{1}(t)\right] \quad \text { for } t \geq T_{2}
$$

Using the comparison theorem, we have $\liminf _{t \rightarrow \infty} x_{1}(t) \geq a_{1}^{l} / 2 b_{11}$.
Case 2. $-a_{2}^{l}+b_{21} P_{1}^{0} \geq 0$. It follows from 4.2) that $\limsup _{t \rightarrow \infty} x_{2}(t) \leq P_{2}^{\epsilon}=$ $\frac{-a_{2}^{l}+b_{21} P_{1}^{\epsilon}}{b_{22}}$. Then, we can choose a sufficiently small positive ϵ and $T_{3}>T_{1}$ such that $x_{1}(t) \leq P_{1}^{\epsilon}, x_{2}(t) \leq P_{2}^{\epsilon}$ for all $t \geq T_{3}$. From the first equation of the system (4.1), we have $x_{1}^{\prime}(t) \geq x_{1}(t)\left[a_{1}^{l}-b_{12} P_{2}^{\epsilon}-b_{11} x_{1}(t)\right]$ for $t \geq T_{3}$. Because of our assumption $b_{11} b_{12} a_{2}^{l}+b_{11} b_{22} a_{1}^{l}-b_{12} b_{21} a_{1}^{u}>0$, there exists a sufficiently small positive ϵ such that

$$
a_{1}^{l}-b_{12} P_{2}^{\epsilon}=\frac{b_{11} b_{12} a_{2}^{l}+b_{11} b_{22} a_{1}^{l}-b_{12} b_{21} a_{1}^{u}}{b_{11} b_{22}}-\epsilon \frac{b_{12} b_{21}}{b_{22}}>0
$$

Then $\liminf _{t \rightarrow \infty} x_{1}(t)>0$.
The conclusions of two above cases implies that $\inf _{t \geq t_{0}} x_{1}(t)>0$. Then there exists $c_{1}>0$ such that

$$
\begin{equation*}
c_{1}<x_{1}(t)<d_{1} \text { for all } t \geq t_{0} \tag{4.3}
\end{equation*}
$$

To prove Part i), first, we show that it is impossible to have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x_{2}(t)=0 \tag{4.4}
\end{equation*}
$$

Assuming the contrary, from (4.3) and 4.4 we get

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \ln \left[\frac{x_{1}\left(t_{0}+T\right)}{x_{1}\left(t_{0}\right)}\right]=0, \quad \lim _{T \rightarrow \infty} \frac{1}{T} \int_{t_{0}}^{t_{0}+T} x_{2}(s) d s=0
$$

Then, from the first equation of 4.1 we have

$$
\begin{align*}
& \lim _{T \rightarrow \infty} \frac{1}{T} \int_{t_{0}}^{t_{0}+T} b_{11} x_{1}(s) d s \\
& =\lim _{T \rightarrow \infty} \frac{1}{T}\left[\int_{t_{0}}^{t_{0}+T} a_{1}(s) d s-\int_{t_{0}}^{t_{0}+T} b_{12} x_{2}(s) d s-\ln \left[\frac{x_{1}\left(t_{0}+T\right)}{x_{1}\left(t_{0}\right)}\right]\right] \tag{4.5}\\
& =M\left[a_{1}\right]
\end{align*}
$$

It follows from (4.4) that $\frac{1}{T} \ln \left[\frac{x_{2}\left(t_{0}+T\right)}{x_{2}\left(t_{0}\right)}\right]<0$ for large values of T. By 4.5, we find

$$
\begin{aligned}
-M\left[a_{2}\right]+b_{21} \frac{M\left[a_{1}\right]}{b_{11}} & =\lim _{T \rightarrow \infty} \frac{1}{T}\left[-\int_{t_{0}}^{t_{0}+T} a_{2}(s) d s+b_{21} \int_{t_{0}}^{t_{0}+T} x_{1}(s) d s\right] \\
& =\lim _{T \rightarrow \infty} \frac{1}{T}\left[\ln \left[\frac{x_{2}\left(t_{0}+T\right)}{x_{2}\left(t_{0}\right)}\right]+b_{22} \int_{t_{0}}^{t_{0}+T} x_{2}(s) d s\right] \leq 0
\end{aligned}
$$

which contradicts our assumption. This contradiction proves that

$$
\limsup _{t \rightarrow \infty} x_{2}(t)=d>0
$$

If, contrary to the assertion of the theorem, $\inf _{t \geq t_{0}} x_{2}(t)=0$, then there exists a sequence of numbers $\left\{s_{n}\right\}_{1}^{\infty}$ such that $s_{n} \geq t_{0}, s_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $x_{2}\left(s_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Put

$$
c=\frac{1}{2} \liminf _{T \rightarrow \infty} \frac{1}{T} \int_{t_{0}}^{t_{0}+T} x_{2}(t) d t
$$

Since $x_{2}(t)>c$ for arbitrarily large values of t and since $s_{n} \rightarrow \infty$ and $x_{2}\left(s_{n}\right) \rightarrow$ 0 as $n \rightarrow \infty$, there exist sequences $\left\{p_{n}\right\}_{1}^{\infty},\left\{q_{n}\right\}_{1}^{\infty}$ and $\left\{\tau_{n}\right\}_{1}^{\infty}$ such that for all $n \geq 1, t_{0}<p_{n}<\tau_{n}<q_{n}<p_{n+1}, x_{2}\left(p_{n}\right)=x_{2}\left(q_{n}\right)=c$ and $0<x_{2}\left(\tau_{n}\right)<$ $\frac{c}{n} \exp \left\{-b_{21} d_{1} n\right\}$. Further, there exist sequences $\left\{t_{n}\right\}_{1}^{\infty}$ and $\left\{t_{n}^{*}\right\}_{1}^{\infty}$ such that for $n \geq 1, t_{n}<\tau_{n}<t_{n}^{*}$,

$$
\begin{equation*}
x_{2}\left(t_{n}\right)=x_{2}\left(t_{n}^{*}\right)=\frac{c}{n}, \quad x_{2}(t) \leq \frac{c}{n} \quad \text { for } t \in\left[t_{n}, t_{n}^{*}\right] \tag{4.6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
0<\frac{1}{t_{n}^{*}-t_{n}} \int_{t_{n}}^{t_{n}^{*}} x_{2}(t) d t \leq \frac{c}{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{4.7}
\end{equation*}
$$

We show that the following inequalities hold:

$$
\begin{equation*}
t_{n}^{*}-t_{n}>t_{n}^{*}-\tau_{n} \geq n \quad \text { for } n \geq 1 \tag{4.8}
\end{equation*}
$$

In fact, $x_{2}^{\prime}(t)=x_{2}(t)\left[-a_{2}(t)+b_{21} x_{1}(t)-b_{22} x_{2}(t)\right]<b_{21} d_{1} x_{2}(t)$ for all $t \geq t_{0}$, then for $t \geq \tau_{n}$,

$$
\begin{align*}
x_{2}(t) & =x_{2}\left(\tau_{n}\right) \exp \left\{\int_{\tau_{n}}^{t}\left[-a_{2}(s)+b_{21} x_{1}(s)-b_{22} x_{2}(s)\right] d s\right\} \\
& \leq \frac{c}{n} \exp \left\{-b_{21} d_{1} n\right\} \exp \left\{b_{21} d_{1}\left(t-\tau_{n}\right)\right\} \tag{4.9}\\
& =\frac{c}{n} \exp \left\{b_{21} d_{1}\left(t-\tau_{n}-n\right)\right\}
\end{align*}
$$

From 4.9 and 4.6), we obtain $t_{n}^{*}-\tau_{n} \geq n$. It follows from 4.8 that

$$
M\left[a_{i}\right]=\lim _{n \rightarrow \infty} \frac{1}{t_{n}^{*}-t_{n}} \int_{t_{n}}^{t_{n}^{*}} a_{i}(t) d t, \quad i=1,2
$$

Using the first equation of system (4.1) we get

$$
\frac{1}{t_{n}^{*}-t_{n}} \ln \left[\frac{x_{1}\left(t_{n}^{*}\right)}{x_{1}\left(t_{n}\right)}\right]=\frac{1}{t_{n}^{*}-t_{n}}\left[\int_{t_{n}}^{t_{n}^{*}} a_{1}(t) d t-b_{11} \int_{t_{n}}^{t_{n}^{*}} x_{1}(t) d t-b_{12} \int_{t_{n}}^{t_{n}^{*}} x_{2}(t) d t\right]
$$

Then, it follows from 4.3, 4.7 and 4.8 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{t_{n}^{*}-t_{n}} \int_{t_{n}}^{t_{n}^{*}} x_{1}(t) d t=\frac{M\left[a_{1}\right]}{b_{11}} \tag{4.10}
\end{equation*}
$$

Similarly, from the second equation of the system (4.1) we have

$$
\frac{1}{t_{n}^{*}-t_{n}} \ln \left[\frac{x_{2}\left(t_{n}^{*}\right)}{x_{2}\left(t_{n}\right)}\right]=\frac{1}{t_{n}^{*}-t_{n}}\left[-\int_{t_{n}}^{t_{n}^{*}} a_{2}(t) d t+b_{21} \int_{t_{n}}^{t_{n}^{*}} x_{1}(t) d t-b_{22} \int_{t_{n}}^{t_{n}^{*}} x_{2}(t) d t\right]
$$

Taking into account the above relations, 4.6, 4.7) and 4.10 we get

$$
-M\left[a_{2}\right]+\frac{b_{21}}{b_{11}} M\left[a_{1}\right]=0
$$

Since this contradicts our assumption, we obtain $\inf _{t \geq t_{0}} x_{2}(t)>0$. Therefore, there exists $c_{2}>0$ such that

$$
\begin{equation*}
c_{2}<x_{2}(t)<d_{2} \quad \text { for all } t \geq t_{0} \tag{4.11}
\end{equation*}
$$

Now, by 4.1, for all $T>0$, we have

$$
\frac{1}{T} \ln \frac{x_{1}\left(t_{0}+T\right)}{x_{1}\left(t_{0}\right)}=A_{1}(T)-b_{11} X_{1}(T)-b_{12} X_{2}(T)
$$

$$
\frac{1}{T} \ln \frac{x_{2}\left(t_{0}+T\right)}{x_{2}\left(t_{0}\right)}=-A_{2}(T)+b_{21} X_{1}(T)-b_{22} X_{2}(T)
$$

Then

$$
\begin{align*}
& X_{1}(T)=\frac{b_{22}\left[A_{1}(T)-\frac{1}{T} \ln \frac{x_{1}\left(t_{0}+T\right)}{x_{1}\left(t_{0}\right)}\right]+b_{12}\left[\frac{1}{T} \ln \frac{x_{2}\left(t_{0}+T\right)}{x_{2}\left(t_{0}\right)}+A_{2}(T)\right]}{b_{12} b_{21}+b_{11} b_{22}}, \tag{4.12}\\
& X_{2}(T)=\frac{b_{21}\left[A_{1}(T)-\frac{1}{T} \ln \frac{x_{1}\left(t_{0}+T\right)}{x_{1}\left(t_{0}\right)}\right]-b_{11}\left[\frac{1}{T} \ln \frac{x_{2}\left(t_{0}+T\right)}{x_{2}\left(t_{0}\right)}+A_{2}(T)\right]}{b_{12} b_{21}+b_{11} b_{22}} .
\end{align*}
$$

It follows from 4.3 and 4.11 that

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \ln \frac{x_{i}\left(t_{0}+T\right)}{x_{i}\left(t_{0}\right)}=0 \quad(i=1,2)
$$

Then

$$
\begin{aligned}
\lim _{T \rightarrow \infty} X_{1}(T) & =\frac{b_{22} M\left[a_{1}\right]+b_{12} M\left[a_{2}\right]}{b_{12} b_{21}+b_{11} b_{22}} \\
\lim _{T \rightarrow \infty} X_{2}(T) & =\frac{b_{21} M\left[a_{1}\right]-b_{11} M\left[a_{2}\right]}{b_{12} b_{21}+b_{11} b_{22}}
\end{aligned}
$$

To prove Part (ii), first, we show that $\lim _{t \rightarrow \infty} x_{2}(t)=0$. Assuming the contrary we can find $\delta>0$ and a sequence of numbers $\left\{T_{n}\right\}_{1}^{\infty}, T_{n}>0, T_{n} \rightarrow \infty(n \rightarrow \infty)$ such that $\delta<x_{2}\left(t_{0}+T_{n}\right)<d_{2}$ for all n. Then, from the second equation of 4.12), we get

$$
\lim _{n \rightarrow \infty} X_{2}\left(T_{n}\right)=\frac{b_{21} M\left[a_{1}\right]-b_{11} M\left[a_{2}\right]}{b_{12} b_{21}+b_{11} b_{22}}<0
$$

which contradicts $X_{2}(T) \geq 0$ for all $T>0$. This implies that $\lim _{t \rightarrow \infty} x_{2}(t)=0$ and then $\lim _{T \rightarrow \infty} X_{2}(T)=0$. It follows from the first equation of 4.12) that $\lim _{T \rightarrow \infty} X_{1}(T)=\frac{M\left[a_{1}\right]}{b_{11}}$.

Now, we consider the system

$$
\begin{gather*}
x_{1}^{\prime}(t)=x_{1}(t)\left[a_{1}(t)-b_{11} x_{1}(t)-b_{12} x_{2}(t)-b_{13} x_{3}(t)\right], \\
x_{2}^{\prime}(t)=x_{2}(t)\left[-a_{2}(t)+b_{21} x_{1}(t)-b_{22} x_{2}(t)-b_{23} x_{3}(t)\right], \tag{4.13}\\
x_{3}^{\prime}(t)=x_{3}(t)\left[-a_{3}(t)+b_{31} x_{1}(t)-b_{32} x_{2}(t)-b_{33} x_{3}(t)\right] .
\end{gather*}
$$

Proposition 4.2. If

$$
\begin{gather*}
b_{11} b_{12} a_{2}^{l}+b_{11} b_{22} a_{1}^{l}-b_{12} b_{21} a_{1}^{u}>0 \\
M\left[a_{2}\right]<\frac{b_{21}}{b_{11}} M\left[a_{1}\right] \tag{4.14}\\
M\left[a_{3}\right]<\frac{\left(b_{31} b_{22}-b_{32} b_{21}\right) M\left[a_{1}\right]+\left(b_{31} b_{12}+b_{11} b_{32}\right) M\left[a_{2}\right]}{b_{12} b_{21}+b_{11} b_{22}},
\end{gather*}
$$

then $\lim \sup _{t \rightarrow \infty} x_{3}(t)>0$.
Proof. We assume that $\lim _{t \rightarrow \infty} x_{3}(t)=0$. Then

$$
\begin{equation*}
\lim _{T \rightarrow \infty} X_{3}(T)=0 \tag{4.15}
\end{equation*}
$$

Replacing t_{0} by a larger number, if necessary, we may assume that $a_{1}(t)-b_{13} x_{3}(t)>$ 0 for $t \geq t_{0}-1$. We put,

$$
\begin{aligned}
& a_{1}^{*}(t)= \begin{cases}a_{1}(t)-b_{13} x_{3}(t), & t \geq t_{0} \\
a_{1}(t)-\left(t-t_{0}+1\right) b_{13} x_{3}(t), & t_{0}-1 \leq t<t_{0} \\
a_{1}(t), & t<t_{0}-1\end{cases} \\
& a_{2}^{*}(t)= \begin{cases}a_{2}(t)+b_{23} x_{3}(t), & t \geq t_{0} \\
a_{2}(t)+\left(t-t_{0}+1\right) b_{23} x_{3}(t), & t_{0}-1 \leq t<t_{0} \\
a_{2}(t), & t<t_{0}-1\end{cases}
\end{aligned}
$$

Then a_{i}^{*} is continuous on $\mathbb{R}, a_{i}^{* l}>0, a_{i}^{* u}<\infty$ for $i=1,2$. Moreover, since $\lim _{t \rightarrow \infty} x_{3}(t)=0$, the limit

$$
M\left[a_{i}^{*}\right]=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{t_{*}}^{t_{*}+T} a_{i}^{*}(t) d t=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{t_{*}}^{t_{*}+T} a_{i}(t) d t=M\left[a_{i}\right]
$$

exists uniformly with respect to $t_{*} \in \mathbb{R}$ and $i=1,2$. Then for $t \geq t_{0},\left(x_{1}(t), x_{2}(t)\right)$ is a solution of the following competitive system

$$
\begin{gathered}
x_{1}^{\prime}(t)=x_{1}(t)\left[a_{1}^{*}(t)-b_{11} x_{1}(t)-b_{12} x_{2}(t)\right] \\
x_{2}^{\prime}(t)=x_{2}(t)\left[-a_{2}^{*}(t)-b_{21} x_{1}(t)-b_{22} x_{2}(t)\right]
\end{gathered}
$$

By condition 4.14 and Theorem 4.1. we have

$$
\begin{align*}
\lim _{T \rightarrow \infty} X_{1}(T) & =\frac{b_{22} M\left[a_{1}\right]+b_{12} M\left[a_{2}\right]}{b_{12} b_{21}+b_{11} b_{22}} \tag{4.16}\\
\lim _{T \rightarrow \infty} X_{2}(T) & =\frac{b_{21} M\left[a_{1}\right]-b_{11} M\left[a_{2}\right]}{b_{12} b_{21}+b_{11} b_{22}}
\end{align*}
$$

From the third equation of the system 4.13) we have

$$
\frac{1}{T} \ln \left[\frac{x_{3}\left(t_{0}+T\right)}{x_{3}\left(t_{0}\right)}\right]=-A_{3}(T)+b_{31} X_{1}(T)-b_{32} X_{2}(T)-b_{33} X_{3}(T)
$$

Then $-A_{3}(T)+b_{31} X_{1}(T)-b_{32} X_{2}(T)-b_{33} X_{3}(T)<0$ for T sufficiently large. Letting $T \rightarrow \infty$ and using 4.15 and 4.16 we obtain

$$
-M\left[a_{3}\right]+\frac{\left(b_{31} b_{22}-b_{32} b_{21}\right) M\left[a_{1}\right]+\left(b_{12} b_{31}+b_{11} b_{32}\right) M\left[a_{2}\right]}{b_{12} b_{21}+b_{11} b_{22}} \leq 0
$$

which contradicts 4.14 . This proves the proposition.
Proposition 4.3. If the following conditions hold

$$
\begin{gather*}
b_{11} b_{13} a_{3}^{l}+b_{11} b_{33} a_{1}^{l}-b_{13} b_{31} a_{1}^{u}>0, \\
M\left[a_{3}\right]<\frac{b_{31}}{b_{11}} M\left[a_{1}\right], \tag{4.17}\\
M\left[a_{3}\right]<\frac{\left(b_{31} b_{33}-b_{23} b_{31}\right) M\left[a_{1}\right]+\left(b_{31} b_{13}+b_{11} b_{23}\right) M\left[a_{3}\right]}{b_{13} b_{31}+b_{11} b_{33}}
\end{gather*}
$$

then $\lim \sup _{t \rightarrow \infty} x_{2}(t)>0$.
The proof of the above proposition is similar to that of Proposition 4.2, and it is omitted.
Theorem 4.4. If conditions 4.14 and 4.17 hold, then system 4.13 is persistent.

Proof. From Propositions 4.2 and 4.3 , we have

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} x_{i}(t)>0, \quad i=2,3 \tag{4.18}
\end{equation*}
$$

Now, we show that $\lim \sup _{t \rightarrow \infty} x_{1}(t)>0$. Assume the contrary, then there exist $t_{1}>t_{0}$ and two positive numbers b_{2}, b_{3} such that

$$
-a_{i}+b_{i 1} x_{1}(t)<-b_{i}, \quad \text { for all } t \geq t_{1}, i=2,3
$$

Then for $i=2,3$ and $t \geq t_{1}, x_{i}^{\prime}(t) \leq x_{i}(t)\left[-b_{i}-b_{i i} x_{i}(t)\right]$. By the comparison theorem, it follows that $\lim _{t \rightarrow \infty} x_{i}(t)=0$ which contradicts 4.18). The proof is complete.

5. The model with the constant intrinsic growth rates

In this section, we consider system (1.1) under the condition $a_{i}, b_{i j}, 1 \leq i, j \leq 3$ are constants, then (1.1) becomes

$$
\begin{gather*}
x_{1}^{\prime}(t)=x_{1}(t)\left[a_{1}-b_{11} x_{1}(t)-b_{12} x_{2}(t)-b_{13} x_{3}(t)\right], \\
x_{2}^{\prime}(t)=x_{2}(t)\left[-a_{2}+b_{21} x_{1}(t)-b_{22} x_{2}(t)-b_{23} x_{3}(t)\right], \tag{5.1}\\
x_{3}^{\prime}(t)=x_{3}(t)\left[-a_{3}+b_{31} x_{1}(t)-b_{32} x_{2}(t)-b_{33} x_{3}(t)\right] .
\end{gather*}
$$

Put

$$
x_{1}^{*}=\frac{a_{1} b_{22}+a_{2} b_{12}}{b_{11} b_{22}+b_{12} b_{21}}, \quad x_{2}^{*}=\frac{a_{1} b_{21}-a_{2} b_{11}}{b_{11} b_{22}+b_{12} b_{21}} .
$$

Theorem 5.1. If

$$
a_{2}<\frac{b_{21}}{b_{11}} a_{1} \quad \text { and } \quad-a_{3}+b_{31} x_{1}^{*}-b_{32} x_{2}^{*}<0
$$

then the stationary solution $\left(x_{1}^{*}, x_{2}^{*}, 0\right)$ of (5.1) is locally asymptotically stable. It means that if $\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)$ is a solution of (5.1) such that $\left(x_{1}\left(t_{0}\right), x_{2}\left(t_{0}\right)\right)$ is close to $\left(x_{1}^{*}, x_{2}^{*}\right)$ and $x_{3}\left(t_{0}\right)$ is sufficiently small and positive, then $\lim _{t \rightarrow \infty} x_{1}(t)=$ $x_{1}^{*}, \lim _{t \rightarrow \infty} x_{2}(t)=x_{2}^{*}, \lim _{t \rightarrow \infty} x_{3}(t)=0$.

Proof. It is easy to see that $x_{1}^{*}>0, x_{2}^{*}>0$ and $\left(x_{1}^{*}, x_{2}^{*}, 0\right)$ is a stationary solution of system 5.1. Put

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}\left(a_{1}-b_{11} x_{1}-b_{12} x_{2}-b_{13} x_{3}\right), \\
& f_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{2}\left(-a_{2}+b_{21} x_{1}-b_{22} x_{2}-b_{23} x_{3}\right), \\
& f_{3}\left(x_{1}, x_{2}, x_{3}\right)=x_{3}\left(-a_{3}+b_{31} x_{1}-b_{32} x_{2}-b_{33} x_{3}\right),
\end{aligned}
$$

then system 5.1 becomes $x_{i}^{\prime}=f_{i}\left(x_{1}, x_{2}, x_{3}\right)$ and $f_{i}\left(x_{1}^{*}, x_{2}^{*}, 0\right)=0, i \geq 1$. Consider

$$
A=\left[\begin{array}{lll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \frac{\partial f_{1}}{\partial x_{3}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \frac{\partial f_{2}}{\partial x_{3}} \\
\frac{\partial f_{3}}{\partial x_{1}} & \frac{\partial f_{3}}{\partial x_{2}} & \frac{\partial f_{3}}{\partial x_{3}}
\end{array}\right]\left(x_{1}^{*}, x_{2}^{*}, 0\right)=\left[\begin{array}{ccc}
-b_{11} x_{1}^{*} & -b_{12} x_{1}^{*} & -b_{13} x_{1}^{*} \\
b_{21} x_{2}^{*} & -b_{22} x_{2}^{*} & -b_{23} x_{2}^{*} \\
0 & 0 & -a_{3}+b_{31} x_{1}^{*}-b_{32} x_{2}^{*}
\end{array}\right] .
$$

Since

$$
\operatorname{det}(A-\lambda I)=\left(-a_{3}+b_{31} x_{1}^{*}-b_{32} x_{2}^{*}-\lambda\right)\left[\lambda^{2}+\left(b_{11} x_{1}^{*}+b_{22} x_{2}^{*}\right) \lambda+\left(b_{11} b_{22}+b_{12} b_{21}\right) x_{1}^{*} x_{2}^{*}\right]
$$

it follows that all eigenvalues of A are less than zero. Therefore, $\left(x_{1}^{*}, x_{2}^{*}, 0\right)$ is locally asymptotically stable.

Acknowledgements. The authors would like to thank the anonymous referee for his/her suggestions. We also would like to thank Prof. Pham Ky Anh for his help in improving the presentation of this paper.

References

[1] Ahmad, S.; On the non-autonomous Volterra-Lotka competition equations, Proc. Amer. Math. Soc., 117(1993), 199-204.
[2] Ahmad, S.; Necessary and sufficient average growth in a Lotka-Volterra system, Nonlinear Anal., 34(1998), 191-228.
[3] Ahmad, S.; Almost necessary and sufficient conditions for survival of species, Nonlinear Anal., 5(2004), 219-229.
[4] Barbălat, I.; Systèmes dèquations diffèrentielles dosillations non linéaires, Rev. Roumaine Math. Pures. Appl., 4(1975), 267-270.
[5] Krikorian, N.; The Volterra model for three species predator-prey systems: boundedness and stability, J. Math. Biol., 7(1979), 117-132.
[6] Korobeinikov, A., Wake, G. C.; Global properties of the three-dimensional predator-prey Lotka-Volterra systems, J. Appl. Math. Decis. Sci., 3(1999), 155-162.
[7] Korman, P.; On a principle of predatory exclusion, Appl. Anal., 84(2005), 707-712.
[8] Ton, T. V.; Survival of three species in a non-autonomous Lotka-Volterra system, J. Math. Anal. Appl., 362(2010), 427-437.
[9] Ton, T. V.; Dynamics of species in a non-autonomous Lotka-Volterra system, Acta Math. Acad. Paedagog. Nyhazi., 25(2009), 45-54.
[10] Takeuchi, Y., Adachi, N.; Existence and bifurcation of stable equilibrium in two-prey, onepredator communities, Bull. Math. Biol., 45(1983), 877-900.
[11] Xia, Y., Chen, F., Chen, A., Cao, J.; Existence and global attractiveness of an almost periodic ecological model, Appl. Math. Comput., 157(2004), 449-475.

Ta Hong Quang
Faculty of Mathematics, Xuan Hoa Teacher Training University, Vietnam
E-mail address: hongquangta12@yahoo.com
Ta Viet Ton
Division of Precision Science \& Technology and Applied Physics, Graduate School of
Engineering, Osaka University, Japan
E-mail address: taviet.ton@ap.eng.osaka-u.ac.jp
Nguyen Thi Hoai Linh
Vietnam Publishing House for Science and Technology, Vietnam
E-mail address: linha1t@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 34C27, 34D05.
 Key words and phrases. Predator-prey model; survival; extinction; persistence; asymptotic stability; Liapunov function.
 (C) 2009 Texas State University - San Marcos.

 Submitted August 28, 2009. Published December 1, 2009.

