Electronic Journal of Differential Equations, Vol. 2009(2009), No. 159, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF SOLUTIONS FOR NONLINEAR SECOND-ORDER TWO-POINT BOUNDARY-VALUE PROBLEMS

RUI-JUAN DU

$$
\begin{aligned}
& \text { AbSTRACT. We consider the existence of solutions for the nonlinear second- } \\
& \text { order two-point ordinary differential equations } \\
& \qquad u^{\prime \prime}(t)+\lambda u(t)+g(u(t))=h(t), \quad t \in[0,1] \\
& \qquad u(0)=u(1)=0, \quad \text { or } \quad u^{\prime}(0)=u^{\prime}(1)=0
\end{aligned}
$$

where $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, and $h \in L^{1}(0,1)$.

1. Introduction

We consider the existence of solutions for the seconder-order two-point ordinary differential equation

$$
\begin{equation*}
u^{\prime \prime}(t)+\lambda u(t)+g(u(t))=h(t), \quad t \in[0,1] \tag{1.1}
\end{equation*}
$$

satisfying either

$$
\begin{equation*}
u(0)=u(1)=0, \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
u^{\prime}(0)=u^{\prime}(1)=0 \tag{1.3}
\end{equation*}
$$

where $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $h \in L^{1}(0,1)$. The parameter $\lambda \in \mathbb{R}$ is allowed change near $m^{2} \pi^{2}(m=1,2, \ldots)$, the m-th eigenvalue of the linear eigenvalue problem

$$
\begin{gather*}
u^{\prime \prime}(t)+\lambda u(t)=0, \quad t \in[0,1] \\
u(0)=u(1)=0 \tag{1.4}
\end{gather*}
$$

and

$$
\begin{gather*}
u^{\prime \prime}(t)+\lambda u(t)=0, \quad t \in[0,1] \\
u^{\prime}(0)=u^{\prime}(1)=0 \tag{1.5}
\end{gather*}
$$

The linear problem associated with (1.4), 1.5 are

$$
\begin{gather*}
u^{\prime \prime}(t)+\lambda u(t)=h(t), \quad t \in[0,1] \\
u(0)=u(1)=0 \tag{1.6}
\end{gather*}
$$

[^0]and
\[

$$
\begin{gather*}
u^{\prime \prime}(t)+\lambda u(t)=h(t), \quad t \in[0,1] \\
u^{\prime}(0)=u^{\prime}(1)=0 \tag{1.7}
\end{gather*}
$$
\]

and the corresponding existence results are known from the linear theory. Namely, if $\lambda \neq m^{2} \pi^{2}(m=1,2, \ldots)$, then 1.4$),(1.5)$ have a unique solution for each given h; While for $\lambda=m^{2} \pi^{2}(m=1,2, \ldots)$ a solution exists if, and only if, h satisfies the orthogonality conditions

$$
\int_{0}^{1} h(t) \phi_{i}(t) d t=0 \quad(i=1,2)
$$

where $\phi_{1}(t)=\sin m \pi t, \phi_{2}(t)=\cos m \pi t$ are the eigenfunctions associated with the eigenvalue $m^{2} \pi^{2}$. In this case, there are infinity many solutions $u(t)=u_{0}(t)+$ $a \sin \pi t, v(t)=v_{0}(t)+b \cos \pi t, a, b \in \mathbb{R}$ with u_{0}, v_{0} are the any particular solution of (1.4), 1.5).

A similar situation arises when introducing a sufficiently nonlinearity g. Assuming for the moment g uniformly bounded, it is easy to see that $\lambda \neq m^{2} \pi^{2}, \sqrt{1.1}-(1.2)$, (1.1)-(1.3) again have a solution for each given h. If $\lambda=m^{2} \pi^{2}$, there are more difficulties to hold the existence of solutions of (1.1)-(1.2), (1.1)-(1.3). In [4], only when $m=1,(1.1)-(1.2)$ is solvable if h satisfies so called the Landesman-Lazer condition

$$
\limsup _{t \rightarrow-\infty} g(t)<\int_{0}^{1} h(t) \phi_{1}(t) d t<\liminf _{t \rightarrow+\infty} g(t)
$$

In [9, the authors assumed the nonlinearity $f(t, u)=g(u)-h(t)$ did not satisfy Landesman-Lazer conditions, were also proved that the boundary value problem (1.1)- 1.2 has at least one solution, but m is only allowed equal to 1 .

It is not difficulty to see that when $m=2,3, \ldots$, the case became more complex, there are only a few scholars to study it. In addition, in most of the papers about second-order two-point are using the same method as 4, 9]. There aren't much more method to solve those problems.

Inspired by the above results, in this paper, we try to establish the existence results of boundary value problems (1.1)-(1.2), (1.1)-(1.3), λ is allowed to change near $m^{2} \pi^{2}(m=1,2, \ldots)$, the nonlinearity g has weaker conditions than [9, and the methods are different from the methods in 9.

2. Preliminaries

In this paper, we use the following assumptions in g and h :
(H1) $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, there is $\alpha \in[0,1), c, d \in(0,+\infty)$ such that

$$
\begin{equation*}
|g(u)| \leq c|u|^{\alpha}+d, \quad u \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

(H2) There exists $r>0$ such that

$$
\begin{equation*}
u g(u)>0, \quad|u|>r \tag{2.2}
\end{equation*}
$$

(H2') There exists $r>0$ such that

$$
\begin{equation*}
u g(u)<0, \quad|u|>r \tag{2.3}
\end{equation*}
$$

(H3) $h:[0,1] \rightarrow \mathbb{R}, h \in L^{1}(0,1)$ satisfying

$$
\begin{equation*}
\int_{0}^{1} h(t) \phi_{1}(t) d t=0 \tag{2.4}
\end{equation*}
$$

(H3') $h:[0,1] \rightarrow \mathbb{R}, h \in L^{1}(0,1)$ satisfying

$$
\begin{equation*}
\int_{0}^{1} h(t) \phi_{2}(t) d t=0 \tag{2.5}
\end{equation*}
$$

Remark. For convenience, we rewrite $\lambda=\lambda_{m}+\bar{\lambda}$, where λ_{m} is the m-th eigenvalue of the linear eigenvalue problem $\sqrt{1.1)}-(1.2)$, or of $(1.1)-(1.3)$. Then the ordinary differential equation (1.1) is equivalent to

$$
\begin{equation*}
u^{\prime \prime}(t)+\lambda_{m} u(t)+\bar{\lambda} u(t)+g(u(t))=h(t) \tag{2.6}
\end{equation*}
$$

Let X, Y be the linear Banach space $C^{1}[0,1], L^{1}(0,1)$, whose norms are denoted by

$$
\|u\|=\max \left\{\|u\|_{0},\left\|u^{\prime}\right\|_{0}\right\}, \quad\|u\|_{1}=\int_{0}^{1}|u(s)| d s
$$

where $\|u\|_{0}$ denotes the max norm $\|u\|_{0}=\max \{u(t), t \in[0,1]\}$.
Let $L_{i}: \operatorname{dom} L_{i} \subset X \rightarrow Y(i=1,2)$ be linear operators defined for $u \in \operatorname{dom} L_{i}$ as

$$
\begin{equation*}
L_{i} u:=u^{\prime \prime}+\lambda_{m}, \tag{2.7}
\end{equation*}
$$

where $\operatorname{dom} L_{1}=\left\{u \in W^{2,1}(0,1): u(0)=u(1)=0\right\}$, $\operatorname{dom} L_{2}=\left\{u \in W^{2,1}(0,1):\right.$ $\left.u^{\prime}(0)=u^{\prime}(1)=0\right\}$.
Lemma 2.1. Let $L_{i}(i=1,2)$ be the linear operator as defined in 2.7. Then

$$
\begin{aligned}
\operatorname{ker} L_{i} & =\left\{u \in X: u(t)=\rho \phi_{i}(t), \rho \in \mathbb{R}\right\} \\
\operatorname{Im} L_{i} & =\left\{u \in Y: \int_{0}^{1} u(t) \phi_{i}(t) d t=0\right\}
\end{aligned}
$$

Defined the operator $P_{i}: X \rightarrow \operatorname{ker} L_{i} \cap X, Q_{i}: X \rightarrow \operatorname{Im} Q_{i} \cap Y$,

$$
\begin{gather*}
\left(P_{i} u\right)(t)=\phi_{i}(t) \int_{0}^{1} u(s) \phi_{i}(s) d s \tag{2.8}\\
\left(Q_{i} u\right)(t)=u(t)-\left(\int_{0}^{1} u(s) \phi_{i}(s) d s\right) \phi_{i}(t) \tag{2.9}
\end{gather*}
$$

It is easy to check that $\operatorname{Im} P_{i}=\operatorname{ker} L_{i}, Y / \operatorname{Im} Q_{i}=\operatorname{Im} L_{i}(i=1,2)$, and to show the following Lemma.

Lemma 2.2. Let $X_{P_{i}}=\operatorname{ker} L_{i}, X_{I-P_{i}}=\operatorname{ker} P_{i}, Y_{Q_{i}}=\operatorname{Im} L_{i}, Y_{I-P_{i}}=\operatorname{Im} Q_{i}$. Then

$$
X=X_{P_{i}} \oplus X_{I-P_{i}}, \quad Y=Y_{I-Q_{i}} \oplus Y_{Q_{i}}
$$

It is easy to check that the restriction of L_{i} to $X_{I-P_{i}}$ is a bijection from $X_{I-P_{i}}$ onto $\operatorname{Im} L_{i}(i=1,2)$. We define $K_{i}: \operatorname{Im} L_{i} \rightarrow X_{I-P_{i}}$ by

$$
\begin{equation*}
K_{i}=\left.L_{i}\right|_{X_{I-P_{i}}} ^{-1} \tag{2.10}
\end{equation*}
$$

Define the nonlinear operator $G: X \rightarrow Y$ by

$$
(G u)(t)=g(u(t)) \quad t \in[0,1] .
$$

It is easy to check that $G: X \rightarrow Y$ is completely continuous. Obviously (1.1)-(1.2), (1.1)-(1.3) are equivalent to

$$
\begin{equation*}
L_{i} u+\bar{\lambda} u+G u=h, \quad u \in D\left(L_{i}\right) \tag{2.11}
\end{equation*}
$$

Since ker $L_{i}=\operatorname{span}\left\{\phi_{i}(t)\right\}(i=1,2)$, we see that each $x \in X$ can be uniquely decomposed as

$$
x(t)=\rho \phi_{i}(t)+v(t) \quad t \in[0,1]
$$

for some $\rho \in \mathbb{R}$ and $v \in X_{I-P_{i}}$.
For $y \in Y$, we also have the decomposition

$$
y(t)=\tau \phi_{i}(t)+w(t), \quad t \in[0,1]
$$

with $\tau \in \mathbb{R}, w \in Y_{Q_{i}}(i=1,2)$.
Lemma 2.3. The boundary-value problems 2.11 are equivalent to the system

$$
\begin{gather*}
L_{i} v(t)+\bar{\lambda} v(t)+Q_{i} G\left(\rho \phi_{i}(t)+v(t)\right)=h(t), \\
\bar{\lambda} \int_{0}^{1}\left(\phi_{i}(t)\right)^{2} d t+\int_{0}^{1} \phi_{i}(t) G\left(\rho \phi_{i}(t)+v(t)\right) d t=0 . \tag{2.12}
\end{gather*}
$$

3. Main Results

Theorem 3.1. Assume (H1), (H2), (H3). Then there exists $\lambda_{+}>0$ such that (1.1)-(1.2) has at least one solutions in $C^{1}[0,1]$ if $\lambda \in\left[0, \lambda_{+}\right]$.

Theorem 3.2. Assume (H1), (H2'), (H3). Then there exists $\lambda_{-}<0$ such that (1.1)-(1.2) has at least one solutions in $C^{1}[0,1]$ if $\lambda \in\left[\lambda_{-}, 0\right]$.

Theorem 3.3. Assume (H1), (H2), (H3'). Then there exists $\lambda_{+}>0$ such that (1.1)-1.3) has at least one solutions in $C^{1}[0,1]$ if $\lambda \in\left[0, \lambda_{+}\right]$.

Theorem 3.4. Assume (H1), (H2'), (H3'). Then there exists $\lambda_{-}<0$ such that (1.1)-(1.3) has at least one solutions in $C^{1}[0,1]$ if $\lambda \in\left[\lambda_{-}, 0\right]$.

In this article, we prove only Theorem 3.1 t the other theorems can be proved by using the similarly method.

Lemma 3.5. Assume (H1), (H2), (H3). Then there exists $M>0$, such that any solution $u \in D\left(L_{1}\right)$ of (2.11) satisfies $\|u\|<M$, as long as

$$
\begin{equation*}
0 \leq \bar{\lambda} \leq \delta:=\frac{1}{2\left\|K_{1} J_{1}\right\|_{Y_{Q_{1}} \rightarrow X_{I-P_{1}}}} \tag{3.1}
\end{equation*}
$$

where $J_{1}: X \rightarrow Y$ is defined by $\left(J_{1} u\right)(t)=u(t), t \in[0,1]$.
Proof. We divide the proof into two steps.
Step I. Obviously $\left.\left(L_{1}+\bar{\lambda} J_{1}\right)\right|_{X_{I-P_{1}}}: X_{I-P_{1}} \rightarrow Y_{Q_{1}}$ is invertible for $\bar{\lambda} \leq \delta$. Moreover, by 3.1,

$$
\begin{aligned}
\left\|\left.\left(L_{1}+\bar{\lambda} J_{1}\right)\right|_{X_{I-P_{1}}} ^{-1}\right\|_{Y_{Q_{1}} \rightarrow X_{I-P_{1}}} & =\left\|\left.L_{1}\right|_{X_{I-P_{1}}} ^{-1}\left(I+\bar{\lambda} K_{1} J_{1}\right)^{-1}\right\|_{Y_{Q_{1}} \rightarrow X_{I-P_{1}}} \\
& =\left\|K_{1}\right\|_{Y_{Q_{1}} \rightarrow X_{I-P_{1}}}\left\|\left(I+\bar{\lambda} K_{1} J_{1}\right)^{-1}\right\|_{X_{I-P} \rightarrow X_{I-P_{1}}} \\
& \leq 2\left\|K_{1}\right\|_{Y_{Q_{1}} \rightarrow X_{I-P_{1}}}
\end{aligned}
$$

Let $u(t)=\rho \phi_{1}(t)+v(t)=\rho \sin m \pi t+v(t)$ is a solution of 2.11 for some $\rho \neq 0$. Then

$$
\begin{aligned}
\|v\|= & \left\|\left.\left(L_{1}+\bar{\lambda} J_{1}\right)\right|_{X_{I-P_{1}}} ^{-1} Q_{1}(h-g(\rho \sin m \pi t+v(t)))\right\| \\
\leq & \left\|\left.\left(L_{1}+\bar{\lambda} J_{1}\right)\right|_{X_{I-P_{1}}} ^{-1}\right\|_{Y_{Q_{1}} \rightarrow X_{I-P_{1}}}\left\|Q_{1}\right\|_{Y \rightarrow Y_{Q_{1}}} \\
& \times\left[\|h\|_{1}+c\left(|\rho|\|\sin m \pi t\|_{1}+\|v\|_{1}\right)^{\alpha}+d\right] \\
\leq & 2\left\|K_{1}\right\|_{Y_{Q_{1}} \rightarrow X_{I-P_{1}}}\left\|Q_{1}\right\|_{Y \rightarrow Y_{Q_{1}}}\left[\|h\|_{1}+c(|\rho|\|\sin m \pi t\|+\|v\|)^{\alpha}+d\right] \\
\leq & 2\left\|K_{1}\right\|_{Y_{Q_{1}} \rightarrow X_{I-P_{1}}}\left\|Q_{1}\right\|_{Y \rightarrow Y_{Q_{1}}}\left[\|h\|_{1}+c(|\rho| m \pi+\|v\|)^{\alpha}+d\right] \\
= & 2\|K\|_{Y_{Q_{1}} \rightarrow X_{I-P_{1}}}\left\|Q_{1}\right\|_{Y \rightarrow Y_{Q_{1}}}\left[\|h\|_{1}+c m \pi|\rho|^{\alpha}\left(1+\frac{\|v\|}{m \pi|\rho|}\right)^{\alpha}+d\right] \\
\leq & 2\left\|K_{1}\right\|_{Y_{Q_{1}} \rightarrow X_{I-P}}\left\|Q_{1}\right\|_{Y \rightarrow Y_{Q_{1}}}\left[\|h\|_{1}+c m \pi|\rho|^{\alpha}\left(1+\frac{\alpha\|v\|}{m \pi|\rho|}\right)+d\right] \\
= & 2\left\|K_{1}\right\|_{Y_{Q_{1}} \rightarrow X_{I-P_{1}}}\left\|Q_{1}\right\|_{Y \rightarrow Y_{Q_{1}}} \\
& \times\left[\|h\|_{1}+c m \pi|\rho|^{\alpha}\left(1+\frac{\alpha}{(m \pi|\rho|)^{1-\alpha}} \cdot \frac{\|v\|}{(m \pi|\rho|)^{\alpha}}\right)+d\right]
\end{aligned}
$$

Hence,

$$
\frac{\|v\|}{(m \pi|\rho|)^{\alpha}} \leq \frac{c_{0}}{(m \pi|\rho|)^{\alpha}}+c_{1}+\frac{\alpha c_{1}}{(m \pi|\rho|)^{1-\alpha}} \cdot \frac{\|v\|}{(m \pi|\rho|)^{\alpha}}
$$

where

$$
\begin{gathered}
c_{0}=2\left\|K_{1}\right\|_{Y_{Q_{1}} \rightarrow X_{I-P_{1}}}\left\|Q_{1}\right\|_{Y \rightarrow Y_{Q_{1}}}\left(\|h\|_{1}+d\right) \\
c_{1}=2 c\left\|K_{1}\right\|_{Y_{Q_{1}} \rightarrow X_{I-P_{1}}}\left\|Q_{1}\right\|_{Y \rightarrow Y_{Q_{1}}} .
\end{gathered}
$$

If

$$
|\rho| \geq \frac{\left(2 \alpha c_{1}\right)^{-\frac{1}{1-\alpha}}}{m \pi}:=\tilde{c}
$$

then

$$
\begin{equation*}
\frac{\|v\|}{(m \pi|\rho|)^{\alpha}} \leq \frac{2 c_{0}}{(m \pi \tilde{c})^{\alpha}}+2 c_{1}:=\bar{c} \tag{3.2}
\end{equation*}
$$

Step II. If we assume that the conclusion of the lemma is false, we obtain a sequence $\left\{\bar{\lambda}_{n}\right\}$ with $0 \leq \bar{\lambda}_{n} \leq \delta, \bar{\lambda}_{n} \rightarrow 0$ and a sequence of corresponding solutions $\left\{u_{n}\right\}: u_{n}=\rho_{n} \phi_{1}(t) d t+(t), \rho_{n} \in \mathbb{R}, v_{n} \in X_{I-P_{1}}, n \in N$, such that

$$
\left\|u_{n}\right\| \rightarrow+\infty
$$

From 3.2

$$
\begin{equation*}
\|v\| \leq \bar{c}(m \pi)^{\alpha}(|\rho|)^{\alpha}:=\hat{c}|\rho|^{\alpha} . \tag{3.3}
\end{equation*}
$$

we conclude that $\left|\rho_{n}\right| \rightarrow+\infty$. We may assume that $\rho_{n} \rightarrow+\infty$, the other case can be treated in the same way. Then for all $n \in N$, we get that $\rho_{n} \geq \tilde{c}$.

Now, from 2.11 we obtain

$$
\begin{equation*}
\bar{\lambda}_{n} \rho_{n} \int_{0}^{1}(\sin m \pi t)^{2} d t+\int_{0}^{1} \sin m \pi t g\left(\rho_{n} \sin m \pi t+v_{n}(t)\right) d t=0 \tag{3.4}
\end{equation*}
$$

Since $\bar{\lambda}_{n} \geq 0, \int_{0}^{1} \bar{\lambda}_{n} \rho_{n}(\sin m \pi t)^{2} d t \geq 0$, for all $n \in N$, so we have

$$
\begin{equation*}
\int_{0}^{1} \sin m \pi t g\left(\rho_{n} \sin m \pi t+v_{n}(t)\right) d t \leq 0 \tag{3.5}
\end{equation*}
$$

Let $I^{+}:=\{t: t \in[0,1], \sin \pi t>0\}, I^{-}:=\{t: t \in[0,1], \sin \pi t<0\}$. It is easy to see that $I^{+} \cap I^{-} \neq 0$, and

$$
\begin{equation*}
\min \left\{|\sin m \pi t| t \in I^{+} \cap I^{-}\right\}>0 . \tag{3.6}
\end{equation*}
$$

Combining (3.6) and (3.3), we conclude

$$
\begin{align*}
& \lim _{\rho_{n} \rightarrow+\infty} \min \left\{\rho_{n} \sin m \pi t+v_{n}(t) \mid t \in I^{+}\right\}=+\infty . \tag{3.7}\\
& \lim _{\rho_{n} \rightarrow+\infty} \min \left\{\rho_{n} \sin m \pi t+v_{n}(t) \mid t \in I^{-}\right\}=-\infty . \tag{3.8}
\end{align*}
$$

Applying (3.4), 3.7) and (3.8) and (H2), we conclude

$$
\begin{aligned}
\int_{0}^{1} \sin m \pi t g\left(\rho_{n} \sin m \pi t+v_{n}(t)\right) d t= & \int_{t \in I^{+}} \sin m \pi t g\left(\rho_{n} \sin m \pi t+v_{n}(t)\right) d t \\
& +\int_{t \in I^{-}} \sin m \pi t g\left(\rho_{n} \sin m \pi t+v_{n}(t)\right) d t>0
\end{aligned}
$$

hold for some n large enough. This contradicts (3.5).
Similarly, we obtain the following result.
Lemma 3.6. Assume (H1), (H2'), (H3). Then there exists $M^{\prime}>0$, such that any solution $u \in D\left(L_{1}\right)$ of (2.11) satisfies

$$
\|u\|<M^{\prime}
$$

as long as $-\delta \leq \lambda \leq 0$, where δ and J_{1} as lemma 3.5
Proof of Theorem 3.1. Consider the linear operator $L: X \rightarrow Y$, defined for $u \in$ $\operatorname{dom} L$ by

$$
L u=L_{1} u+\bar{\lambda} u=\lambda_{m} u+\bar{\lambda} u
$$

and the family maps $T_{\mu}: X \rightarrow Y(0 \leq \mu \leq 1)$,

$$
\left(T_{\mu} u\right)(t)=\mu(h(t)-g(u(t))), \quad t \in[0,1] .
$$

where $\operatorname{dom} L:=\left\{u \in W^{2,1}(0,1): u(0)=u(1)=0\right\}$. Observe that L is invertible with, let $K: Y \rightarrow X$, then $K=L^{-1}$, and

$$
\begin{equation*}
u(t)=K(G(u(t))-h(t)), \quad t \in[0,1] . \tag{3.9}
\end{equation*}
$$

If

$$
R=\{u \in X:\|u\| \leq M+1\}
$$

we can define a compact homotopy $H_{\mu}: R \rightarrow \operatorname{dom} L$,

$$
H_{\mu}=L^{-1} \circ\left(T_{\mu} u\right) \circ J_{1}
$$

We can see that the fixed points of H_{μ} are exactly the solution of $1.1-2(1.2$, and the choice of R enables us to say that the homotopy H_{μ} is fixed-point free on the boundary of R. since $H_{0}=0$, by the Leray-Schauder theory [3], we obtain that H_{1} has a fixed point and so there is a solution to 1.1 - 1.2 .

References

[1] S. Ahmad; A resonane problem in which the nonlinearly may grow linearly, Proc. Am. math. Soc. 1984, 92: 381-383.
[2] S. Ahmad; Nonselfadjoint resonance problems with unbounded perturbations. Nonlinear Analysis 1986, 10:147-156.
[3] A. Constantin; On a Two-Point Boundary Value Problem, J. Math. Anal. Appl. 193(1995)318328.
[4] R. Iannacci, M. N. Nkashama; Unbounded perturbations of forced second order ordinary differential equations at resonance. J. Differential Equations 69 (1987), no. 3, 289-309.
[5] P. Kelevedjiev; Existence of solutions for two-point boundary value problems, Nonlinear Analysis, 1994, 22: 217-224.
[6] B. Lin; Solvability of multi-point boundary value problems at resonance(IV), Appl. Math. Comput. 2003, 143: 275-299.
[7] J. Mawhin, K. Schmitt; Landesman-Lazer type problems at an eigenvalue off odd multiplicity, Result in Maths. 14(1988)138-146.
[8] H. Peitgen, K. Schmitt; Global analysis of two-parameter linear elliptic eigenvalue problems, Trans. Amer. Math. Soc. 283(1984)57-95.
[9] J. Santanilla; Solvability of a Nonlinear Boundary Value Problem Without Landesman-Lazer Condition. Nonlinear Analysis 1989, 13(6):683-693.

Rui-Juan Du
Department of Computer Science, Gansu Political Science and Law Institute, Lanzhou, Gansu, 730070, China

E-mail address: drjlucky@163.com

[^0]: 2000 Mathematics Subject Classification. 34B15.
 Key words and phrases. Two-point boundary value problem; existence; Leray-Schauder theory. (C) 2009 Texas State University - San Marcos.

 Submitted May 25, 2009. Published December 15, 2009.
 Supported by the Gansu Political Science and Law Institute Research Projects.

