Electronic Journal of Differential Equations, Vol. 2009(2009), No. 159, pp. 1-7.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

EXISTENCE OF SOLUTIONS FOR NONLINEAR
SECOND-ORDER TWO-POINT BOUNDARY-VALUE PROBLEMS

RUI-JUAN DU

ABSTRACT. We consider the existence of solutions for the nonlinear second-
order two-point ordinary differential equations

u”(t) + Au(t) + g(u(t)) = h(t), t€[0,1]
u(0) =u(l)=0, or u'(0)=u'(1)=0
where g : R — R is continuous, and h € L'(0,1).

1. INTRODUCTION

We consider the existence of solutions for the seconder-order two-point ordinary
differential equation

u’(t) + Au(t) + g(u(t)) = h(t), tel0,1] (1.1)
satisfying either
u(0) =u(1) =0, (1.2)
or
w(0)=u'(1)=0 (1.3)
where g : R — R is continuous, h € L'(0,1). The parameter A € R is allowed change

near m2m?(m = 1,2,...), the m-th eigenvalue of the linear eigenvalue problem

u’(t) + Mu(t) =0, te€]0,1],

u(0) = u(l) =0, (1.4)
wd "(t) + Au(t) =0, tel0,1
U + Au(t) =0, € 10,1},
. u'(O)(:> u'(1) = 0. o (1.5)
The linear problem associated with (1.4), are
u’(t) + du(t) = h(t), tel0,1], (16)

u(0) =u(l) =0,

2000 Mathematics Subject Classification. 34B15.

Key words and phrases. Two-point boundary value problem; existence; Leray-Schauder theory.
(©2009 Texas State University - San Marcos.

Submitted May 25, 2009. Published December 15, 2009.

Supported by the Gansu Political Science and Law Institute Research Projects.

1



2 R.-J. DU EJDE-2009/159

and
u(t) + Au(t) = h(t), te€[0,1],
W (0) = /(1) = 0,
and the corresponding existence results are known from the linear theory. Namely,
if X\ # m272(m =1,2,...), then (1.4), (1.5) have a unique solution for each given
h; While for A\ = m272(m = 1,2,...) a solution exists if, and only if, h satisfies the
orthogonality conditions

(1.7)

/dmw@@Mto (i=1,2),
0

where ¢1(t) = sinmnt, ¢o(t) = cosmmt are the eigenfunctions associated with the
eigenvalue m2m2. In this case, there are infinity many solutions u(t) = ug(t) +
asinmt, v(t) = vo(t) + beost, a,b € R with ug, v are the any particular solution
of (). {3,

A similar situation arises when introducing a sufficiently nonlinearity g. Assum-
ing for the moment g uniformly bounded, it is easy to see that A # m?x?, (L.1))-(L.2),
— again have a solution for each given h. If A = m272, there are more diffi-
culties to hold the existence of solutions of —, —. In [4], only when
m=1, — is solvable if h satisfies so called the Landesman-Lazer condition

1
limsup g(t) < / h(t)¢1(t)dt < liminf g(t).

t——o0 0 t—-+o00
In [9], the authors assumed the nonlinearity f(t,u) = g(u) — h(t) did not satisfy
Landesman-Lazer conditions, were also proved that the boundary value problem
— has at least one solution , but m is only allowed equal to 1.

It is not difficulty to see that when m = 2,3,..., the case became more complex,
there are only a few scholars to study it. In addition, in most of the papers about
second-order two-point are using the same method as [4, [9]. There aren’t much
more method to solve those problems.

Inspired by the above results, in this paper, we try to establish the existence
results of boundary value problems —, -, A is allowed to change
near m2n%(m = 1,2,...), the nonlinearity g has weaker conditions than [J], and
the methods are different from the methods in [9].

2. PRELIMINARIES

In this paper, we use the following assumptions in g and h:

(H1) ¢ : R — R is continuous, there is a € [0,1), ¢, d € (0, 400) such that
(W) < clul® +d, ueR; (2.1)

(H2) There exists r > 0 such that

ug(u) >0, |u| > r; (2.2)
(H2’) There exists r > 0 such that
ug(u) <0, |u| >r; (2.3)

(H3) h:[0,1] — R, h € L'(0,1) satisfying

/ 1 h(t)és (t)dt = 0. (2.4)
0
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(H3) h:[0,1] — R, h € L'(0,1) satisfying

/ 1 h(t)2(t)dt = 0. (2.5)
0

Remark. For convenience, we rewrite A = \,, + A\, where \,, is the m-th

eigenvalue of the linear eigenvalue problem (1.1)-(1.2), or of (1.1)-(1.3). Then the
ordinary differential equation (1.1]) is equivalent to

u” (t) + Amu(t) + Mu(t) + g(u(t)) = h(t). (2.6)
Let X,Y be the linear Banach space C*[0, 1], L'(0, 1), whose norms are denoted by

1
lull = max{llullo, [«/lo}, [l = / fu(s) | ds,

where ||u||g denotes the max norm ||ullo = max{u(t),t € [0,1]}.
Let L; :domL; C X — Y (i = 1,2) be linear operators defined for v € dom L;
as

Liu:=u" + A\, (2.7)

where dom Ly = {u € W21(0,1) : u(0) = u(1) = 0}, dom Ly = {u € W>1(0,1) :
' (0) = /(1) = 0}.

Lemma 2.1. Let L;(i = 1,2) be the linear operator as defined in (2.7)). Then
ker L; = {u € X : u(t) = pp;(t), p € R},

ImL;={ueY: /01 u(t)g;(t)dt = 0}.

Defined the operator P;: X — ker ; N X, Q; : X - Im@Q; NY,
(Pa)(®) = :(0) [ u(s)ons)is, (28)
(@u)(®) = u(t) ~ (| u(s)ou(s)d)on(o). (29)
0

It is easy to check that ImP; = ker L;, Y/Im@; = Im L; (i = 1,2), and to show
the following Lemma.

Lemma 2.2. Let Xp, = kerL;, X;_p, = ker P, Yo, = ImL;, Yi_p, = ImQ);.
Then

X=Xp®X;_p, Y=Y_0 &Y.

It is easy to check that the restriction of L; to Xj_p, is a bijection from X;_p,
onto ImL; (i = 1,2). We define K, : ImL; — X;_p, by

Ki=Lilx,_, - (2.10)
Define the nonlinear operator G : X — Y by
(Gu)(t) = g(u(t)) tel0,1].

It is easy to check that G : X — Y is completely continuous. Obviously ([1.1f)-(1.2),
(1.1)-(L.3) are equivalent to

Liu+ M u+Gu=h, uéc D(L;). (2.11)
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Since ker L; = span{¢;(t)} (i = 1,2), we see that each z € X can be uniquely
decomposed as

2(t) = pi(t) +o(t) ¢ €[0,1],

for some p € R and v € X;_p,.
For y € Y, we also have the decomposition

y(t) = 7¢:(t) + w(t), te€][0,1],
with 7 € R, w € Yy, (1=1,2).
Lemma 2.3. The boundary-value problems (2.11)) are equivalent to the system
Liv(t) + Xo(t) + QiG (pgi(t) + v(t)) = h(t),
(2.12)
/ (di(t) dtJF/ ¢i(t)G(ppi(t) + v(t))dt = 0.

3. MAIN RESULTS

Theorem 3.1. Assume (H1), (H2), (H3). Then there exists Ay > 0 such that
(T.1)-(1.2) has at least one solutions in C*[0,1] if X € [0, A4].

Theorem 3.2. Assume (H1), (H2’), (H3). Then there exists A_ < 0 such that
(T.1)-(1.2) has at least one solutions in C1[0,1] if X € [A_,0].

Theorem 3.3. Assume (H1), (H2), (H3’). Then there exists Ay > 0 such that
(LI)-(L.3) has at least one solutions in C*[0,1] if A € [0, A4].

Theorem 3.4. Assume (H1), (H2’), (H3’). Then there exists A_ < 0 such that
(1.1)-(L.3) has at least one solutions in C1[0,1] if X € [A_,0].

In this article, we prove only Theorem the other theorems can be proved by
using the similarly method.

Lemma 3.5. Assume (H1), (H2), (H3). Then there exists M > 0, such that any
solution u € D(L1) of (2.11) satisfies ||ul]| < M, as long as

- 1
0<A<d:= (3.1)
2| K1 llvg, —x;

where Jy : X =Y is defined by (Jiu)(t) = u(t),t € [0,1].

Proof. We divide the proof into two steps. -
Step I. Obviously (L1 + AJ1)|x, p, : Xi-p, — Yq, is invertible for A < 4.

Moreover, by (3.1)),
”(Ll + ;“]1)|)_(1_P1 ”YQ1 —Xr-p, — ||L1|)_(:;_p1 (I + ;‘Kl‘]l)il”YQl —Xr-p

= ||K1HYQ1—’XI—P1 H(I+5‘K1J1)71||X17P—>X17P1
< 2||K1||YQ1*>XI—P1'
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Let u(t) = po1(t) + v(t) = psinmat + v(¢) is a solution of (2.11)) for some p # 0.
Then
[l = [I(Z1 + A1)l Qu(h — g(psinmat + ()|
< |[|(L1+ xJl)IE,P1 lve, —x1 p [1Q1lly—vg,
< [Ially + e(|plll sinmat|ly + [[v]l)* + d]
< 2[|Killvg, —x;p @1y =g, IRl + c|pl]| sinmat|| + [|lo])* + d]
< 2[[Killvg, —x;p, 1Q1lly—vg, Il + c(lplmm + [Jo]))* + d]

[[o]]

=2||Kllvy, = x;_p, 1Q1lly—vg, [IAllr + emm|p|*(1 + W)a + d]
< 2K llvg, - x1 @1 ly v, [l + emalpf(1 + 210y 4 g
- Q1 I-P Q1 7717T|p|
= 2||K1HYQ1—>X17P1 HCQIHY—)YQ1
o [ v]]
x |[|hll1 + emz|p|*(1 + — - )+d
: Grrlohia Gl )
Hence,
[|v]] co acy [|v]]
— +a+ —a a’
(mmlp))> = (mm|p|)® (mmlp)t=>  (mm|p|)
where
co = 2| Killvg, —x;_p @1y —vq, (IRl +d),
c1 = 2¢||Killyg, —x,_p 1Q1lly—vg, -
If
1
(2ac) T-= _
lp| > ——— =¢,
mT
then
2
o] DO 4o = (3.2)

(malp[)* — (mme)*
Step II. If we assume that the conclusion of the lemma is false, we obtain a

sequence {\,} with 0 < A, < 4§, \, — 0 and a sequence of corresponding solutions
{un} : un = pr1(t)dt + (), pn € Ryv, € X7_p,,n € N, such that

[n || — +o00.

From
[[v]] < e(mm)*(|p))* := ¢lp|*. (3.3)

we conclude that |p,| — 4+00. We may assume that p, — +o0o, the other case can
be treated in the same way. Then for all n € N, we get that p,, > ¢.

Now, from (2.11]) we obtain
1 1
AP / (sin mt)?dt + / sin mmtg(py, sinmmt + v, (t))dt = 0. (3.4)
0 0
Since A, > 0, fol A pn (sinmart)2dt > 0, for all n € N, so we have

1
/ sin matg(pp, sinmmt + v, (t))dt < 0. (3.5)
0
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Let IT :={t:t e [0,1],sin7t > 0}, I~ := {t : t € [0,1],sin7t < 0}. It is easy to
see that I™ NI~ # 0, and

min{|sinmnt|t € IT NI} > 0. (3.6)

Combining and ,We conclude
pnlirgoo min{p, sinmmt + v, (t)[t € [T} = +o0. (3.7
pnlin}_w min{p, sinmnt + v, (t)|[t € I~} = —oc0. (3.8)

Applying (3.4),(3.7) and (3.8) and (H2), we conclude

1
/ sin mmwtg(p, sinmat + v, (t))dt = / sinmmtg(py, sinmnt + v, (t))dt
0 ter+

+ / sinmmtg(py, sinmnt + v, (¢))dt > 0
tel-
hold for some n large enough. This contradicts (3.5]). O

Similarly, we obtain the following result.

Lemma 3.6. Assume (H1), (H2’), (H3). Then there exists M’ > 0, such that any
solution u € D(Ly) of (2.11) satisfies

[[ul < M,
as long as =6 < X\ <0, where 6 and J; as lemma[3.5

Proof of Theorem[3.1. Consider the linear operator L : X — Y, defined for u €
dom L by

Lu = Liu + M= Apu + M,
and the family maps 7, : X - Y (0 < p < 1),

(Tau)(t) = p(h(t) —g(u(?))), te[0,1].

where dom L := {u € W%(0,1) : u(0) = u(1) = 0}. Observe that L is invertible
with, let K : Y — X, then K = L', and

u(t) = K(G(u(t)) — h(t)), te][0,1]. (3.9)
If
R={ueX:|lu| <M+1},
we can define a compact homotopy H,, : R — dom L,
H,=L"10(T,u)oJ.

We can see that the fixed points of H,, are exactly the solution of —, and
the choice of R enables us to say that the homotopy H, is fixed-point free on the
boundary of R. since Hy = 0, by the Leray-Schauder theory [3], we obtain that H;
has a fixed point and so there is a solution to —. (I
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