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EXISTENCE OF SOLUTIONS FOR NONLINEAR
SECOND-ORDER TWO-POINT BOUNDARY-VALUE PROBLEMS

RUI-JUAN DU

Abstract. We consider the existence of solutions for the nonlinear second-

order two-point ordinary differential equations

u′′(t) + λu(t) + g(u(t)) = h(t), t ∈ [0, 1]

u(0) = u(1) = 0, or u′(0) = u′(1) = 0

where g : R→ R is continuous, and h ∈ L1(0, 1).

1. Introduction

We consider the existence of solutions for the seconder-order two-point ordinary
differential equation

u′′(t) + λu(t) + g(u(t)) = h(t), t ∈ [0, 1] (1.1)

satisfying either
u(0) = u(1) = 0, (1.2)

or
u′(0) = u′(1) = 0 (1.3)

where g : R → R is continuous, h ∈ L1(0, 1). The parameter λ ∈ R is allowed change
near m2π2(m = 1, 2, . . . ), the m-th eigenvalue of the linear eigenvalue problem

u′′(t) + λu(t) = 0, t ∈ [0, 1],

u(0) = u(1) = 0,
(1.4)

and
u′′(t) + λu(t) = 0, t ∈ [0, 1],

u′(0) = u′(1) = 0.
(1.5)

The linear problem associated with (1.4), (1.5) are

u′′(t) + λu(t) = h(t), t ∈ [0, 1],

u(0) = u(1) = 0,
(1.6)
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and
u′′(t) + λu(t) = h(t), t ∈ [0, 1],

u′(0) = u′(1) = 0,
(1.7)

and the corresponding existence results are known from the linear theory. Namely,
if λ 6= m2π2(m = 1, 2, . . . ), then (1.4), (1.5) have a unique solution for each given
h; While for λ = m2π2(m = 1, 2, . . . ) a solution exists if, and only if, h satisfies the
orthogonality conditions ∫ 1

0

h(t)φi(t)dt = 0 (i = 1, 2),

where φ1(t) = sinmπt, φ2(t) = cos mπt are the eigenfunctions associated with the
eigenvalue m2π2. In this case, there are infinity many solutions u(t) = u0(t) +
a sinπt, v(t) = v0(t) + b cos πt, a, b ∈ R with u0, v0 are the any particular solution
of (1.4), (1.5).

A similar situation arises when introducing a sufficiently nonlinearity g. Assum-
ing for the moment g uniformly bounded, it is easy to see that λ 6= m2π2, (1.1)-(1.2),
(1.1)-(1.3) again have a solution for each given h. If λ = m2π2, there are more diffi-
culties to hold the existence of solutions of (1.1)-(1.2), (1.1)-(1.3). In [4], only when
m = 1, (1.1)-(1.2) is solvable if h satisfies so called the Landesman-Lazer condition

lim sup
t→−∞

g(t) <

∫ 1

0

h(t)φ1(t)dt < lim inf
t→+∞

g(t) .

In [9], the authors assumed the nonlinearity f(t, u) = g(u) − h(t) did not satisfy
Landesman-Lazer conditions, were also proved that the boundary value problem
(1.1)-(1.2) has at least one solution , but m is only allowed equal to 1.

It is not difficulty to see that when m = 2, 3, . . . , the case became more complex,
there are only a few scholars to study it. In addition, in most of the papers about
second-order two-point are using the same method as [4, 9]. There aren’t much
more method to solve those problems.

Inspired by the above results, in this paper, we try to establish the existence
results of boundary value problems (1.1)-(1.2), (1.1)-(1.3), λ is allowed to change
near m2π2(m = 1, 2, . . . ), the nonlinearity g has weaker conditions than [9], and
the methods are different from the methods in [9].

2. Preliminaries

In this paper, we use the following assumptions in g and h:
(H1) g : R → R is continuous, there is α ∈ [0, 1), c, d ∈ (0,+∞) such that

|g(u)| ≤ c|u|α + d, u ∈ R; (2.1)

(H2) There exists r > 0 such that

ug(u) > 0, |u| > r; (2.2)

(H2’) There exists r > 0 such that

ug(u) < 0, |u| > r; (2.3)

(H3) h : [0, 1] → R, h ∈ L1(0, 1) satisfying∫ 1

0

h(t)φ1(t)dt = 0. (2.4)
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(H3’) h : [0, 1] → R, h ∈ L1(0, 1) satisfying∫ 1

0

h(t)φ2(t)dt = 0. (2.5)

Remark. For convenience, we rewrite λ = λm + λ̄, where λm is the m-th
eigenvalue of the linear eigenvalue problem (1.1)-(1.2), or of (1.1)-(1.3). Then the
ordinary differential equation (1.1) is equivalent to

u′′(t) + λmu(t) + λ̄u(t) + g(u(t)) = h(t). (2.6)

Let X, Y be the linear Banach space C1[0, 1], L1(0, 1), whose norms are denoted by

‖u‖ = max{‖u‖0, ‖u′‖0}, ‖u‖1 =
∫ 1

0

|u(s)|ds,

where ‖u‖0 denotes the max norm ‖u‖0 = max{u(t), t ∈ [0, 1]}.
Let Li : dom Li ⊂ X → Y (i = 1, 2) be linear operators defined for u ∈ dom Li

as
Liu := u′′ + λm, (2.7)

where dom L1 = {u ∈ W 2,1(0, 1) : u(0) = u(1) = 0}, dom L2 = {u ∈ W 2,1(0, 1) :
u′(0) = u′(1) = 0}.

Lemma 2.1. Let Li(i = 1, 2) be the linear operator as defined in (2.7). Then

ker Li = {u ∈ X : u(t) = ρφi(t), ρ ∈ R},

Im Li = {u ∈ Y :
∫ 1

0

u(t)φi(t)dt = 0}.

Defined the operator Pi : X → ker Li ∩X, Qi : X → Im Qi ∩ Y ,

(Piu)(t) = φi(t)
∫ 1

0

u(s)φi(s)ds, (2.8)

(Qiu)(t) = u(t)− (
∫ 1

0

u(s)φi(s)ds)φi(t). (2.9)

It is easy to check that Im Pi = kerLi, Y/ Im Qi = Im Li (i = 1, 2), and to show
the following Lemma.

Lemma 2.2. Let XPi
= kerLi, XI−Pi

= kerPi, YQi
= Im Li, YI−Pi

= Im Qi.
Then

X = XPi
⊕XI−Pi

, Y = YI−Qi
⊕ YQi

.

It is easy to check that the restriction of Li to XI−Pi
is a bijection from XI−Pi

onto Im Li (i = 1, 2). We define Ki : Im Li → XI−Pi
by

Ki = Li|−1
XI−Pi

. (2.10)

Define the nonlinear operator G : X → Y by

(Gu)(t) = g(u(t)) t ∈ [0, 1].

It is easy to check that G : X → Y is completely continuous. Obviously (1.1)-(1.2),
(1.1)-(1.3) are equivalent to

Liu + λ̄u + Gu = h, u ∈ D(Li). (2.11)
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Since ker Li = span{φi(t)} (i = 1, 2), we see that each x ∈ X can be uniquely
decomposed as

x(t) = ρφi(t) + v(t) t ∈ [0, 1],

for some ρ ∈ R and v ∈ XI−Pi
.

For y ∈ Y , we also have the decomposition

y(t) = τφi(t) + w(t), t ∈ [0, 1],

with τ ∈ R, w ∈ YQi
(i = 1, 2).

Lemma 2.3. The boundary-value problems (2.11) are equivalent to the system

Liv(t) + λ̄v(t) + QiG(ρφi(t) + v(t)) = h(t),

λ̄

∫ 1

0

(φi(t))2dt +
∫ 1

0

φi(t)G(ρφi(t) + v(t))dt = 0.
(2.12)

3. Main results

Theorem 3.1. Assume (H1), (H2), (H3). Then there exists λ+ > 0 such that
(1.1)-(1.2) has at least one solutions in C1[0, 1] if λ ∈ [0, λ+].

Theorem 3.2. Assume (H1), (H2’), (H3). Then there exists λ− < 0 such that
(1.1)-(1.2) has at least one solutions in C1[0, 1] if λ ∈ [λ−, 0].

Theorem 3.3. Assume (H1), (H2), (H3’). Then there exists λ+ > 0 such that
(1.1)-(1.3) has at least one solutions in C1[0, 1] if λ ∈ [0, λ+].

Theorem 3.4. Assume (H1), (H2’), (H3’). Then there exists λ− < 0 such that
(1.1)-(1.3) has at least one solutions in C1[0, 1] if λ ∈ [λ−, 0].

In this article, we prove only Theorem 3.1; the other theorems can be proved by
using the similarly method.

Lemma 3.5. Assume (H1), (H2), (H3). Then there exists M > 0, such that any
solution u ∈ D(L1) of (2.11) satisfies ‖u‖ < M , as long as

0 ≤ λ̄ ≤ δ :=
1

2‖K1J1‖YQ1→XI−P1

(3.1)

where J1 : X → Y is defined by (J1u)(t) = u(t), t ∈ [0, 1].

Proof. We divide the proof into two steps.
Step I. Obviously (L1 + λ̄J1)|XI−P1

: XI−P1 → YQ1 is invertible for λ̄ ≤ δ.
Moreover, by (3.1),

‖(L1 + λ̄J1)|−1
XI−P1

‖YQ1→XI−P1
= ‖L1|−1

XI−P1
(I + λ̄K1J1)−1‖YQ1→XI−P1

= ‖K1‖YQ1→XI−P1
‖(I + λ̄K1J1)−1‖XI−P→XI−P1

≤ 2‖K1‖YQ1→XI−P1
.
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Let u(t) = ρφ1(t) + v(t) = ρ sinmπt + v(t) is a solution of (2.11) for some ρ 6= 0.
Then

‖v‖ = ‖(L1 + λ̄J1)|−1
XI−P1

Q1(h− g(ρ sinmπt + v(t)))‖

≤ ‖(L1 + λ̄J1)|−1
XI−P1

‖YQ1→XI−P1
‖Q1‖Y→YQ1

×
[
‖h‖1 + c(|ρ|‖ sinmπt‖1 + ‖v‖1)α + d

]
≤ 2‖K1‖YQ1→XI−P1

‖Q1‖Y→YQ1
[‖h‖1 + c(|ρ|‖ sinmπt‖+ ‖v‖)α + d]

≤ 2‖K1‖YQ1→XI−P1
‖Q1‖Y→YQ1

[‖h‖1 + c(|ρ|mπ + ‖v‖)α + d]

= 2‖K‖YQ1→XI−P1
‖Q1‖Y→YQ1

[‖h‖1 + cmπ|ρ|α(1 +
‖v‖

mπ|ρ|
)α + d]

≤ 2‖K1‖YQ1→XI−P
‖Q1‖Y→YQ1

[‖h‖1 + cmπ|ρ|α(1 +
α‖v‖
mπ|ρ|

) + d]

= 2‖K1‖YQ1→XI−P1
‖Q1‖Y→YQ1

×
[
‖h‖1 + cmπ|ρ|α(1 +

α

(mπ|ρ|)1−α
· ‖v‖
(mπ|ρ|)α

) + d
]

Hence,
‖v‖

(mπ|ρ|)α
≤ c0

(mπ|ρ|)α
+ c1 +

αc1

(mπ|ρ|)1−α
· ‖v‖
(mπ|ρ|)α

.

where

c0 = 2‖K1‖YQ1→XI−P1
‖Q1‖Y→YQ1

(‖h‖1 + d),

c1 = 2c‖K1‖YQ1→XI−P1
‖Q1‖Y→YQ1

.

If

|ρ| ≥ (2αc1)−
1

1−α

mπ
:= c̃,

then
‖v‖

(mπ|ρ|)α
≤ 2c0

(mπc̃)α
+ 2c1 := c̄. (3.2)

Step II. If we assume that the conclusion of the lemma is false, we obtain a
sequence {λ̄n} with 0 ≤ λ̄n ≤ δ, λ̄n → 0 and a sequence of corresponding solutions
{un} : un = ρnφ1(t)dt + (t), ρn ∈ R, vn ∈ XI−P1 , n ∈ N , such that

‖un‖ → +∞.

From (3.2)
‖v‖ ≤ c̄(mπ)α(|ρ|)α := ĉ|ρ|α. (3.3)

we conclude that |ρn| → +∞. We may assume that ρn → +∞, the other case can
be treated in the same way. Then for all n ∈ N , we get that ρn ≥ c̃.

Now, from (2.11) we obtain

λ̄nρn

∫ 1

0

(sinmπt)2dt +
∫ 1

0

sinmπtg(ρn sinmπt + vn(t))dt = 0. (3.4)

Since λ̄n ≥ 0,
∫ 1

0
λ̄nρn(sinmπt)2dt ≥ 0, for all n ∈ N , so we have∫ 1

0

sinmπtg(ρn sinmπt + vn(t))dt ≤ 0. (3.5)
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Let I+ := {t : t ∈ [0, 1], sinπt > 0}, I− := {t : t ∈ [0, 1], sinπt < 0}. It is easy to
see that I+ ∩ I− 6= 0, and

min{| sinmπt|t ∈ I+ ∩ I−} > 0. (3.6)

Combining (3.6) and (3.3),we conclude

lim
ρn→+∞

min{ρn sinmπt + vn(t)|t ∈ I+} = +∞. (3.7)

lim
ρn→+∞

min{ρn sinmπt + vn(t)|t ∈ I−} = −∞. (3.8)

Applying (3.4),(3.7) and (3.8) and (H2), we conclude∫ 1

0

sinmπtg(ρn sinmπt + vn(t))dt =
∫

t∈I+
sinmπtg(ρn sinmπt + vn(t))dt

+
∫

t∈I−
sinmπtg(ρn sinmπt + vn(t))dt > 0

hold for some n large enough. This contradicts (3.5). �

Similarly, we obtain the following result.

Lemma 3.6. Assume (H1), (H2’), (H3). Then there exists M ′ > 0, such that any
solution u ∈ D(L1) of (2.11) satisfies

‖u‖ < M ′,

as long as −δ ≤ λ ≤ 0, where δ and J1 as lemma 3.5

Proof of Theorem 3.1. Consider the linear operator L : X → Y , defined for u ∈
dom L by

Lu = L1u + λ̄u = λmu + λ̄u,

and the family maps Tµ : X → Y (0 ≤ µ ≤ 1),

(Tµu)(t) = µ(h(t)− g(u(t))), t ∈ [0, 1].

where dom L := {u ∈ W 2,1(0, 1) : u(0) = u(1) = 0}. Observe that L is invertible
with, let K : Y → X, then K = L−1, and

u(t) = K(G(u(t))− h(t)), t ∈ [0, 1]. (3.9)

If

R = {u ∈ X : ‖u‖ ≤ M + 1},

we can define a compact homotopy Hµ : R → dom L,

Hµ = L−1 ◦ (Tµu) ◦ J1.

We can see that the fixed points of Hµ are exactly the solution of (1.1)-(1.2), and
the choice of R enables us to say that the homotopy Hµ is fixed-point free on the
boundary of R. since H0 = 0, by the Leray-Schauder theory [3], we obtain that H1

has a fixed point and so there is a solution to (1.1)-(1.2). �
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