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EXISTENCE OF WEAK SOLUTIONS FOR DEGENERATE
SEMILINEAR ELLIPTIC EQUATIONS IN UNBOUNDED

DOMAINS

VENKATARAMANARAO RAGHAVENDRA, RASMITA KAR

Abstract. In this study, we prove the existence of a weak solution for the

degenerate semilinear elliptic Dirichlet boundary-value problem

Lu− µug1 + h(u)g2 = f in Ω,

u = 0 on ∂Ω

in a suitable weighted Sobolev space. Here the domain Ω ⊂ Rn, n ≥ 3, is not

necessarily bounded, and h is a continuous bounded nonlinearity. The theory
is also extended for h continuous and unbounded.

1. Introduction

Let Ω ⊂ Rn, n ≥ 3, be a domain (not necessarily bounded) with boundary ∂Ω.
Let L be an elliptic operator in divergence form

Lu(x) = −
n∑

i,j=1

Dj(aij(x)Diu(x)) with Dj =
∂

∂xj
,

with coefficients aij/ω ∈ L∞(Ω) which are symmetric and satisfy the degenerate
ellipticity condition

λ|ξ|2ω(x) ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2ω(x), a.e. x ∈ Ω, (1.1)

for all ξ ∈ Rn and ω is an A2-weight (λ > 0,Λ > 0). Let f/ω ∈ L2(Ω, ω) and h
be a real valued continuous function defined on R. Recently Cavalheiro [2] studied
the BVP

Lu− µug1 + h(u)g2 = f in Ω,

u = 0 on ∂Ω,
(1.2)

where g1/ω ∈ L∞(Ω), µ > 0, h is a bounded continuous function and where Ω is
bounded. In general, the Sobolev spaces W k,p(Ω) without weights occurs as spaces
of solutions for elliptic and parabolic PDEs. For degenerate problems with various
types of singularities in the coefficients it is natural to look for solutions in weighted
Sobolev spaces; for example, see [1, 3, 4, 5, 6, 7].
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The treatment of problem (1.2) has not been effective since the usual compact-
ness arguments for bounded domains may not extend to unbound domains. One
natural approach is to approximate a solution of (1.2) by a sequence of solutions
in bounded subdomains of Ω. The present work is a generalization of the work by
Cavalheiro [2], for unbounded domain Ω such that, Ω = ∪∞i=1Ωi, Ωi ⊆ Ωi+1, for each
i ≥ 1. Section 2 deals with preliminaries and some basic results. Section 3 contains
the existence of a sequence of solutions {ui} of (1.2) in each bounded subdomains
Ωi and a uniform bound for them. The main result is about the extraction of a
solution for (1.2) from {ui}. Finally section 4 deals with extension for a class of
continuous function h, not necessarily bounded.

2. Preliminaries

We need the following preliminaries for the ensuing study. Let Ω ⊂ Rn, n ≥ 3
be an open connected set. Let ω : Rn → R+ be a locally integrable non negative
function with 0 < ω < ∞ a.e. We say that ω belongs to the Muckenhoupt class
Ap, 1 < p < ∞, or that ω is an Ap-weight, if there is a constant c = cp,ω such that( 1

|B|

∫
B

ω(x)dx
)( 1
|B|

∫
B

ω
1

1−p (x)dx
)p−1 ≤ c,

for all balls B in Rn, where |.| denotes the n-dimensional Lebesgue measure in Rn.
We assume that ω belongs to Muckenhoupt class Ap, 1 < p < ∞ (i.e. ω is an
Ap-weight). For more details on Ap-weight, we refer the reader to [9, 11, 16]. We
shall denote by Lp(Ω, ω) (1 ≤ p < ∞) the usual Banach space of measurable real
valued functions, f , defined in Ω for which

‖f‖p,Ω =
( ∫

Ω

|f(x)|pω(x)dx
)1/p

< ∞ (2.1)

For p ≥ 1 and k a non-negative integer, the weighted Sobolev space W k,p(Ω, ω) is
defined by

W k,p(Ω, ω) := {u ∈ Lp(Ω, ω) : Dαu ∈ Lp(Ω, ω), 1 ≤ |α| ≤ k}
with the associated norm

‖u‖k,p,Ω = ‖u‖p,Ω +
∑

1≤|α|≤k

‖Dαu‖p,Ω. (2.2)

If ω ∈ Ap then W k,p(Ω, ω) is the closure of C∞(Ω) with respect to the norm (2.2)
and the space W k,p

0 (Ω, ω) is defined as the closure of C∞
0 (Ω) with respect to the

norm
‖u‖0,k,p,Ω =

∑
1≤|α|≤k

‖Dαu‖p,Ω.

For details we refer the reader to [4, Proposition 3.5]. We also note that W k,2(Ω, ω)
and W k,2

0 (Ω, ω), are Hilbert spaces. At each step, a generic constant is denoted by
c or k0 in order to avoid too many suffices. We need the following result.

Lemma 2.1. Let Ω ⊂ Rn, n ≥ 3 be a bounded domain and let ω be A2 weight.
Then

W 1,2
0 (Ω, ω) ↪→↪→ L2(Ω, ω) (2.3)

(i.e the inclusion is compact) and there exists CΩ > 0 such that

‖u‖2,Ω ≤ CΩ‖u‖0,1,2,Ω, ∀u ∈ W 1,2
0 (Ω, ω), (2.4)
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where CΩ may be taken to depend only on n, 2 and the diameter of Ω.

A proof of the above statement can be found in [7, Theorem 4.6].

Definition 2.2. Let Ω ⊂ Rn be an open connected set. We say that u ∈ W 1,2
0 (Ω, ω)

is a called a weak solution of (1.2) if∫
Ω

aijDiu(x)Djφ(x)dx−
∫

Ω

µu(x)g1(x)φ(x)dx +
∫

Ω

h(u(x))g2(x)φ(x)dx

=
∫

Ω

f(x)φ(x)dx

for every φ ∈ W 1,2
0 (Ω, ω).

In section 3, we use the following result.

Theorem 2.3. Let B,N : X → X∗ be operators on the real separable reflexive
Banach space X.

(1) the operator B : X → X∗ is linear and continuous;
(2) the operator N : X → X∗ is demicontinuous and bounded;
(3) B + N is asymptotically linear;
(4) for each T ∈ X∗ and for each t ∈ [0, 1], the operator At(u) = Bu+t(Nu−T )

satisfies condition (S) in X.
If Bu = 0 implies u = 0, then for each T ∈ X∗, the equation Bu + Nu = T has a
solution in X.

For a detailed proof of the above Theorem, we refer to [12] or to [17, Theorem
29.C].

Definition 2.4. Let B : X → X∗ be an operator on the real separable reflexive
Banach space X. Then, B satisfies condition (S) if

un ⇀ u and lim
n→∞

(Bun −Bu|un − u) = 0, implies un → u, (2.5)

where (f |x) denotes the value of linear functional f at x.

We need the following hypotheses for further study.
(H1) Let h : R → R be a continuous and bounded function;
(H2) ω ∈ A2;
(H3) Assume g1/ω ∈ L∞(Ω), g2/ω ∈ L2(Ω, ω) and f/ω ∈ L2(Ω, ω).

Remark 2.5. If uk ∈ W 1,2
0 (Ωk, ω) is a solution of (2.6) (see below) on Ωk, then,

for any k ≥ i, uk is also a solution of (2.6) on Ωi, which has been used in Lemma
2.6.

Lemma 2.6. Assume (H1)-(H3). Let µ >0 not be an eigenvalue of

Lu− µu(x)ω(x) = 0 in Ωi,

u = 0 on ∂Ωi

for i = 1, 2, 3, . . . Then, the BVP

Lu− µug1 + h(u)g2 = f in Ωi,

u = 0 on ∂Ωi
(2.6)
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has a solution u = ui ∈ W 1,2
0 (Ωi, ω). In addition, if

λ > µ CΩi

∥∥g1

ω

∥∥
∞,Ω

, (2.7)

then for k ≥ i, ‖uk‖0,1,2,Ωi
≤ k0, where k0 is independent of k.

Proof. We define the operators B1, B2 : W 1,2
0 (Ωi, ω)×W 1,2

0 (Ωi, ω) → R by

B1(u, φ) =
∫

Ωi

aijDiu(x)Djφ(x)dx−
∫

Ωi

µu(x)g1(x)φ(x)dx

B2(u, φ) =
∫

Ωi

h(u(x))g2(x)φ(x)dx.

Also define T : W 1,2
0 (Ωi, ω) → R by

T (φ) =
∫

Ωi

f(x)φ(x)dx.

A function u = ui ∈ W 1,2
0 (Ωi, ω) is a solution of (2.6) if

B1(u, φ) + B2(u, φ) = T (φ), ∀φ ∈ W 1,2
0 (Ωi, ω).

Using the identification principle [18, Theorem 21.18], we have W 1,2
0 (Ωi, ω) =

[W 1,2
0 (Ωi, ω)]∗ and 〈u, v〉 = (u|v), where 〈., .〉 denotes the inner product on a Hilbert

space. We define the operators B,N : W 1,2
0 (Ωi, ω) → W 1,2

0 (Ωi, ω) as

(Bu|φ) = B1(u, φ), (Nu|φ) = B2(u, φ), for u, φ ∈ W 1,2
0 (Ωi, ω).

Then, problem (2.6) is equivalent to operator equation Bu+Nu = T , u ∈ W 1,2
0 (Ωi, ω).

The proof of the existence for (2.6) is similar to that given in [2]. The proof of the
latter part of the theorem (which is not in [2]) is given below. Let |h(t)| ≤ A, t ∈ R.
Let uk ∈ W 1,2

0 (Ωk, ω) be the solutions of (2.6). Then, from the hypotheses, with
the help of Lemma 2.1 and from the Remark 2.5, we note that, for k ≥ i,

|B1(uk, uk)| ≤ (c + CΩi
|µ|‖g1

ω
‖∞,Ωi)‖uk‖0,1,2,Ωi‖uk‖0,1,2,Ωi

|B2(uk, uk)| ≤ ACΩi
‖g2

ω
‖2,Ωi

‖uk‖0,1,2,Ωi

|T (uk)| ≤ CΩi
‖ f

ω
‖2,Ωi

‖uk‖0,1,2,Ωi
,

where CΩi (is the constant of Lemma 2.1) and A are constants independent of k.
Also, B1(., .) is a regular G̊arding form [18, p.364]. In fact, we obtain, for k ≥ i

B1(uk, uk) ≥ λ

∫
Ωi

|Duk|2ωdx− µ
∥∥g1

ω

∥∥
∞,Ωi

∫
Ωi

u2
kωdx

= λ‖uk‖2
0,1,2,Ωi

− µ‖g1

ω
‖∞,Ωi‖uk‖2

2,Ωi

Now, by Lemma 2.1, we have

B1(uk, uk) ≥
(
λ− CΩi

µ‖g1

ω
‖∞,Ωi

)
‖uk‖2

0,1,2,Ωi
.

Since, λ > CΩiµ‖
g1
ω ‖∞,Ωi , we obtain

‖uk‖2
0,1,2,Ωi

≤
( 1
λ− CΩi

µ‖ g1
ω ‖∞,Ωi

)
B1(uk, uk) (2.8)
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Also, we note that

|B1(uk, uk)| ≤ CΩi

{
A‖g2

ω
‖2,Ωi

+ ‖ f

ω
‖2,Ωi

}
‖uk‖0,1,2,Ωi

. (2.9)

By (2.8) and (2.9), we have

‖uk‖0,1,2,Ωi
≤

CΩi

{
A‖ g2

ω ‖2,Ωi + ‖ f
ω‖2,Ωi}

(λ− CΩiµ‖
g1
ω ‖∞,Ωi)

≤
CΩi

{
A‖ g2

ω ‖2,Ω + ‖ f
ω‖2,Ω}

(λ− CΩi
µ‖ g1

ω ‖∞,Ω)
= k0,

where k0 is independent of k. Hence,

‖uk‖0,1,2,Ωi
≤ k0, ∀k ≥ i (2.10)

�

Corollary 2.7. Under the hypotheses of Lemma 2.6, let M be any open bounded
domain in Ω such that M ⊆ Ωi, for some i. For k ≥ i, let uk be a solution of

Lu− µug1 + h(u)g2 = f in Ωk,

u = 0 on ∂Ωk

Then, there exists a constant k0 > 0 such that ‖uk‖0,1,2,M ≤ k0, where k0 is
independent of k.

The proof of this result is similar to that of Lemma 2.6 and hence omitted.

Remark 2.8. Corollary 2.7 is needed in the main result stated in §3. Lemma 2.6
is a “modification” of the result in [2], which gives a uniform uk, k ≥ i at the cost
of the restriction on µ as given by (2.7).

3. Main results

In this section, we dispense with the condition (2.7) when g1 does not change
sign. We consider a BVP

Lu− µug1 + h(u)g2 = f in G,

u = 0 on ∂G
(3.1)

where G ⊂ Rn is an open bounded set, n ≥ 3. The two results are related to the
cases when g1 > 0 with µ < 0 and g1 < 0 with µ > 0. These results are similar to
that found in [2] but with suitable changes.

Proposition 3.1. Let G ⊂ Ω be an open bounded set in Rn, n ≥ 3. Suppose that
(H1)–(H3) hold. Let g1 > 0 and µ < 0, then the BVP

Lu− µug1 + h(u)g2 = f in G,

u = 0 on ∂G
(3.2)

has a solution u ∈ W 1,2
0 (G, ω).

Proof. As in Lemma 2.6, the basic idea is to reduce the problem (3.2) to an operator
equation Bu+Nu = T with the help of the Theorem 2.3. To do proceed, we define
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B,N , and T with Ωi replaced by G, as in Lemma 2.6 and after a little bit of
computation, we have

|B1(u, φ)| ≤ (c + CG|µ|‖
g1

ω
‖∞,G)‖u‖0,1,2,G‖φ‖0,1,2,G

|B2(u, φ)| ≤ CGA‖g2

ω
‖2,G‖φ‖0,1,2,G

|T (φ)| ≤ CG‖
f

ω
‖2,G‖φ‖0,1,2,G

where c (a generic constant), A are constants depending on n, p and the constant
CG comes from Lemma 2.1. With these preliminaries, (3.2) is equivalent to

Bu + Nu = T, u ∈ W 1,2
0 (G, ω).

The compact embedding of W 1,2
0 (G, ω) ↪→↪→ L2(G, ω), shows that B1(., .) is a strict

regular G̊arding form. Also, µ < 0 and g1 > 0 yields

B1(u, u) =
∫

G

aijDiu(x)Dju(x)dx−
∫

G

µu2(x)g1(x)dx ≥ λ‖u‖2
0,1,2,G (3.3)

Next, we also show that B +N is asymptotically linear and N strongly continuous.
The proof is similar to the one in [2] and we omit the same for brevity. Since µ is
not an eigenvalue of

Lu− µu(x)ω(x) = 0 in G,

u = 0 on ∂G,
(3.4)

Bu = 0 implies u = 0. By Theorem 2.3, Bu+Nu = T has a solution u ∈ W 1,2
0 (G, ω)

which equivalently shows the BVP (3.2) has a solution u ∈ W 1,2
0 (G, ω). �

We consider the boundary-value problem

Lu− µug1 + h(u)g2 = f in Ωi,

u = 0 on ∂Ωi
(3.5)

where Ωi ⊆ Rn, n ≥ 3 is an open bounded set, for i ≥ 1.

Corollary 3.2. Let the hypotheses of Proposition 3.1 hold for Ωi in place of G, for
i ≥ 1. Then, there exists ui ∈ W 1,2

0 (Ωi, ω) which satisfies (3.5) and in addition, for
k ≥ i,

‖uk‖0,1,2,Ωi ≤ k0, (3.6)

where k0 is a constant independent of k.

The proof of the above corollary is similar to the later part of the Lemma 2.6
and hence omitted. With suitable changes in the proof of Proposition 3.1, we arrive
at the following result.

Theorem 3.3. Let the hypotheses of Proposition 3.1 hold, except that g1 < 0 and
µ > 0. Let µ not be an eigenvalue of

Lu− µu(x)ω(x) = 0 in G,

u = 0 on ∂G
(3.7)

Then the (3.2) has a solution u ∈ W 1,2
0 (G, ω).
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Corollary 3.4. Let the hypotheses of Proposition 3.1 hold for Ωi in place of G, for
i ≥ 1. Then, there exists ui ∈ W 1,2

0 (Ωi, ω) which satisfies (3.5) and in addition, for
k ≥ i,

‖uk‖0,1,2,Ωi
≤ k0,

where k0 is a constant independent of k.

The proof of the above corollary is similar to Corollary 3.2 and hence omitted.

Theorem 3.5. Let Ω = ∪∞i=1Ωi,Ωi ⊆ Ωi+1 be open bounded domains in Ω. Let
µ > 0 not be an eigenvalue of

Lu− µu(x)ω(x) = 0 in Ωi,

u = 0 on ∂Ωi
(3.8)

for i = 1, 2, 3, . . . and in addition the condition λ > CΩi
µ‖ g1

ω ‖∞,Ω be fulfilled.
Under the hypotheses (H1)-(H3), (1.2) has a weak solution u ∈ W 1,2

0 (Ω, ω).

Proof. A part of this proof follows from [10, 14, 15]. Let {uk} be the sequence of
solutions for (3.5) in W 1,2

0 (Ωk, ω), (k ≥ 1). Let ũk( for k ≥ 1) denote the extension
of uk by zero outside Ωk, which we continue to denote it by uk. From (2.10), we
have

‖uk‖0,1,2,Ωl
≤ k0, for k ≥ l.

Then, {uk} has a subsequence {uk1
m
} which converges weakly to u1, as m → ∞,

in W 1,2
0 (Ω1, ω). Since {uk1

m
} is bounded in W 1,2

0 (Ω2, ω), it has a convergent sub-
sequence {uk2

m
} converging weakly to u2 in W 1,2

0 (Ω2, ω). By induction, we have
{ukl−1

m
} has a subsequence {ukl

m
} which weakly converges to ul in W 1,2

0 (Ωl, ω), i.e
in short, we have ukl

m
⇀ ul in W 1,2

0 (Ωl, ω), l ≥ 1. Define u : Ω → R by

u(x) := ul(x), for x ∈ Ωl.

(Here there is no confusion occurs since ul(x) = um(x) for x ∈ Ω for any m ≥ l).
Let M be any fixed (but arbitrary) bounded domain such that M ⊆ Ω. Then

there exists an integer l such that M ⊆ Ωl. We note that, the diagonal sequence
{ukm

m
;m ≥ l} converges weakly to u = ul in W 1,2

0 (M,ω), as m →∞.
What remains is to show that u is the required weak solution. It is sufficient to

show that u is a weak solution of (1.2) for an arbitrary bounded domain M in Ω.
Since ukm

m
⇀ ul in W 1,2

0 (M,ω), we have∫
M

∇(ukm
m
− u).∇φωdx → 0, as m →∞,

implies ∫
M

Di(ukm
m
− u)Djφωdx → 0, as m →∞.

From (1.1), for a constant c, we have |aij | ≤ cω.∫
M

aijDi(ukm
m
− u)Djφdx ≤

∫
M

|aij ||Di(ukm
m
− u)||Djφ|dx

≤ c‖Di(ukm
m
− u)‖2,M‖Djφ‖2,M → 0,

(3.9)
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as m →∞. Also, by Lemma 2.1, ukm
m
→ u in L2(M,ω). We have∣∣ ∫

M

(ukm
m
− u)g1φdx

∣∣ ≤ ∫
M

|(ukm
m
− u)||g1||φ|dx

≤
∫

M

|(ukm
m
− u)||g1

ω
||φ|ω dx

≤ ‖g1

ω
‖∞,M‖ukm

m
− u‖2,M‖φ‖2,M .

So we have now
µ

∫
M

ukm
m

g1φdx → µ

∫
M

ug1φdx . (3.10)

A little computation shows that∫
M

h(uk(x)) →
∫

M

h(u(x)), (3.11)

which follows from dominated convergence theorem, if needed through a subse-
quence. Since M is an arbitrary bounded domain in Ω, it follows from (3.9), (3.10)
and (3.11),∫

Ω

aijDiu(x)Djφ(x)dx−
∫

Ω

µu(x)φ(x)g1(x)dx +
∫

Ω

h(u(x))φ(x)g2(x)

=
∫

Ω

f(x)φ(x)dx

which completes the proof of the theorem. �

Theorem 3.6. Let Ω = ∪∞i=1Ωi, Ωi ⊆ Ωi+1 be open bounded domains in Ω. Let
g1 > 0 and µ < 0. Under hypotheses (H1)-(H3), (1.2) has a weak solution u ∈
W 1,2

0 (Ω, ω).

The proof is similar to that of Theorem 3.6 and hence omitted. We remark that
the above theorem is also true when g1 < 0 and µ > 0 is not an eigenvalue of (3.8).

4. Extensions

In section 3, the nonlinearity h is assumed to be continuous and bounded. In this
section, we extend these results for a class of functions h which are continuous only.
Generalized Hölder’s inequality comes handy for establishing suitable estimates.
Below, we consider the problem

Lu− µug1 + h(u)g2 = f in Ω,

u = 0 on ∂Ω,
(4.1)

where Ω ⊆ Rn, n ≥ 3 is an open and connected set and h : R → R be defined by
h(t) = |t|ε, 0 < ε < 1. We establish the existence of weak solution in a bounded
domain G.

Again, we consider the cases g1 < 0 and g1 > 0 separately. Although the proofs
are similar to the ones in section 3, we restrict ourselves to sketch the differences
wherever needed. The result of [2] is not applicable here since h is not bounded.
We collect the common hypotheses for convenience.

(H1’) Suppose that h : R → R defined by h(t) = |t|ε, t ∈ R, 0 < ε < 1;
(H2’) g1/ω ∈ L∞(Ω), g2/ω ∈ L∞(Ω) and f/ω ∈ L2(Ω, ω), where ω is an A2

weight.
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Theorem 4.1. Let G ⊂ Rn, n ≥ 3 be any open bounded set. Let the hypotheses
(H1’), (H2’) hold. Let g1 > 0 and µ < 0 then the problem

Lu− µug1 + h(u)g2 = f in G,

u = 0 on ∂G
(4.2)

has a solution u ∈ W 1,2
0 (G, ω).

Proof. We give only a sketch of the proof as it is similar to the proof of Proposition
3.1. From the hypotheses and by Lemma 2.1 and for u ∈ W 1,2

0 (G, ω), we note that

|B1(u, φ)| ≤
(
c + CG|µ|‖

g1

ω
‖∞,G

)
‖u‖0,1,2,G‖φ‖0,1,2,G,

|T (φ)| ≤ CG‖
f

ω
‖∞,G‖φ‖0,1,2,G,

(4.3)

where c is a generic constant and the constant CG comes from Lemma 2.1. Again,
by Lemma 2.1 and generalized Hölder’s inequality [8, p.67], we have

|B2(u, φ)| ≤
∫

G

|h(u(x))||φ(x)||g2

ω
|ω dx ≤ ‖u‖ε

2,G‖φ‖2,G‖
g2

ω
‖ 2

1−ε ,G.

We also observe that B1 satisfies condition (S) by a similar argument as in [2] (also
refer to [17, Proposition 27.12]). We observe that

|(Nu|φ)| = |B2(u, φ)| ≤ CG‖u‖ε
0,1,2,G‖φ‖0,1,2,G‖

g2

ω
‖ 2

1−ε ,G

which implies

‖Nu‖ ≤ CG‖u‖ε
0,1,2,G‖

g2

ω
‖ 2

1−ε ,G ≤ cCG‖u‖ε
0,1,2,G,

So
‖Nu‖

‖u‖0,1,2,G
≤

cCG‖u‖ε
0,1,2,G

‖u‖0,1,2,G
→ 0 as ‖u‖0,1,2,G →∞. (4.4)

This shows that B + N is asymptotically linear. Also, u ∈ L2(Ω, ω) implies h(u) ∈
L

2
ε (Ω, ω) and define the Nemyckii operator

hu : L2(Ω, ω) → L
2
ε (Ω, ω) (4.5)

by hu(x) = h(u(x)); we have hu is continuous (by [13, Theorem 2.1]). Let un ⇀ u

in W 1,2
0 (G, ω), then

|(Nun|φ)− (Nu|φ)| ≤
∫

G

|h(un)− h(u)||g2

ω
||φ|ωdx

≤ CG‖h(un)− h(u)‖ 2
ε ,G‖

g2

ω
‖ 2

1−ε ,G‖φ‖0,1,2,G.

Hence we have
‖Nun −Nu‖ → 0 as n →∞ (4.6)

By a similar argument as in [2], the operator At(u) = Bu + t(Nu − T ) satisfies
condition (S). If µ < 0 is not an eigenvalue of the linear problem

Lu− µu(x)ω(x) = 0 in G,

u = 0 on ∂G

shows that the operator equation Bu + Nu = T has a solution u ∈ W 1,2
0 (G, ω),

which completes the proof. �
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An immediate consequence is the following result.

Corollary 4.2. Let Ω be any open set in Rn such that Ω = ∪∞i=1Ωi,Ωi ⊆ Ωi+1,Ωi

is an open bounded subset of Rn for each i = 1, 2, 3.. Let the hypotheses of Theorem
4.1 hold. Let g1 > 0 and µ < 0 then, the problem

Lu− µug1 + h(u)g2 = f in Ωi,

u = 0 on ∂Ωi
(4.7)

has a solution u = ui ∈ W 1,2
0 (Ωi, ω), for i = 1, 2.. in addition ‖uk‖0,1,2,Ωi ≤ k0 for

all k ≥ i, where k0 is independent of k.

Remark 4.3. Theorem 4.1 and Corollary 4.2 hold if g1 < 0 and µ > 0 with the
remaining intact. But when µ > 0 and g1 changes sign, we need additional condi-
tions on µ and g1(stated below) to obtain a uniform bound k0 for ‖uk‖, k = 1, 2.
where k0 is independent of k. This uniform boundedness is essential to establish
the existence of solution when Ω is not necessarily bounded. We state these results
below in Theorem 4.4 and Corollary 4.5 but we give a sketch of the proof. We note
that in (4.4 the required asymptotic linearity of B + N is a consequence of ε lying
between 0 and 1.

Theorem 4.4. Let G be an open bounded set in Rn, n ≥ 3. Let the hypotheses
(H1’), (H2’) hold. Also, let µ > 0 not be an eigenvalue of (3.4). Then the BVP

Lu− µug1 + h(u)g2 = f in G,

u = 0 on ∂G
(4.8)

has a solution u ∈ W 1,2
0 (G, ω).

The proof is omitted since it is along the same lines of the proof of Theorem 4.1.
As a consequence of Theorem 4.4, we have the following result.

Corollary 4.5. In addition to the hypotheses of Theorem 4.4, let λ > CΩiµ‖
g1
ω ‖∞,Ω.

Then (4.7) has a solution u = ui ∈ W 1,2
0 (Ωi, ω), for i = 1, 2 . . . and in addition

‖uk‖0,1,2,Ωi
≤ k0, for all k ≥ i.

where k0 is a constant independent of k.

Proof. The proof for existence of solutions u = ui ∈ W 1,2
0 (Ωi, ω) for (4.7) is similar

to the proof of Theorem 4.1 and hence omitted. We note that on Ωi, for k ≥ i,

(λ− CΩiµ‖
g1

ω
‖∞,Ωi)‖uk‖2

0,1,2,Ωi

≤ CΩi

{
‖uk‖ε

0,1,2,Ωi
‖g2

ω
‖ 2

1−ε ,Ωi
+ ‖ f

ω
‖2,Ωi

}‖uk‖0,1,2,Ωi
,

where CΩi
is independent of k. Since λ > CΩi

µ‖ g1
ω ‖∞,Ωi

, we obtain

‖uk‖0,1,2,Ωi ≤
CΩi

(
‖uk‖ε

0,1,2,Ωi
‖ g2

ω ‖ 2
1−ε ,Ωi

+ ‖ f
ω‖2,Ωi

)
(λ− CΩiµ‖

g1
ω ‖∞,Ωi)

(4.9)
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Case 1: If ‖uk‖0,1,2,Ωi
≤ 1, then from (4.9), we have

‖uk‖0,1,2,Ωi ≤
CΩi

(
‖ g2

ω ‖ 2
1−ε ,Ωi

+ ‖ f
ω‖2,Ωi

)
(λ− CΩi

µ‖ g1
ω ‖∞,Ωi

)

≤
CΩi

(
‖ g2

ω ‖ 2
1−ε ,Ω + ‖ f

ω‖2,Ω

)
(λ− CΩi

µ‖ g1
ω ‖∞,Ω)

= c∗,

where c∗ is a constant independent of k. Hence, we obtain

‖uk‖0,1,2,Ωi ≤ c∗, for all k ≥ i.

Case 2: If ‖uk‖0,1,2,Ωi
> 1, from (4.9), we have

‖uk‖0,1,2,Ωi
≤

CΩi

(
‖uk‖ε

0,1,2,Ωi
‖ g2

ω ‖ 2
1−ε ,Ωi

+ ‖ f
ω‖2,Ωi

)
(λ− CΩi

µ‖ g1
ω ‖∞,Ωi

)

≤
CΩi

(
‖ g2

ω ‖ 2
1−ε ,Ω + ‖ f

ω‖2,Ω

)
‖uk‖ε

0,1,2,Ωi

(λ− CΩiµ‖
g1
ω ‖∞,Ω)

where CΩi
is independent of k. This implies

‖uk‖1−ε
0,1,2,Ωi

≤ c, 0 < ε < 1, ‖uk‖0,1,2,Ωi ≤ c
1

1−ε = c′,

where c and c′ are constants independent of k. Since Ωi ⊆ Ωi+1,∀ i ≥ 1, we have

‖uk‖0,1,2,Ωi ≤ c′, for all k ≥ i.

Let k0 = max{c∗, c′}. Hence, we have

‖uk‖0,1,2,Ωi
≤ k0, for all k ≥ i, (4.10)

where k0 is independent of k. �

Now we state the main result of this section.

Theorem 4.6. Let Ω = ∪∞i=1Ωi,Ωi ⊆ Ωi+1 be open bounded domains in Ω. Let
µ > 0 not be an eigenvalue of

Lu− µu(x)ω(x) = 0 in Ωi,

u = 0 on ∂Ωi
(4.11)

for i = 1, 2, 3, . . . and in addition let λ > CΩi
µ‖ g1

ω ‖∞,Ω. Under hypotheses (H1’),
(H2’), (4.1) has a weak solution u ∈ W 1,2

0 (Ω, ω).

Proof. Let {uk} be the sequence of solutions for (4.7) in W 1,2
0 (Ωk, ω), (k ≥ 1). Let

ũk (for k ≥ 1) denote the extension of uk by zero outside Ωk, which we continue to
denote it by uk. From (4.10), we have

‖uk‖0,1,2,Ωl
≤ k0, for k ≥ l.

Then, {uk} has a subsequence {uk1
m
} which converges weakly to u1, as m → ∞,

in W 1,2
0 (Ω1, ω). Since {uk1

m
} is bounded in W 1,2

0 (Ω2, ω), it has a convergent sub-
sequence {uk2

m
} converging weakly to u2 in W 1,2

0 (Ω2, ω). By induction, we have
{ukl−1

m
} has a subsequence {ukl

m
} which weakly converges to ul in W 1,2

0 (Ωl, ω), i.e
in short, we have ukl

m
⇀ ul in W 1,2

0 (Ωl, ω), l ≥ 1. Define u : Ω → R by

u(x) := ul(x), for x ∈ Ωl.

(Here there is no confusion occurs since ul(x) = um(x) for x ∈ Ω for any m ≥ l).
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Let M be any fixed (but arbitrary) bounded domain such that M ⊆ Ω. Then
there exists an integer l such that M ⊆ Ωl. We note that, the diagonal sequence
{ukm

m
;m ≥ l} weakly converges to u = ul in W 1,2

0 (M,ω), as m →∞.
What remains is to show that u is the required weak solution. It is sufficient to

show that u is a weak solution of (4.1) for an arbitrary bounded domain M in Ω.
Since ukm

m
⇀ ul in W 1,2

0 (M,ω), we have∫
M

∇(ukm
m
− u).∇φωdx → 0, as m →∞,

which implies ∫
M

Di(ukm
m
− u)Djφωdx → 0, as m →∞.

From (1.1), for a constant c, we have |aij | ≤ cω.∫
M

aijDi(ukm
m
− u)Djφdx ≤

∫
M

|aij ||Di(ukm
m
− u)||Djφ|dx

≤ c‖Di(ukm
m
− u)‖2,M‖Djφ‖2,M → 0, as m →∞.

(4.12)
Also, by Lemma 2.1, {ukm

m
} → u in L2(M,ω). We have∣∣ ∫

M

(ukm
m
− u)g1φdx

∣∣ ≤ ∫
M

|(ukm
m
− u)||g1||φ|dx ≤

∫
M

|(ukm
m
− u)||g1

ω
||φ|ωdx

≤ ‖g1

ω
‖∞,M‖ukm

m
− u‖2,M‖φ‖2,M .

So we have
µ

∫
M

ukm
m

g1φdx → µ

∫
M

ug1φdx (4.13)

By (4.5) and generalized Hölder’s inequality, we obtain∫
M

|h(ukm
m

)− h(u)||g2

ω
||φ|ωdx ≤ ‖h(ukm

m
)− h(u)‖ 2

ε ,M‖g2

ω
‖ 2

1−ε ,M‖φ‖2,M .

Hence, we have ∫
M

h(uk(x))g2φdx →
∫

M

h(u(x))g2φdx . (4.14)

Since M is an arbitrary bounded domain in Ω, it follows from (4.12), (4.13) and
(4.14), that∫

Ω

aijDiu(x)Djφ(x)dx−
∫

Ω

µu(x)φ(x)g1(x)dx +
∫

Ω

h(u(x))φ(x)g2(x)

=
∫

Ω

f(x)φ(x)dx

which completes the proof of the theorem. �

Theorem 4.7. Let Ω = ∪∞i=1Ωi,Ωi ⊆ Ωi+1 be open bounded domains in Ω. Let
g1 > 0 and µ < 0. Under the hypotheses (H ′

1)-(H
′
2), (4.1) has a weak solution

u ∈ W 1,2
0 (Ω, ω).

The proof is similar to Theorem 4.6 and hence omitted. Above theorem is also
true when, g1 < 0 and µ > 0 is not an eigenvalue of (4.11).

Remark 4.8. The main results Theorem 3.5 and Theorem 4.6 hold, if h is contin-
uous, |h(t)− h(s)| ≤ c|t− s|ε, 0 < ε < 1 and h(0) = 0.
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