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EXISTENCE OF SOLUTIONS AND CONVERGENCE RESULTS
FOR DYNAMIC INITIAL VALUE PROBLEMS USING LOWER

AND UPPER SOLUTIONS

ATIYA H. ZAIDI

Abstract. In this article, we study the existence of solutions to first order

non-linear initial value problems within the field of “dynamic equations on time
scales”. We employ the method of upper and lower solutions and Schauder’s

fixed point theorem. We also provide sufficient conditions under which the

upper and lower solutions converge uniformly to a solution. Some examples
are given to illustrate the new results.

1. Introduction

Dynamic equations on time scales had been introduced in 1988 as generalised
forms of mathematical modelling which can incorporate the structure of differential
or difference equations or both at the same time, see [12, 13, 1].

This article considers the dynamic initial value problem

x∇ = f(t, x), for all t ∈ [0, a]κ,T; (1.1)

x(0) = 0. (1.2)

Here x∇ is the “nabla” derivative of x introduced in [8, p.77]. Here f : [0, a]κ,T ×
[l, u] ⊂ R2 → R is a left-Hilger-continuous and possibly non-linear function and l, u
are continuous on [0, a]T = [0, a]∩T for an arbitrary time scale T. The subscript κ
refers to [0, a]T less any right scattered minimum points in it [9, p.331]. The term
“left-Hilger-continuous” is used in accordance with the term “left-dense-continuous”
(or ld-continuous) [9, Definition 8.43] and will be defined in the next section.

Our results show that (1.1), (1.2) has at least one solution which is bounded
above by some function, u, and is bounded below by another function, l, where u, l
are upper and lower solutions to (1.1), (1.2). The results follow some notions of
La Salle [16] extended to the time scale setting. In this way, our results exhibit a
broader span of modelling a system described as a first order initial value problem,
no matter if the system has a discrete or a continuous domain or a hybrid of both.
We apply our ideas to establish non-negative solutions to (1.1), (1.2).
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In addition, we establish sufficient conditions under which: solutions to (1.1),
(1.2) established within [l, u] are unique; and l and u approximate solutions to (1.1),
(1.2). Then we establish an error estimate on the i-th approximation.

The motivation for using upper and lower solutions in our results are due to
the wide use of this method to establish existence results for a variety of first and
second order initial and boundary value problems, see [3, 4, 5, 6, 7, 8, 9, 10, 14, 21].
In this work, we use this method to determine: existence of solutions to (1.1), (1.2);
and establishing successive approximations converging to a solution of the above
IVP.

It had been shown in [6] that existence results involving lower and upper so-
lutions in the time scale setting can be proved with less restrictions using nabla
derivatives than using delta derivatives. We use nabla derivatives in this work to
allow the solution to assume maximal values at the right end point of a given in-
terval of existence, [l, u], using the maximum principle. In this way, our results
are different from the existence and uniqueness results for the first order IVPs in-
volving delta derivatives proved in [20] using fixed point theorems and in [19] using
the method of successive approximations. Our results are also different in context
and methodology from the existence and uniqueness results using lower and upper
solutions for the first order delta IVPs proved in [15, Theorem 4.1.2].

This paper is organised in the following manner. In Section 2, a brief introduction
to the time scale calculus concerning nabla derivatives is presented. For more
details, see [8, pp.77–81] and [9, Chapter 1, Chapter 8].

In Section 3, we define lower and upper solutions to the dynamic IVP (1.1), (1.2)
and establish existence and uniqueness of solutions to (1.1), (1.2) within lower and
upper solutions to the IVP.

In Section 4, we show that l(t), u(t) are zero approximations to solutions of (1.1),
(1.2) established in Section 3, for all t ∈ [0, a]T. We also prove that an upper bound
exists on the error of the i-th approximation on [0, a]T which approaches to zero for
a unique solution.

2. Preliminaries

A time scale, denoted by T, is a non-empty closed subset of R. Thus, N, Z, [0, 1],
[−1, 0]∪ [2, 5] and the Cantor set are examples of time scales. A dynamic equation
on time scales models a phenomenon that may be continuous at one time and
discrete at another. Hence, those dynamic equations that demonstrate a completely
continuous phenomenon (or alternatively a completely discrete phenomenon) are
equivalent to a differential equation (alternatively a difference equation).

For any point t ∈ T, the left and right movements are measured in terms of left
and right “jump operators”, named “ρ(t)” and “σ(t)” respectively. These operators
are defined as

ρ(t) := sup{s ∈ T : s < t}, for all t ∈ T;

σ(t) := inf{s ∈ T : s > t}, for all t ∈ T.

We can see from the above inequalities that ρ(t) and σ(t) would coincide with t in
continuous intervals of T. Within discrete intervals of T, the functions

ν(t) := t− ρ(t), for all t ∈ Tκ;

µ(t) := σ(t)− t, for all t ∈ Tκ,
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where Tκ refers to T less any left-scattered maximum points in it [12, p. 27],
describe a measure of the step size between two consecutive points. The point t is
considered “left-scattered” when ν(t) > 0 and “left-dense” when ν(t) = 0. Similar
relationships hold between the appearance of t to the right and µ(t). Our results
in this work concern the behaviour of points to the left of t. Hence, further ideas
regard left-dense or left-scattered points only.

All continuous functions on a time scale are ld-continuous [9, Theorem 8.43].
The term “left-Hilger-continuous” introduced in the previous section for f in (1.1)
is used in equivalence with the term “ld-continuous” for a function of two or more
variables, the first of which should be from an arbitrary time scale. This is a more
generalised definition and we have introduced this particular term for functions of
several variables, to avoid confusion with ld-continuous functions of one variable.

Definition 2.1 (Left-Hilger-continuous functions). A mapping f : [a, b]κ,T×R → R
is called left-Hilger-continuous at a point (t, x) if: f is continuous at each (t, x)
where t is left-dense; and the limits

lim
(s,y)→(t+,x)

f(s, y) and lim
y→x

f(t, y)

both exist and are finite at each (t, x) where t is right-dense.

The following definitions and theorem [9, Section 8.4] describe nabla differen-
tiable functions and their properties for a generalised time scale and will be funda-
mental to our results in this work.

Definition 2.2 (The nabla derivative). Let x : T → R and t ∈ Tκ. Define
x∇(t) to be the number (if it exists) with the property that given ε > 0 there is a
neighbourhood N of t with

|[x(ρ(t))− x(s)]− x∇(t)[ρ(t)− s]| ≤ ε|ρ(t)− s|, for all s ∈ N.

We call x∇(t) the nabla derivative of x(t) for all t ∈ Tκ and say that x is nabla
differentiable on Tκ.

Theorem 2.3. Let T be an arbitrary time scale and consider a function h : Tκ → R.
Then the following hold for all t ∈ Tκ:

(1) if h is nabla differentiable at t, then h is continuous at t;
(2) if h is continuous at t and t is left-scattered, then h is nabla differentiable

at t and

h∇(t) :=
h(t)− h(ρ(t))

ν(t)
;

(3) if t is left-dense, then h is nabla differentiable at t such that

h∇(t) := lims→t
h(t)− h(s)

t− s
,

provided the limit on the right hand side exists and is finite;
(4) if h is nabla differentiable at t then

hρ(t) := h(t)− ν(t)h∇(t),

where hρ = h ◦ ρ.

Hence, if T = R then x∇ = x
′
, while if T = Z then x∇ = ∇x(t) = x(t)−x(t−1).
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Definition 2.4 (The nabla integral). Let h : T → R. A function H : T → R will
be a nabla anti-derivative of h if H∇(t) = h(t) holds for all t ∈ Tκ. Let t0 ∈ T with
t0 < t then the Cauchy nabla integral of h is defined as∫ t

t0

h(s)∇s := H(t)−H(t0), for all t ∈ T.

3. Existence results

In this section, we define lower and upper solutions to (1.1), (1.2). We also
prove that (1.1), (1.2) has a solution on [0, a]T that lies within the interval [l, u],
where l(t), u(t) act respectively as lower and upper solutions to (1.1), (1.2) for all
t ∈ [0, a]T, using Schauder’s fixed point theorem.

Definition 3.1. Let l, u be nabla differentiable functions on [0, a]κ,T. We call l a
lower solution to (1.1), (1.2) on [0, a]T if

l∇(t) ≤ f(t, l(t)), for all t ∈ [0, a]κ,T; (3.1)

l(0) = 0. (3.2)

Similarly, we call u an upper solution to (1.1), (1.2) on [0, a]T if

u∇(t) ≥ f(t, u(t)), for all t ∈ [0, a]κ,T; (3.3)

u(0) = 0. (3.4)

Definition 3.2. A solution of (1.1), (1.2) is a nabla differentiable function x :
Tκ → R that satisfies (1.1) and (1.2) and the point (t, x(t)) ∈ [0, a]T × [l, u], where
l, u are continuous on [0, a]T.

All ld-continuous functions are nabla integrable [9, Theorem 8.45]. The following
lemma establishes equivalence of (1.1), (1.2) as nabla integral equations. The result
is nabla equivalent of ideas in [20, Lemma 2.1] for the “delta” case. Therefore, the
proof is omitted.

Lemma 3.3. Consider the dynamic IVP (1.1), (1.2). Let f : [0, a]κ,T × [l, u] → R
be a left-Hilger-continuous function. Then a function x ∈ C([0, a]T; R) solves (1.1),
(1.2) if and only if it satisfies the nabla integral equation

x(t) =
∫ t

0

f(s, x(s))∇s, for all t ∈ [0, a]T. (3.5)

The following definition and the next two theorems are the keys to our proof for
the existence of solutions to (1.1), (1.2).

Definition 3.4. [22, p.54] Let U, V be Banach spaces and F : A ⊆ U → V . We
say F is compact on A if:

• F is continuous on A;
• for every bounded set B of A, F (B) is relatively compact in V .

The next theorem from [18, Theorem 1.3] is stated in the context of T ⊆ R. The
proof is, therefore, omitted.

Theorem 3.5 (Arzela-Ascoli theorem on T). Let D ⊆ C([a, b]T; R). Then D is
relatively compact if and only if it is bounded and equicontinuous.
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Theorem 3.6 (Schauder’s fixed point theorem [17, p.67] [22, p.57]). Let X be
a normed linear space and D be a closed, bounded and convex subset of X. If
F : D → D is a compact map then F has at least one fixed point.

Define an infinite strip

Sκ,∞ := {(t, p) : t ∈ [0, a]κ,T and −∞ < p < ∞}.

Let g : Sκ,∞ → R be a left-Hilger-continuous function. Our next theorem concerns
the existence of solutions to the initial value problem

x∇ = g(t, x), for all t ∈ [0, a]κ,T; (3.6)

x(0) = 0 (3.7)

in Sκ,∞. We prove this result by using Schauder’s fixed point theorem.

Theorem 3.7. Consider the initial value problem (3.6), (3.7) with g left-Hilger-
continuous on Sκ,∞. If g is uniformly bounded on Sκ,∞ then (3.6), (3.7) has at
least one solution, x, such that the point (t, x(t)) lies in the infinite strip

S∞ := {(t, p) : t ∈ [0, a]T and −∞ < p < ∞}.

Proof. From Lemma 3.3, a solution of (3.6), (3.7) is given by

x(t) :=
∫ t

0

g(s, x(s))∇s, for all t ∈ [0, a]T. (3.8)

Since g is uniformly bounded on Sκ,∞, there exists M > 0 such that

|g(t, p)| ≤ M, for all (t, p) ∈ Sκ,∞. (3.9)

Define K := Ma and consider the Banach space (C([0, a]T; R), | · |0) [20, Lemma
3.3]. Let D ⊂ C([0, a]T; R) defined by

D := {x ∈ C([0, a]T; R); |x|0 ≤ K}.

Then D is closed, bounded and convex. We show that a compact map F : D → D
exists and Schauder’s theorem applies.

Define

[Fx](t) :=
∫ t

0

g(s, x(s))∇s, for all t ∈ [0, a]T. (3.10)

See F is well defined on C([0, a]T; R) as g is left-Hilger continuous on Sκ,∞.
We show that F : D → D is a compact map. For this, we show that the following

properties hold for F :
(i) F is continuous on D;
(ii) for every bounded subset B of D, F (B) is relatively compact in C([0, a]T; R),

and verify Definition 3.4.
To show that F is continuous on D, we define

BK(0) := {p ∈ R : |p| ≤ K}.

See BK(0) is closed and bounded and hence compact in R. Therefore, g is bounded
and uniformly left-Hilger-continuous on [0, a]T × BK(0). Thus, for every ε1 > 0
there exists a δ1 = δ1(ε1) such that for (t, x1), (t, x2) ∈ [a, b]κ,T ×BK(0), we have

|g(t, x1)− g(t, x2)| < ε1 whenever |x1 − x2| < δ1. (3.11)
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Let xi be a convergent sequence in D with xi → x for all i. Then for every δ1 > 0
there exists N > 0 such that

|xi − x| < δ1, for all i ≥ N.

We show that the sequence Fi := Fxi is uniformly convergent in R. Let ε0 := ε1a.
We see that

|Fxi − Fx|0 = sup
t∈[0,a]T

|Fxi(t)− Fx(t)|

≤ sup
t∈[0,a]T

∣∣∣ ∫ t

0

(g(s, xi(s))− g(s, x(s)))∇s
∣∣∣

≤ sup
t∈[0,a]T

∣∣∣ ∫ t

0

|g(s, xi(s))− g(s, x(s))|∇s
∣∣∣

< ε1a whenever |xi − x| < δ1

= ε0,

for all i ≥ N . Thus Fi are uniformly convergent on D and hence are uniformly
continuous on D. We show that F : D → D: See for all x ∈ D, we have

|Fx|0 := sup
t∈[0,a]T

|Fx(t)|

≤ sup
t∈[0,a]T

∫ t

0

|g(s, x(s))|∇s

≤ Ma = K.

(3.12)

Thus, F is in D.
Next, we show that for every bounded subset B of D, F (B) is relatively compact

on C[0, a]T using the Arzela-Ascoli theorem. Let B be an arbitrary bounded subset
of D. Assume x ∈ B. Then we see from (3.12) that we have |Fx|0 ≤ K for all
t ∈ [0, a]T. Thus F is uniformly bounded on B.

We also see that for any given ε > 0 we can define δ := ε/M and for t1, t2 ∈ [0, a]T,
we obtain

|[Fx](t1)− [Fx](t2)| =
∣∣∣ ∫ t2

t1

g(s, x(s))∇s
∣∣∣

≤
∣∣∣ ∫ t2

t1

|g(s, x(s))|∇s
∣∣∣

≤ M |t1 − t2| < ε

whenever |t1 − t2| < δ. Hence, F is equicontinuous. By the Arzela-Ascoli theorem,
F (B) is relatively compact in C([a, b]T; R).

From (i) and (ii) above, we see that F : D → D is a compact map. We also see
that F satisfies the conditions of Schauder’s theorem and, so, has at least one fixed
point in D given by (3.8). Hence, (3.6), (3.7) has at least one solution, x, such the
point (t, x(t)) ∈ S∞. �

The above result ensures existence of a solution to (3.6), (3.7) when the function
g is bounded in an infinite domain Sκ,∞ and considers this as a sufficient condition
for the existence of a solution to the above IVP in Sκ,∞. However, the result does
not ensure the existence if the domain is restricted.
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In the next result, we strengthen the condition in the above theorem by restrict-
ing the solution to (3.6), (3.7) within a lower and an upper solution to (1.1), (1.2).
Hence we prove the existence of a solution to (1.1), (1.2) within the region

S := {(t, p) : t ∈ [0, a]T and l(t) ≤ p ≤ u(t)},

where l, u are, respectively, lower and upper solutions to (1.1), (1.2). To prove this,
we define a modified function g in terms of f in (1.1) and prove that g is uniformly
bounded on Sκ,∞ and use Theorem 3.7. We also prove that the solution, x, to the
IVP (3.6), (3.7) satisfies l(t) ≤ x(t) ≤ u(t) for all t ∈ [0, a]T, so that x must also be
a solution to the original unmodified problem (1.1), (1.2).

Define
Sκ := {(t, p) : t ∈ [0, a]κ,T and l(t) ≤ p ≤ u(t)}.

Theorem 3.8. Let f : Sκ → R be a left-Hilger-continuous function. If l, u are,
respectively, lower and upper solutions to (1.1), (1.2), then (1.1), (1.2) has at least
one solution, x, such that l(t) ≤ x(t) ≤ u(t) for all t ∈ [0, a]T.

Proof. Consider the IVP (3.6), (3.7), where g(t, p) is defined on Sκ,∞ such that for
all t ∈ [0, a]κ,T,

g(t, p) :=


f(t, l(t)) +

l(t)− p

1 + (l(t)− p)2
, if p < l(t);

f(t, p), if l(t) ≤ p ≤ u(t);

f(t, u(t))− p− u(t)
1 + (p− u(t))2

, if p > u(t).

(3.13)

We first show that g is left-Hilger-continuous and uniformly bounded on Sκ,∞ and
Theorem 3.7 applies. Note that f is left-Hilger-continuous on the compact region
Sκ and so it is bounded on Sκ. Thus, there exists M1 > 0 such that |f(t, p)| ≤ M1

for all (t, p) ∈ Sκ. We also see that for l(t) > p ∈ R, we have∣∣∣ l(t)− p

1 + (l(t)− p)2

∣∣∣ < 1, for all t ∈ [0, a]T,

and so

f(t, l(t)) +
∣∣∣ l(t)− p

1 + (l(t)− p)2

∣∣∣ < 1 + M1, for all t ∈ [0, a]κ,T.

Let M := 1 + M1. Then from (3.13), we obtain

|g(t, p)| ≤ M, for all (t, p) ∈ Sκ,∞. (3.14)

Hence g is uniformly bounded on Sκ,∞. In addition, the left-Hilger-continuity of
f on Sκ and the ld-continuity of l, u, p on [0, a]T show that the right hand side of
(3.13) is left-Hilger-continuous on Sκ,∞ and, so, we have g left-Hilger-continuous
on Sκ,∞. By Theorem 3.7, the modified IVP (3.6), (3.7) has a solution, x, such
that the graph (t, x(t)) ∈ S∞ for all t ∈ [0, a]T.

Next, we prove that l(t) ≤ x(t) ≤ u(t) for all t ∈ [0, a]T. We split the inequality
l(t) ≤ x(t) ≤ u(t) into two parts and first show that

l(t) ≤ x(t), for all t ∈ [0, a]T, (3.15)

using the contradiction method.
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Let r(t) := l(t)− x(t) for all t ∈ [0, a]T. Assume there exists a point t1 ∈ [0, a]T
such that l(t1) > x(t1). See t1 6= 0 as x(0) = 0 = l(0) from (1.2) and (3.2). Without
loss of generality, we may assume that

r(t1) = max
t∈[0,a]T

r(t) > 0. (3.16)

Thus, r(t) is non-decreasing at t = t1 and, so, r∇(t1) ≥ 0.
On the other hand, since x(t1) < l(t1) we see that using (3.6), (3.13) and (3.1),

we obtain

0 ≤ r∇(t1) = l∇(t1)− x∇(t1)

= l∇(t1))− g(t1, x(t1))

= l∇(t1))− f(t1, l(t1))−
l(t1)− x(t1)

1 + (l(t1)− x(t1))2

< l∇(t1))− f(t1, l(t1)) ≤ 0,

which is a contradiction. Hence l(t) ≤ x(t) for all t ∈ [0, a]T. It is very similar to
show that u(t) ≥ x(t) for all t ∈ [0, a]T as in the above case. We omit the details.

Thus, we have l(t) ≤ x(t) ≤ u(t) for all t ∈ [0, a]T. Hence, from (3.13), x(t) is a
solution to (1.1), (1.2) for all t ∈ [0, a]T and the point (t, x(t)) ∈ S for all t ∈ [0, a]T.
This completes the proof. �

The following example illustrates the above theorem.

Example 3.9. Consider the Riccati initial value problem

x∇(t) = f(t, x) := x2 − t, for all t ∈ [0, 1]κ,T; (3.17)

x(0) = 0. (3.18)

We claim that there exists at least one solution, x, to the above IVP such that
−t ≤ x(t) ≤ t for all t ∈ [0, 1]T.

Proof. We see that the right hand side of (3.17) is a composition of a continuous
function t and a continuous function x2 and hence, is continuous on [0, 1]T ×R. So
our f is left-Hilger-continuous on [0, 1]κ,T × R. Let us define

l(t) := −t, for all t ∈ [0, 1]T.

Then we see that l(0) = 0 and for all t ∈ [0, 1]T, we have

f(t, l(t)) = t2 − t ≥ −1 = l∇(t).

Thus, our l satisfies (3.1), (3.2) and is a lower solution to (3.17), (3.18).
In a similar way, the function u(t) := t is an upper solution to (3.17), (3.18) for

all t ∈ [0, 1]T. By Theorem 3.8, there is at least one solution, x, to (3.17), (3.18)
such that −t ≤ x(t) ≤ t for all t ∈ [0, 1]T. �

Our next result gives a sufficient condition for uniqueness of solution to (1.1),
(1.2). We show that the solution, x, of the above IVP established in Theorem 3.8
is the only solution satisfying l(t) ≤ x(t) ≤ u(t) for all t ∈ [0, a]T.

Theorem 3.10. Let f be left-Hilger-continuous on Sκ. Assume l, u are, respec-
tively, lower and upper solutions of (1.1), (1.2). If there exists L > 0 such that f
satisfies

|f(t, p)− f(t, q)| ≤ L|p− q|, for all (t, p), (t, q) ∈ Sκ, (3.19)
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then the solution x of (1.1), (1.2) brought forward under the conditions of Theorem
3.8 is the unique solution satisfying l(t) ≤ x(t) ≤ u(t) for all t ∈ [0, a]T.

Proof. Let x, y be solutions of (1.1), (1.2) such that the points (t, x(t)), (t, y(t)) ∈
Sκ. Then, using (3.5), we obtain for all t ∈ [0, a]T,

|x(t)− y(t)| ≤
∫ t

0

|f(s, x(s))− f(s, y(s))|∇s

≤ L

∫ t

0

|x(s)− y(s)|∇s,

(3.20)

where we employed (3.19) in the last step. Define

k(t) := |x(t)− y(t)|, for all t ∈ [0, a]T.

See, L > 0 and so L ∈ L+ [7, p.225]. Applying Gronwall’s inequality concerning
nabla derivatives [7, Theorem 2.7] (taking f(t) = 0 and p(t) = L) to (3.20), we
obtain

k(t) ≤ 0, for all t ∈ [0, a]T.

But k(t) = |x(t)− y(t)| and so, is non-negative for all t ∈ [0, a]T. Thus, x(t) = y(t)
for all t ∈ [0, a]T. �

The next corollary establishes existence of a unique, non-negative and bounded
solution of the IVP (1.1), (1.2) on [0, a]T.

Corollary 3.11. Let f : Sκ → R be a left-Hilger-continuous function satisfying
(3.19). Let l, u be lower and upper solutions to (1.1), (1.2). If l(t) = 0 for all t ∈
[0, a]T, then the IVP (1.1), (1.2) has a unique, bounded and non-negative solution,
x(t), for all t ∈ [0, a]T.

The proof of the above corollary follows from Theorem 3.10, as 0 ≤ x(t) ≤ u(t)
for all t ∈ [0, a]T. The following example illustrates this result.

Example 3.12. Consider the dynamic initial value problem

x∇(t) = f(t, x) := ρ(t) + x3, for all t ∈ [0, 1]κ,T; (3.21)

x(0) = 0. (3.22)

We claim that the above IVP has a unique non-negative solution x such that 0 ≤
x(t) ≤ 1 for all t ∈ [0, 1]T.

Proof. See f(t, p) = ρ(t) + p3 for all (t, p) ∈ [0, 1]κ,T × R. Since ρ(t) and p3 are
everywhere ld-continuous functions and so is their composition, our f is left-Hilger-
continuous on [0, 1]κ,T × R. We define

l(t) := 0, and u(t) := t2, for all t ∈ [0, 1]T.

Then we see that l(t) ≤ u(t) for all t ∈ [0, a]T with l(0) = 0 = u(0). It is evident
that l satisfies (3.1) and so, is a lower solution to (3.21), (3.22). We also see that,
for all t ∈ [0, 1]T

f(t, u(t)) = ρ(t) + t6 ≤ ρ(t) + t = u∇(t).
Thus, our u satisfies (3.3) and is an upper solution to (3.21), (3.22). By Theorem
3.8, there exists a solution, x, to (3.21), (3.22) such that 0 ≤ x(t) ≤ t2 ≤ 1, for all
t ∈ [0, 1]T. Moreover, for all t ∈ [0, 1]T, we have∣∣∂f

∂p

∣∣ = |3p2| ≤ 3t4 ≤ 3.
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Thus, f has bounded partial derivatives in [0, 1]T × [0, 1] and satisfies (3.19) for
L = 3 (see [2, Lemma 3.2.1], [11, p.248]). By Corollary 3.11, x is the unique
solution to (3.21), (3.22) such that 0 ≤ x(t) ≤ 1 for all t ∈ [0, 1]T. �

4. Convergence results

In this section, we establish conditions under which lower and upper solutions
to (1.1), (1.2) approximate the existing solutions of (1.1), (1.2). We also establish
error estimates on he ith approximation.

Let f : Sκ → R be left-Hilger-continuous. Define F : C([0, a]T; R) → C([0, a]T; R)
by

[Fp](t) =
∫ t

0

f(s, p(s))∇s, for all t ∈ [0, a]T.

Then F is well-defined on C([0, a]T; R). Under the conditions of Theorem 3.8, a
fixed point x of F will be a solution to (1.1), (1.2) such that l(t) ≤ x(t) ≤ u(t) for
all t ∈ [0, a]T, where l, u are, respectively, lower and upper solutions of (1.1), (1.2).

Consider an iterative scheme defined as

[F 0p](t) := [Fp](t) =
∫ t

0

f(s, p(s))∇s, for all t ∈ [0, a]T; (4.1)

F i := F [F i−1], for all i ≥ 1. (4.2)

It had been shown in [19, pp.78–79] that, in general, the continuity of a function f
alone is not sufficient for a sequence or subsequences of successive approximations
to converge to a solution on a compact rectangle. In our next result, we show that
the successive approximations defined in (4.1), (4.2) provide a sequence of functions
that converge to a solution to (1.1), (1.2).

We assume f to be non-decreasing on Sκ and prove that if x is a solution to (1.1),
(1.2) such that l(t) ≤ x(t) ≤ u(t) for all t ∈ [0, a]T, then l(t) and u(t) approximate
x(t) for all t ∈ [0, a]T. We also show that an upper bound on the error of the ith
approximation will be [F iu](t) − [F il](t) for all t ∈ [0, a]T. The next definition
describes zero approximation to the solution of (1.1), (1.2) (see [16, p.724] for the
ODE case).

Definition 4.1. Let x be a solution to (1.1), (1.2) and y : T → R be a ld-continuous
function. We call y(t) a zero approximation to x(t) for all t ∈ [0, a]T if, {F iy}
converges uniformly to x on [0, a]T.

Theorem 4.2. Let f : Sκ → R be left-Hilger-continuous and l, u are lower and
upper solutions to (1.1), (1.2). If f is non-decreasing in the second argument on
Sκ, that is, for p ≤ q, we have

f(t, p) ≤ f(t, q), for all (t, p), (t, q) ∈ Sκ; (4.3)

then l(t) and u(t) will be the zero approximations to a solution x of (1.1), (1.2) for
all t ∈ [0, a]T.

Moreover, for m,n ≥ 0, the sequence F i given by (4.1), (4.2) satisfies

[Fml](t) ≤ [Fm+1l](t) ≤ [Fn+1u](t) ≤ [Fnu](t), for all t ∈ [0, a]T. (4.4)

Proof. We show that l(t), u(t) satisfy Definition 4.1 and (4.4) holds for all t ∈ [0, a]T.
We see from (4.1) that for p = u, we obtain for all t ∈ [0, a]T

[Fu](t) =
∫ t

0

f(s, u(s))∇s ≤
∫ t

0

u∇(s))∇s = u(t). (4.5)
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Similarly, for p = l, we obtain

l(t) ≤ [Fl](t) for all t ∈ [0, a]T. (4.6)

Since f is non-decreasing in the second variable and is left-Hilger-continuous on Sκ,
it follows from (4.1), (4.6), and (4.3) that, for all t ∈ [0, a]T, we have

(t) = [Fl](t) =
∫ t

0

f(s, l(s))∇s

≤
∫ t

0

f(s, [Fl](s))∇s

= [F 1l](t).

(4.7)

Proceeding in this way, we obtain

[Fl](t) ≤ [F 1l](t) ≤ [F 2l](t) ≤ [F 3l](t) ≤ . . . , for all t ∈ [0, a]T. (4.8)

Thus, the sequence {F il} is non-decreasing. In a similar way, using (4.3), (4.1) and
(4.5), we obtain

[Fu](t) ≥ [F 1u](t) ≥ [F 2u](t) ≥ . . . , for all t ∈ [0, a]T. (4.9)

Now since l(t) ≤ u(t) for all t ∈ [0, a]κ, we can write using (4.8) and (4.9) that for
all t ∈ [0, a]κ

[Fnl](t) ≤ [Fn+1l](t) ≤ [Fn+1u](t) ≤ [Fnu](t). (4.10)

We further see that
[Fl](0) = 0 = [Fu](0). (4.11)

We show that the sequence {F il} converges uniformly to the fixed point x (x(0) =
0). Define

w(t) := [Fu](t)− [Fl](t), for all t ∈ [0, a]T.

See, w(t) ≥ 0 for all t ∈ [0, a]T. Since f is non-decreasing in the second variable on
Sκ, it follows from (4.1) that

w∇(t) = f(t, u(t))− f(t, l(t)) ≥ 0, for all t ∈ [0, a]κ,T.

It is clear from (4.10) that for n > m ≥ 0, we have

[Fml](t) ≤ [Fnl](t) ≤ [Fnu](t),

and for n < m, we have

[Fml](t) ≤ [Fmu](t) ≤ [Fnu](t).

Hence for any m,n ≥ 0, we have the inequality

[Fml](t) ≤ [Fm+1l](t) ≤ [Fn+1u](t) ≤ [Fnu](t), for all t ∈ [0, a]T.

The boundedness and equicontinuity of each F il can be established in the same
way as in Theorem 3.7. Hence, as i → ∞, F il converges uniformly on [0, a]T to a
fixed point x. Similarly, {F iu} converges uniformly on [0, a]T to a fixed point x.
Thus l(t) and u(t) are zero approximations to x(t) with wi(t) := [F iu](t)− [F il](t)
as an upper bound on the error of the i-th approximation for all t ∈ [0, a]T. If the
solution is unique, then wi(t) → 0 for all i ≥ 1 for all t ∈ [0, a]T. This completes
the proof. �
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Example 4.3. Consider the dynamic IVP

x∇(t) = f(t, x) := x3 − t, for all t ∈ [0, 1]κ,T; (4.12)

x(0) = 0. (4.13)

We claim that l(t) = −t and u(t) = t are zero approximations to the solution of
(4.12), (4.13) for all t ∈ [0, 1]T. Moreover, for all t ∈ [0, 1]T , the sequence F i given
by

F 0(t) := [Fx](t) =
∫ t

0

(x3 − s)∇s,

F i := F [F i−1], for all i ≥ 1.

satisfies (4.4) for any m,n ≥ 0.

Proof. We see that f(t, p) = p3 − t for all (t, p) ∈ [0, 1]κ,T × R. Since t and p3

are everywhere ld-continuous functions and so is their composition, our f is left-
Hilger-continuous on [0, 1]κ,T × R. We further see that l(0) = 0 = u(0) and for all
t ∈ [0, 1]T

f(t, l(t)) = −t(t2 + 1) ≥ −1 = l∇(t).
Thus, l satisfies (3.1) and so, is a lower solution to (4.12), (4.13). In a similar
way, we have u satisfying (3.3) and so, is an upper solution to (4.12), (4.13). By
Theorem 3.8, there exists a solution, x, to (4.12), (4.13) such that −t ≤ x(t) ≤ t,
for all t ∈ [0, 1]T.

Next, we see that for p ≤ q, we have

f(t, p) = p3 − t ≤ q3 − t = f(t, q), for all (t, p), (t, q) ∈ [0, 1]κ,T × [−t, t].

Thus, f is non-decreasing with respect to the second argument on [0, 1]T,κ × [−t, t]
and so, by Theorem 4.2, the functions −t and t are zero approximations to the
solution x of (4.12), (4.13). We further see that for x = l, we have for all t ∈ [0, 1]T,

[Fl](t) =
∫ t

0

−(s3 + s)∇s ≥ −t = l(t) .

This leads to (4.7) and then to (4.8). We obtain (4.9) in a similar way. Thus, (4.4)
holds for any m,n ≥ 0. �
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