Electronic Journal of Differential Equations, Vol. 2009(2009), No. 162, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

UNIQUENESS OF A SYMMETRIC POSITIVE SOLUTION TO AN ODE SYSTEM

ORLANDO LOPES

In memory of Jack K. Hale (1928-2009)

$$
\begin{aligned}
& \text { ABSTRACT. In this article, we prove uniqueness of symmetric positive solutions } \\
& \text { of the variational ODE system } \\
& \qquad \begin{array}{r}
\prime \prime \\
\qquad-a w-w v=0 \\
-v^{\prime \prime}+b v-\frac{w^{2}}{2}=0,
\end{array}
\end{aligned}
$$

where a and b are positive constants.

1. Introduction and Statement of the Result

In this article, we prove uniqueness of symmetric positive solutions of the variational ODE system

$$
\begin{align*}
& -w^{\prime \prime}+a w-w v=0 \\
& -v^{\prime \prime}+b v-\frac{w^{2}}{2}=0 \tag{1.1}
\end{align*}
$$

where a and b are positive constants. The solutions under consideration are defined for all $x \in \mathbb{R}$ and have finite energy.

To show how (1.1) arises, we consider the so-called χ^{2} SHG equations

$$
\begin{align*}
i \frac{\partial w}{\partial t}+r \frac{\partial^{2} w}{\partial x^{2}}-\theta w+w^{*} v & =0 \\
i \sigma \frac{\partial v}{\partial t}+s \frac{\partial^{2} v}{\partial x^{2}}-\alpha v+\frac{w^{2}}{2} & =0 \tag{1.2}
\end{align*}
$$

where r, s, σ, θ are positive real parameters and $w(x)$ and $v(x)$ are complex functions. This system governs phenomena in nonlinear optics (see 5 for instance).

A solitary wave is a solution of $\sqrt{1.2}$) of the form

$$
\left(w(x) e^{i \gamma t}, v(x) e^{2 i \gamma t}\right)
$$

[^0]Hence, (w, v) satisfies

$$
\begin{align*}
-r w^{\prime \prime}+(\theta+\gamma) w-w^{*} v & =0 \\
-s v^{\prime \prime}+(\alpha+2 \sigma \gamma) v-\frac{w^{2}}{2} & =0 \tag{1.3}
\end{align*}
$$

The solutions of 1.3 are critical points of $E+\gamma I$ where E and I are the following conserved quantities for 1.2)

$$
\begin{gather*}
E(w, v)=\int_{-\infty}^{+\infty}\left(r\left|w^{\prime}\right|^{2}+s\left|v^{\prime}\right|^{2}+\theta|w|^{2}+\alpha|v|^{2}-\operatorname{Re}\left(w^{2} v^{*}\right)\right) d x \tag{1.4}\\
I(w, v)=\int_{-\infty}^{+\infty}\left(|w|^{2}+2 \sigma|v|^{2}\right) d x \tag{1.5}
\end{gather*}
$$

If w and v are real solutions of 1.3 then it solves

$$
\begin{gather*}
-r w^{\prime \prime}+(\theta+\gamma) w-w v=0 \\
-s v^{\prime \prime}+(\alpha+2 \sigma \gamma) v-\frac{w^{2}}{2}=0 \tag{1.6}
\end{gather*}
$$

Replacing (w, v) by $\left(k_{1} w, k_{2} v\right)$ in (1.6), with $k_{2}=r$ and $k_{1}^{2}=r s$, we get

$$
\begin{gathered}
-w^{\prime \prime}+\frac{(\theta+\gamma)}{r} w-w v=0 \\
-v^{\prime \prime}+\frac{(\alpha+2 \sigma \gamma)}{s} v-\frac{w^{2}}{2}=0
\end{gathered}
$$

Therefore, we consider the real variational ODE system

$$
\begin{align*}
& -w^{\prime \prime}+a w-w v=0 \tag{1.7}\\
& -v^{\prime \prime}+b v-\frac{w^{2}}{2}=0 \tag{1.8}
\end{align*}
$$

and we will be interested in solutions that have finite energy (or equivalently, tend to zero as $|x|$ tends to infinity). The existence of positive solutions of $(1.7)-(1.8)$ has been proved in [6]. Briefly the argument goes as follows. We define $H=$ $H^{1}(\mathbb{R}) \times H^{1}(\mathbb{R})$ equipped with the norm

$$
\int_{-\infty}^{+\infty}\left(w^{\prime 2}(x)+v^{\prime 2}(x)+a w^{2}(x)+b v^{2}(x)\right) d x
$$

We consider the functionals

$$
\begin{gathered}
E(w, v)=\int_{-\infty}^{+\infty}\left(w^{\prime 2}(x)+v^{\prime 2}(x)-w^{2}(x) v(x)\right) d x \\
I(w, v)=\int_{-\infty}^{+\infty}\left(a w^{2}(x)+b v^{2}(x)\right) d x
\end{gathered}
$$

Using the method of concentration-compactness ([3), we minimize $E(w, v)$ under $I(w, v)=1$ in the space H. If we replace $(w(x), v(x))$ by $(|w(x)|,|v(x)|)$ then E does not increase. Therefore, any minimizer is nonnegative and solves the EulerLagrange system

$$
\begin{align*}
& -w^{\prime \prime}+\mu a w-w v=0 \tag{1.9}\\
& -v^{\prime \prime}+\mu b v-\frac{w^{2}}{2}=0 \tag{1.10}
\end{align*}
$$

with $\mu \geq 0$ (because (w, v) is a minimizer). On the other hand, it is easy to see that any solution $(w, v) \in H$ of $1.9-1.10$ with $\mu=0$ is the solution identically zero. Therefore, we must have $\mu>0$. Defining a new pair $\left(k_{1} w\left(k_{3} x\right), k_{2} v\left(k_{3} x\right)\right)$ with $k_{3}^{2}=1 / \mu, k_{1}=k_{2}=1 / \mu$, we see that this new pair satisfies $1.7-1.8$.

In 4 the symmetry of any positive solution of $(1.7)-(1.8$) has been proved using a result of [1]. However, as pointed out in [1], their proof works for $N \geq 2$. Since we are in dimension one, we need the following modified version given in 22.

Theorem 1.1. Consider the system

$$
\begin{align*}
w^{\prime \prime}+f(w, v) & =0 \\
v^{\prime \prime}+g(w, v) & =0 \tag{1.11}
\end{align*}
$$

where $f(w, v)$ and $g(w, v)$ are C^{1} functions satisfying the conditions:

$$
f(0,0)=0=g(0,0), \quad \frac{\partial f(w, v)}{\partial v}, \frac{\partial g(w, v)}{\partial w} \geq 0
$$

Suppose that there exist $\epsilon>0$ and $\delta>0$ such that $w>0, v>0, w^{2}+v^{2}<\epsilon$ imply

$$
\frac{\partial f(w, v)}{\partial w}, \frac{\partial g(w, v)}{\partial v}<-\delta, \quad 0<\frac{\partial f(w, v)}{\partial v}, \frac{\partial g(w, v)}{\partial w}<\delta
$$

Then, except for translations, any positive solution of 1.11 is even and decreasing.
We conclude that, except for translations, any positive solution of 1.7$)-(1.8)$ is symmetric and decreasing.

In [4] we have also proved the following result.
Theorem 1.2. The linearized operator of (1.7)-(1.8 at any positive symmetric solution has zero as a simple eigenvalue with odd eigenfunctions $\left(w_{x}, v_{x}\right)$ and it has exactly one negative eigenvalue.

The fact that zero is a simple eigenvalue of the linearized operator is not a proof of uniqueness of symmetric positive solution, but it may suggest it. Our main result is that this is indeed the case.

Theorem 1.3. For $a, b>0$, the positive symmetric decreasing solution of (1.7)(1.8) is unique.

Several interesting numerical experiments concerning system 1.7 - 1.8 are presented in [6]. They indicate uniqueness of positive solution (which is confirmed by Theorem 1.3) and that (1.7)-(1.8) may have solutions that change sign.

2. Proof of main Result

First we establish the following abstract uniqueness result.
Theorem 2.1. Let X be a Banach space and $F: X \times[0,1] \rightarrow X$ be a continuous functions with continuous Frechet derivative with respect to the first variable. Also assume that
(i) the set of the solutions (u, λ) of $F(u, \lambda)=0, u \in X, \lambda \in[0,1]$ is precompact;
(ii) for any solution of $F(u, \lambda)=0$, the derivative $F_{u}(u, \lambda)$ is invertible;
(iii) the equation $F(u, 0)=0$ has a unique solution.

Then the equation $F(u, \lambda)=0$ has a unique solution for $\lambda \in[0,1]$.

Proof. First we claim that there is a $\lambda_{0}>0$ such that the solution of $F(u, \lambda)=0$ is unique for $0 \leq \lambda<\lambda_{0}$. In fact, otherwise, there is a sequence $0<\lambda_{n} \rightarrow 0$ such that $F\left(u, \lambda_{n}\right)=0$ has at least two distinct solution u_{n} and v_{n}. In view of assumption (i) and passing to a subsequence if necessary, we can assume that u_{n} converges to u and v_{n} converges to v. In view of (iii), we must have $u=v$. However, by (ii) and the implicit function theorem, in a neighborhood of u, for small λ, the solution of $F(u, \lambda)=0$ is unique. This contradiction proves the claim. The same argument shows that the set A of $\lambda, 0 \leq \lambda \leq 1$, for which the solution of $F(u, \mu)=0$ is unique for $0 \leq \mu \leq \lambda$ is open. Since by ii) A is clearly closed, A has to be the whole interval $[0,1]$ and the theorem is proved.

Remark. If we take $u \in \mathbb{R}$ and $F(u, \lambda)=u(\lambda u-1)=\lambda u^{2}-u$, we have $F_{u}(u, \lambda)=$ $2 \lambda-1$. We see that, except for assumption i), all the others are satisfied but the conclusion of the theorem does not hold. This is so because there is the branch $u=1 / \lambda$ of solutions bifurcating from infinity.

Theorem 1.3 will be a consequence of Theorem 2.1. To verify all its assumptions, we start with the following result.

Lemma 2.2. The system

$$
\begin{align*}
& -w^{\prime \prime}+a w-w v=0 \\
& -v^{\prime \prime}+a v-\frac{w^{2}}{2}=0 \tag{2.1}
\end{align*}
$$

($a=b$ in 1.7 -1.8) has a unique positive solution with finite energy.
Proof. Defining $z(x)=w(x)-\sqrt{2} v(x)$, multiplying the second equation by $\sqrt{2}$ and subtracting we get

$$
-z^{\prime \prime}+z+\frac{w}{\sqrt{2}} z=0
$$

Multiplying this last equation by z and integrating we get

$$
\int_{-\infty}^{+\infty}\left(z^{\prime 2}(x)+z^{2}(x)+\frac{w}{\sqrt{2}} z(x)^{2}\right) d x=0
$$

and this implies $z \equiv 0$ (because w is a positive). Therefore, each component of the solution of (2.1) solves a single second order equation and this implies uniqueness and the lemma is proved.

To verify the other assumptions of Theorem 2.1, we establish a chain of estimates. Since we wish to find estimates for solutions of 1.7) -1.8 which remain uniform for a and b in a certain interval, we fix two constants $0<c_{1}<c_{2}$ and we assume

$$
\begin{equation*}
c_{1} \leq a, b \leq c_{2} . \tag{2.2}
\end{equation*}
$$

In the sequel, $d_{i}, 1 \leq i \leq$ will indicate constants depending on c_{1} and c_{2} only. Let $(w(x), v(x))$ be as in Theorem 1.3. Since

$$
\begin{equation*}
T\left(w, v, w^{\prime}, v^{\prime}\right) \hat{=}-w^{\prime 2}-v^{\prime 2}+a w^{2}+b v^{2}-w^{2} v \tag{2.3}
\end{equation*}
$$

is a first integral for 1.7- 1.8), we must have

$$
\begin{equation*}
-w^{\prime 2}(x)-v^{\prime 2}(x)+a w^{2}(x)+b v^{2}(x)-w^{2}(x) v(x)=0 \tag{2.4}
\end{equation*}
$$

for any x.

Bound for $v(0)$. Using the fact the $(w(x), v(x))$ is symmetric, if we set $x=0$ in (2.4) we get

$$
\begin{equation*}
w^{2}(0)=\frac{b v^{2}(0)}{v(0)-a} \tag{2.5}
\end{equation*}
$$

In particular $v(0)>a$. Moreover, $v^{\prime \prime}(0) \leq 0$ (because $v(x)$ has a maximum at $x=0)$ and then the second equation (1.8) yields

$$
\begin{equation*}
b v(0) \leq \frac{w^{2}(0)}{2} \tag{2.6}
\end{equation*}
$$

This together with 2.5 implies

$$
\begin{equation*}
b v(0) \leq \frac{1}{2} \frac{b v^{2}(0)}{(v(0)-a)} \tag{2.7}
\end{equation*}
$$

and finally $v(0) \leq 2 a$ because $v(0)>a$.
Bound for $v^{\prime}(x)$. Multiplying the second equation 1.8) by $v^{\prime}(x)$, then for $x \geq 0$ we get:

$$
\frac{d}{d x}\left(-v^{\prime}(x)^{2}+b v^{2}(x)\right)=w^{2}(x) v^{\prime}(x) \leq 0
$$

Therefore $-v^{\prime}(x)^{2}+b v^{2}(x)$ is decreasing and, since it vanishes at $+\infty$, we get

$$
-v^{\prime}(x)^{2}+b v^{2}(x) \geq 0
$$

and then

$$
\begin{equation*}
v^{\prime}(x)^{2} \leq b v^{2}(x) \leq b v^{2}(0) \leq 4 a^{2} b \tag{2.8}
\end{equation*}
$$

Bound for $w^{\prime}(x)$. We know $w^{\prime}(x) \leq 0$ and that $w^{\prime}(x)$ reaches its minimum when $w^{\prime \prime}(x)=0$. By the first equation 1.7), this occurs when $v(x)=a$ and then, from (2.4),

$$
w^{\prime}(x)^{2}+v^{\prime}(x)^{2}=b v^{2}(x) \leq b v^{2}(0) \leq 4 a^{2} b
$$

We conclude

$$
\begin{equation*}
\left|w^{\prime}(x)\right|=-w^{\prime}(x) \leq 2 a \sqrt{b} \tag{2.9}
\end{equation*}
$$

Bound for $w(0)$. Suppose $w(0)=M$ and $w\left(x_{0}\right)=M / 2$ for some $x_{0}>0$. Since

$$
w(0)-w\left(x_{0}\right)=-\int_{0}^{x_{0}} w^{\prime}(s) d s
$$

then, in view of 2.9 , we have $\frac{M}{2} \leq 2 a \sqrt{b} x_{0}$ and this implies

$$
\begin{equation*}
x_{0} \geq \frac{M}{4 a \sqrt{b}} . \tag{2.10}
\end{equation*}
$$

Moreover, the solution of the linear equation

$$
\begin{equation*}
-v^{\prime \prime}(x)+b v(x)=h(x) \tag{2.11}
\end{equation*}
$$

is given by

$$
\begin{equation*}
v(x)=\frac{1}{2 \sqrt{b}} \int_{-\infty}^{+\infty} e^{-\sqrt{b}|x-y|} h(y) d y \tag{2.12}
\end{equation*}
$$

and then, the second equation 1.8 and 2.10 give

$$
\begin{aligned}
v(0) & =\frac{1}{4 \sqrt{b}} \int_{-\infty}^{+\infty} e^{-\sqrt{b}|y|} w^{2}(y) d y \\
& =\frac{1}{2 \sqrt{b}} \int_{0}^{+\infty} e^{-\sqrt{b} y} w^{2}(y) d y \\
& \geq \frac{1}{2 \sqrt{b}} \int_{0}^{x_{0}} e^{-\sqrt{b} y} w^{2}(y) d y \\
& \geq \frac{M^{2}}{8 \sqrt{b}} \int_{0}^{x_{0}} e^{-\sqrt{b} y} d y \\
& =\frac{M^{2}}{8 b}\left(1-e^{-\sqrt{b} x_{0}}\right) \\
& \geq \frac{M^{2}}{8 b}\left(1-e^{-\frac{M}{4 a}}\right) .
\end{aligned}
$$

Therefore,

$$
2 a \geq v(0) \geq \frac{M^{2}}{8 b}\left(1-e^{-\frac{M}{4 a}}\right)
$$

and this gives that $M=w(0) \leq d_{1}$, for some constant d_{1}. In view of (2.5), this gives also that $v(0) \geq d_{2}>a$, for some constant d_{2}, and also gives a lower bound for $w(0) \geq d_{3}$.

Bound for the length of the interval for which $v(x) \geq a$. By the first equation in 1.7) and the previous estimates for $v(0)$ and $w(0)$, we have $w^{\prime \prime}(0) \leq-d_{4}<0$ and $\left|w^{\prime \prime \prime}(x)\right| \leq d_{5}$. Defining $X=-\frac{w^{\prime \prime}(0)}{2 d_{5}}$ then, for $0 \leq x \leq X$ we have

$$
w^{\prime \prime}(x)-w^{\prime \prime}(0)=\int_{0}^{x} w^{\prime \prime \prime}(s) d s \leq d_{5} X=-w^{\prime \prime}(0) / 2
$$

and then $w^{\prime \prime}(x) \leq w^{\prime \prime}(0) / 2 \leq-d_{4} / 2$ for $0 \leq x \leq X$. Moreover,

$$
w^{\prime}(X)=w^{\prime}(0)+\int_{0}^{X} w^{\prime \prime}(s) d s \leq \int_{0}^{X} \frac{w^{\prime \prime}(0)}{2} d s=X \frac{w^{\prime \prime}(0)}{2}=-\frac{w^{\prime \prime}(0)^{2}}{4 d_{5}} \leq-d_{6}
$$

Since, by 1.7, $w^{\prime \prime}(x) \leq 0$ whenever $v(x) \geq a$, we have $w^{\prime}(x) \leq-d_{6}$ whenever $v(x) \geq a$ and $x \geq X$. Furthermore,

$$
-w(0) \leq-w(X) \leq w(x)-w(X)=\int_{X}^{x} w^{\prime}(s) d s \leq-d_{6}(x-X)
$$

Therefore, defining $X_{1}=w(0) / d_{6}+X$, we see that we must have $v\left(X_{1}\right) \leq a$.
Estimate for the time $v(x)$ stays close (and less) than a. Let $x_{0} \leq X_{1}$ be such that $v\left(x_{0}\right)=a$ and let $d_{7}>0$ and $d_{8}<a$ be such that

$$
(a-v) w^{2}+b v^{2} \geq d_{7}^{2}
$$

whenever $d_{8} \leq v \leq a, w \leq d_{1}$. Then, if $d_{8} \leq v(x) \leq a$ for $x_{0} \leq x \leq x_{0}+X_{2}$, by (2.4) we have $-w^{\prime}(x)-v^{\prime}(x) \geq d_{7}$ and then

$$
w\left(x_{0}\right)+v\left(x_{0}\right) \geq-w(x)+w\left(x_{0}\right)-v(x)+v\left(x_{0}\right) \geq d_{7} X_{2}
$$

and this gives a uniform upper bound for X_{2}.

Exponential decay for $w(x)$ and for $v(x)$. Since

$$
\frac{d}{d x}\left(-w^{\prime}(x)^{2}+a w^{2}(x)-w^{2}(x) v(x)\right)=-w^{2}(x) v^{\prime}(x) \geq 0
$$

the function $-w^{\prime}(x)^{2}+(a-v(x)) w^{2}(x)$ is increasing and then $-w^{\prime}(x)^{2}+(a-$ $v(x)) w^{2}(x) \leq 0$ for all $x \geq 0$ because it vanishes at infinity. Now, for $x \geq$ $X_{3} \hat{=} X_{1}+X_{2}$ we have $-w^{\prime}(x)^{2}+d_{8} w(x)^{2} \leq 0$ and then $w^{\prime}(x)+d_{9} w(x) \leq 0$ and then $\frac{d}{d x} e^{d_{9} x} w(x) \leq 0$ and finally, $w(x) \leq e^{-d_{9}\left(x-X_{3}\right)} w\left(X_{3}\right)$ for $x \geq X_{3}$ and this implies

$$
\begin{equation*}
w(x) \leq d_{10} e^{-d_{9} x}, \quad x \geq 0 . \tag{2.13}
\end{equation*}
$$

From the second equation 1.8 we get

$$
v(x)=\frac{1}{4 \sqrt{b}} \int_{-\infty}^{+\infty} e^{-\sqrt{b}|x-y|} w^{2}(y) d y
$$

and this together with 2.13 and elementary calculation gives a similar exponential decay

$$
\begin{equation*}
v(x) \leq d_{11} e^{-d_{12} x}, \quad x \geq 0 \tag{2.14}
\end{equation*}
$$

for $v(x)$.
Proof of Theorem 1.3. Using 2.12 to invert the linear operators $-w^{\prime \prime}+a w$ and $-v^{\prime \prime}+b v$, we see that system (1.7)-1.8) can be written as

$$
\begin{align*}
w(x) & =\frac{1}{2 \sqrt{a}} \int_{-\infty}^{+\infty} e^{-\sqrt{a}|x-y|} w(y) v(y) d y \tag{2.15}\\
v(x) & =\frac{1}{4 \sqrt{b}} \int_{-\infty}^{+\infty} e^{-\sqrt{b}|x-y|} w^{2}(y) d y
\end{align*}
$$

Defining u as the pair (w, v), system 2.15 can be viewed as the equation

$$
\begin{equation*}
F(u, \lambda)=0 \tag{2.16}
\end{equation*}
$$

where λ, say, is b, with a kept fixed. We denote by $H_{e v}^{1} \subset H^{1}(\mathbb{R})$ the subspace of the even functions. If we take $X=H_{e v}^{1} \times H_{e v}^{1}$, then $F: X \rightarrow X$ is a well defined very smooth function. In view of Theorem 1.2 , assumption ii) of Theorem 2.1 is satisfied because X consists of even functions. Uniqueness for $\lambda=a$ is given by Lemma 2.2. To verify assumption (i) of Theorem 2.1, we recall that a subset K of X is precompact if and only if the following conditions are satisfied:
(1) for each n the restriction of the functions of K to the interval $[-n, n]$ is precompact;
(2) for every $\epsilon>0$, there is an $x(\epsilon)>0$ such that for all $u \in K$ we have

$$
\int_{|x| \geq x(\epsilon)}\left(\left|u^{\prime}\right|^{2}(x)+|u(x)|^{2}\right) d x<\epsilon .
$$

To verify these conditions we first notice that we have obtained uniform bound for the $H^{1}(\mathbb{R})$ norm of the solution (w, v) of $\left.\left.\sqrt{1.7}\right)-\sqrt{1.8}\right)$. This implies uniform bound for the H^{2} norm of such solutions and this verifies condition (1) for precompactness. The uniform exponential decay $(2.13$ and 2.14 for $w(x)$ and $v(x)$ together with (2.3) gives the uniform exponential decay also for the derivatives. This implies that condition (2) for precompactness is satisfies; therefore, Theorem 1.3 is proved.

References

[1] J. Busca and B. Sirakov; Symmetry results for semilinear elliptic systems in the whole space, J. Diff. Eq., 163(2000), 41-56.
[2] N. Ikoma; Uniqueness of Positive Solution for a Nonlinear Elliptic systems, Nonlinear Differential Equations and Applications, 2009, online.
[3] P. L. Lions; The concentration compactness principle in the Calculus of Variations, AIHP, Analyse Nonlineaire, part I, vol. 1, no. 2, 1984, 109-145; part II: vol. 1, no4, 1984, 223-283.
[4] Lopes, Orlando; Stability of solitary waves of some coupled systems. Nonlinearity 19 (2006), no. 1, 95-113
[5] Torner, L. et al; Stability of spatial solitary waves in quadratic media, Optics Letters, (1995), vol.20, No. 21, 2183-2185.
[6] A. C. Yew, A. R. Champneys and P. J. Mckenna; Multiple solitary waves due to secondharmonic generation in quadratic media, J. Nonlinear Science, vol. 9 (1999), 33-52.

Orlando Lopes
IMEUSP- Rua do Matao, 1010, Caixa postal 66281, CEP: 05315-970, Sao Paulo, SP, Brazil
E-mail address: olopes@ime.usp.br

[^0]: 2000 Mathematics Subject Classification. 34A34.
 Key words and phrases. Symmetric positive solutions; variational ODE systems.
 (C) 2009 Texas State University - San Marcos.

 Submitted October 9, 2009. Published December 21, 2009

