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THREE POSITIVE SOLUTIONS FOR A SYSTEM OF SINGULAR
GENERALIZED LIDSTONE PROBLEMS

JIAFA XU, ZHILIN YANG

Abstract. In this article, we show the existence of at least three positive

solutions for the system of singular generalized Lidstone boundary value prob-

lems

(−1)mx(2m) = a(t)f1(t, x,−x′′, . . . , (−1)m−1x(2m−2), y,−y′′,

. . . , (−1)n−1y(2n−2)),

(−1)ny(2n) = b(t)f2(t, x,−x′′, . . . , (−1)m−1x(2m−2), y,−y′′,

. . . , (−1)n−1y(2n−2)),

a1x(2i)(0)− b1x(2i+1)(0) = c1x(2i)(1) + d1x(2i+1)(1) = 0,

a2y(2j)(0)− b2y(2j+1)(0) = c2y(2j)(1) + d2y(2j+1)(1) = 0.

The proofs of our main results are based on the Leggett-Williams fixed point

theorem. Also, we give an example to illustrate our results.

1. Introduction

In this article, we study the existence positive solutions for the following system
of singular generalized Lidstone boundary value problems

(−1)mx(2m) = a(t)f1(t, x,−x′′, . . . , (−1)m−1x(2m−2), y,−y′′, . . . , (−1)n−1y(2n−2)),

(−1)ny(2n) = b(t)f2(t, x,−x′′, . . . , (−1)m−1x(2m−2), y,−y′′, . . . , (−1)n−1y(2n−2)),

a1x
(2i)(0)− b1x

(2i+1)(0) = c1x
(2i)(1) + d1x

(2i+1)(1) = 0 (i = 0, 1, . . . ,m− 1),

a2y
(2j)(0)− b2y

(2j+1)(0) = c2y
(2j)(1) + d2y

(2j+1)(1) = 0 (j = 0, 1, . . . , n− 1).
(1.1)

where m,n ≥ 1, a(t), b(t) ∈ C((0, 1), [0,+∞)), a(t) and b(t) are allowed to be
singular at t = 0 and/or t = 1; fi ∈ C([0, 1] × Rm+n

+ , R+)(R+ := [0,+∞));
ai, bi, ci, di ∈ R+ with ρi := aici + aidi + bici > 0, i = 1, 2.

Singular boundary value problems for ordinary differential equation describe
many phenomena in applied mathematics and physical sciences, which can be found
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in the theory of nonlinear diffusion generated by nonlinear sources and in the ther-
mal ignition of gases, see [1, 4]. Very recently, increasing attention is paid to
question of positive solutions for systems of second-order or higher order singular
differential equations, see for example [2, 5, 6, 7] and references therein.

In [2], by using Leggett-Williams fixed point theorem [3], Kang et al obtained
at least three positive solutions to the following singular nonlocal boundary value
problems for systems of nonlinear second-order ordinary differential equations.

u′′(t) + a1(t)f1(t, u(t), v(t)) = 0, 0 < t < 1,

v′′(t) + a2(t)f2(t, u(t), v(t)) = 0, 0 < t < 1,

α1u(0)− β1u
′(0) = 0, γ1u(1) + δ1u

′(1) = g1(
∫ 1

0

u(s)dφ1(s),
∫ 1

0

v(s)dφ1(s)),

α2v(0)− β2v
′(0) = 0, γ2v(1) + δ2v

′(1) = g2(
∫ 1

0

u(s)dφ2(s),
∫ 1

0

v(s)dφ2(s)),

(1.2)
where ai ∈ C((0, 1), R+) is allowed to be singular at t = 0 or t = 1; fi ∈ C([0, 1]×
R+ × R+, R+) and gi ∈ C([0, 1] × R+ × R+, R+) are such that a1(t)f1(t, 0, 0) or
a2(t)f2(t, 0, 0) does not vanish identically on any subinterval of (0, 1); αi ≥ 0,
βi ≥ 0, γi ≥ 0, δi ≥ 0, and ρi = αiγi + αiδi + βiγi > 0;

∫ 1

0
u(s)dφ1(s) and∫ 1

0
v(s)dφ1(s) denote the Riemann-Stieltjes integrals, i = 1, 2.
Motivated by [2], we deal with the system of singular generalized Lidstone prob-

lems (1.1). To overcome the difficulties of (1.1) resulting from the derivatives of
even orders, as in [8], we use the method of order reduction to transform (1.1)
into an equivalent system of integro-integral equations, then prove the existence
of positive solutions for the resulting system, thereby establishing that of positive
solutions for (1.1)(see the main result in Section 3). The features of this paper
mainly include the following aspects. Firstly, our study is on systems of singular
generalized Lidstone problems. Secondly, a and b are allowed to be singular at t = 0
and/or t = 1. Finally, the system contains two equations, which can be of different
orders. Thus the results presented here are different from those in [2, 5, 6, 7].

The remaining of this paper is organized as follows: Section 2 gives some pre-
liminary results. The main result is stated and proved in Section 3, then followed
by an example to illustrate the validity of our main result.

2. Preliminaries

Given a cone K in a real Banach space E, a map α is said to be a nonnegative
continuous concave functional on K provided that α : K → [0,+∞) is continuous
and

α(tx + (1− t)y) ≥ tα(x) + (1− t)α(y)
for all x, y ∈ K and 0 ≤ t ≤ 1.

Let 0 < a < b be given and let α be a nonnegative continuous concave functional
on K. Define the convex sets Pr and P (α, a, b) by

Pr := {x ∈ K : ‖x‖ < r},
P (α, a, b) := {x ∈ K : a ≤ α(x), ‖x‖ ≤ b}.

To prove our main result, we need the following Leggett-Williams fixed point the-
orem.
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Lemma 2.1 (see [3]). Let T : Pc → Pc be a completely continuous operator and let
α be a nonnegative continuous concave functional on K such that α(x) ≤ ‖x‖ for
all x ∈ Pc. Suppose there exist 0 < a < b < d ≤ c such that

(C1) {x ∈ P (α, b, d) : α(x) > b} 6= ∅, and α(Tx) > b for x ∈ P (α, b, d),
(C2) ‖Tx‖ < a for ‖x‖ ≤ a, and
(C3) α(Tx) > b for x ∈ P (α, b, c) with ‖Tx‖ > d.

Then T has at least three fixed points x1, x2, and x3 such that ‖x1‖ < a, b < α(x2)
and ‖x3‖ > a with α(x3) < b.

For fixed nonnegative constants a, b, c, d with ρ := ac + ad + bc > 0, we let

k(t, s) :=
1
ρ

{
(b + as)(c + d− ct), 0 ≤ s ≤ t ≤ 1,

(b + at)(c + d− cs), 0 ≤ t ≤ s ≤ 1,
(2.1)

By definition, k ∈ C([0, 1]× [0, 1], R+) has the following properties:
(i) k(t, s) ≤ k(s, s) for all t, s ∈ [0, 1].
(ii) For any θ ∈ (0, 1/2), there exists γ ∈ (0,min{ θa+b

a+b , θc+d
c+d }] such that

k(t, s) ≥ γk(s, s),∀t ∈ [θ, 1− θ], s ∈ [0, 1].

Lemma 2.2. Let f ∈ C[0, 1], h(t) ∈ C(0, 1) and
∫ 1

0
k(s, s)h(s)ds < +∞. The

boundary value problem

−u′′ = h(t)f(t),

au(0)− bu′(0) = 0,

cu(1) + du′(1) = 0,

has a unique solution

u(t) =
∫ 1

0

k(t, s)h(s)f(s)ds,

where k(t, s) is given by (2.1).

Let

k1(t, s) :=
1
ρ1

{
(b1 + a1s)(c1 + d1 − c1t), 0 ≤ s ≤ t ≤ 1,

(b1 + a1t)(c1 + d1 − c1s), 0 ≤ t ≤ s ≤ 1,
(2.2)

g1(t, s) :=
1
ρ2

{
(b2 + a2s)(c2 + d2 − c2t), 0 ≤ s ≤ t ≤ 1,

(b2 + a2t)(c2 + d2 − c2s), 0 ≤ t ≤ s ≤ 1.
(2.3)

For i, j = 2, . . . , define

ki(t, s) :=
∫ 1

0

k1(t, τ)ki−1(τ, s)dτ, gj(t, s) :=
∫ 1

0

g1(t, τ)gj−1(τ, s)dτ (2.4)

and the operators Ai : C[0, 1] → C[0, 1] and Bj : C[0, 1] → C[0, 1] by

(Aiu)(t) :=
∫ 1

0

ki(t, s)u(s)ds, i = 1, 2, . . . ,m,

(Bjv)(t) :=
∫ 1

0

gj(t, s)v(s)ds, j = 1, 2, . . . , n.
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For 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1, let

ξi := min
θ≤t≤1−θ

∫ 1

0

ki(t, s)ds, ηi := max
0≤t≤1

∫ 1

0

ki(t, s)ds,

µj := min
θ≤t≤1−θ

∫ 1

0

gj(t, s)ds, νj := max
0≤t≤1

∫ 1

0

gj(t, s)ds,

ξ := min
1≤i≤m−1,1≤j≤n−1

{ξi, µj}, η := max
1≤i≤m−1,1≤j≤n−1

{ηi, νj}.

3. Main result

Let u(t) = (−1)m−1x(2m−2) and v(t) = (−1)n−1y(2n−2). It is easy to see that
(1.1) is equivalent to the system of integro-ordinary differential equations

−u′′(t) = a(t)f1

(
t,

∫ 1

0

km−1(t, s)u(s)ds, . . . ,

∫ 1

0

k1(t, s)u(s)ds, u(t),∫ 1

0

gn−1(t, s)v(s)ds, . . . ,

∫ 1

0

g1(t, s)v(s)ds, v(t)
)
,

−v′′(t) = b(t)f2

(
t,

∫ 1

0

km−1(t, s)u(s)ds, . . . ,

∫ 1

0

k1(t, s)u(s)ds, u(t),∫ 1

0

gn−1(t, s)v(s)ds, . . . ,

∫ 1

0

g1(t, s)v(s)ds, v(t)
)
,

subject to the boundary conditions

a1u(0)− b1u
′(0) = c1u(1) + d1u

′(1) = 0, a2v(0)− b2v
′(0) = c2v(1) + d2v

′(1) = 0.

Furthermore, the above system is equivalent to the system

u(t) =
∫ 1

0

k1(t, s)a(s)f1

(
s,

∫ 1

0

km−1(s, τ)u(τ)dτ, . . . ,

∫ 1

0

k1(s, τ)u(τ)dτ, u(s),∫ 1

0

gn−1(s, τ)v(τ)dτ, . . . ,

∫ 1

0

g1(s, τ)v(τ)dτ, v(s)
)
ds,

v(t) =
∫ 1

0

g1(t, s)b(s)f2

(
s,

∫ 1

0

km−1(s, τ)u(τ)dτ, . . . ,

∫ 1

0

k1(s, τ)u(τ)dτ, u(s),∫ 1

0

gn−1(s, τ)v(τ)dτ, . . . ,

∫ 1

0

g1(s, τ)v(τ)dτ, v(s)
)
ds.

(3.1)
Let E := C([0, 1], R) × C([0, 1], R) endowed with the norm ‖(u, v)‖ := ‖u‖ + ‖v‖,
where ‖u‖ := max0≤t≤1 |u(t)|, and define the cone K ⊂ E by

K :=
{

(u, v) ∈ E : u(t) ≥ 0, v(t) ≥ 0, t ∈ [0, 1], min
θ≤t≤1−θ

(u(t) + v(t)) ≥ γ‖(u, v)‖
}

.

Clearly, (E, ‖ · ‖) is a real Banach space and P is a cone on E. Define the operator
T : K → K by

T (u, v)(t) := (T1(u, v)(t), T2(u, v)(t)),
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where

T1(u, v)(t) :=
∫ 1

0

k1(t, s)a(s)f1

(
s, (Am−1u)(s), . . . , (A1u)(s),

u(s), (Bn−1v)(s), . . . , (B1v)(s), v(s)
)
ds,

T2(u, v)(t) :=
∫ 1

0

g1(t, s)b(s)f2

(
s, (Am−1u)(s), . . . , (A1u)(s),

u(s), (Bn−1v)(s), . . . , (B1v)(s), v(s)
)
ds.

Now f ∈ C([0, 1] × Rm+n
+ , R+) and g ∈ C([0, 1] × Rm+n

+ , R+) imply that T : K →
K is a completely continuous operator. In our setting, the existence of positive
solutions for (3.1) is equivalent to that of positive fixed points of T .

Lemma 3.1. The operator T maps K into K.

Proof. If (u, v) ∈ K, then

(T1(u, v)(t))′′

= −a(t)f1

(
t, (Am−1u)(t), . . . , (A1u)(t), u(t), (Bn−1v)(t), . . . , (B1v)(t), v(t)

)
≤ 0,

(T2(u, v)(t))′′

= −b(t)f2

(
t, (Am−1u)(t), . . . , (A1u)(t), u(t), (Bn−1v)(t), . . . , (B1v)(t), v(t)

)
≤ 0.

So T1(u, v)(t) and T2(u, v)(t) are concave on [0,1]. If (u, v) ∈ K, then from the
properties of k1(t, s) and g1(t, s), we have

‖T1(u, v)(t)‖ ≤
∫ 1

0

k1(s, s)a(s)f1

(
s, (Am−1u)(s), . . . , (A1u)(s),

u(s), (Bn−1v)(s), . . . , (B1v)(s), v(s)
)
ds,

and

‖T2(u, v)(t)‖ ≤
∫ 1

0

g1(s, s)b(s)f2

(
s, (Am−1u)(s), . . . , (A1u)(s),

u(s), (Bn−1v)(s), . . . , (B1v)(s), v(s)
)
ds.

On the other hand,

min
θ≤t≤1−θ

T1(u, v)(t) ≥ γ

∫ 1

0

k1(s, s)a(s)f1

(
s, (Am−1u)(s), . . . , (A1u)(s), u(s),

(Bn−1v)(s), . . . , (B1v)(s), v(s)
)
ds

≥ γ‖T1(u, v)(t)‖,
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and

min
θ≤t≤1−θ

T2(u, v)(t) ≥ γ

∫ 1

0

g1(s, s)b(s)f2

(
s, (Am−1u)(s), . . . , (A1u)(s), u(s),

(Bn−1v)(s), . . . , (B1v)(s), v(s)
)
ds

≥ γ‖T2(u, v)(t)‖.
Combining the preceding inequalities, we arrive at

min
θ≤t≤1−θ

(T1(u, v)(t) + T2(u, v)(t)) ≥ min
θ≤t≤1−θ

(T1(u, v)(t)) + min
θ≤t≤1−θ

(T2(u, v)(t))

≥ γ(‖T1(u, v)(t)‖+ ‖T2(u, v)(t)‖).
This completes the proof. �

In this paper, we use the following assumptions:
((H1) a(t) and b(t) do not vanish identically on any subinterval of (0, 1), and there

exists t0 ∈ (0, 1) such that a(t0) > 0, b(t0) > 0 and 0 <
∫ 1

0
k1(s, s)a(s)ds <

+∞, 0 <
∫ 1

0
g1(s, s)b(s)ds < +∞.

Finally, we define the nonnegative continuous concave functional

α(u, v) := min
θ≤t≤1−θ

(u(t) + v(t)).

We observe here that, for each (u, v) ∈ K, α(u, v) ≤ ‖(u, v)‖. Let

ξ̃1 := min
θ≤t≤1−θ

∫ 1

0

k1(t, s)a(s)ds, η̃1 := max
0≤t≤1

∫ 1

0

k1(t, s)a(s)ds,

µ̃1 := min
θ≤t≤1−θ

∫ 1

0

g1(t, s)b(s)ds, ν̃1 := max
0≤t≤1

∫ 1

0

g1(t, s)b(s)ds .

Theorem 3.2. Let 1 ≤ i ≤ m − 1, and 1 ≤ j ≤ n − 1.Assume there exist non-
negative numbers a, b, c such that 0 < a < b ≤ min{γ, ξ̃1/η̃1, ξi/ηi, µ̃1/ν̃1, µj/νj}c,
and f(t, x1, . . . , xm−1, xm, y1, . . . , yn−1, yn), g(t, x1, . . . , xm−1, xm, y1, . . . , yn−1, yn)
satisfy the following growth conditions:

(H2) f1(t, x1, . . . , xm−1, xm, y1, . . . , yn−1, yn) ≤ c/2η̃1,
f2(t, x1, . . . , xm−1, xm, y1, . . . , yn−1, yn) ≤ c/2ν̃1, for all t ∈ [0, 1], xi + yj ∈
[0, ηc], xm + yn ∈ [0, c].

(H3) f1(t, x1, . . . , xm−1, xm, y1, . . . , yn−1, yn) < a/2η̃1,
f2(t, x1, . . . , xm−1, xm, y1, . . . , yn−1, yn) < a/2ν̃1, for all t ∈ [0, 1], xi + yj ∈
[0, ηa], xm + yn ∈ [0, a].

(H4) f1(t, x1, . . . , xm−1, xm, y1, . . . , yn−1, yn) ≥ b/2ξ̃1,
f2(t, x1, . . . , xm−1, xm, y1, . . . , yn−1, yn) ≥ b/2µ̃1, for all t ∈ [θ, 1 − θ], xi +
yj ∈ [ξb, ηb/γ], xm + yn ∈ [b, b/γ].

Then (1.1) has at least three positive fixed points (u1, v1), (u2, v2), (u3, v3) such
that ‖(u1, v1)‖ < a, b < minθ≤t≤1−θ(u2(t) + v2(t)), and ‖(u3, v3)‖ > a, with
minθ≤t≤1−θ(u3(t) + v3(t)) < b.

Proof. We note first that T : Pc → Pc is a completely continuous operator. If
(u, v) ∈ Pc, then ‖(u, v)‖ ≤ c. For 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1,

(Aiu)(t) + (Bjv)(t) =
∫ 1

0

ki(t, s)u(s)ds +
∫ 1

0

gj(t, s)v(s)ds ≤ ηi‖u‖+ νj‖v‖ ≤ ηc.
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From (H2), we have

‖T (u, v)(t)‖ = max
0≤t≤1

|T1(u, v)(t)|+ max
0≤t≤1

|T2(u, v)(t)|

= max
0≤t≤1

∫ 1

0

k1(t, s)a(s)f1

(
s, (Am−1u)(s), . . . , (A1u)(s),

u(s), (Bn−1v)(s), . . . , (B1v)(s), v(s)
)
ds

+ max
0≤t≤1

∫ 1

0

g1(t, s)b(s)f2

(
s, (Am−1u)(s), . . . , (A1u)(s),

u(s), (Bn−1v)(s), . . . , (B1v)(s), v(s)
)
ds

≤ c/2η̃1 max
0≤t≤1

∫ 1

0

k1(t, s)a(s)ds + c/2ν̃1 max
0≤t≤1

∫ 1

0

g1(t, s)b(s)ds ≤ c.

Therefore, T : Pc → Pc. In an analogous argument, one can verify that (H3) implies
condition (C2) of Lemma 2.1. Clearly, {(u, v) ∈ P (α, b, b/γ) : α(u, v) > b} 6= ∅. If
(u, v) ∈ P (α, b, b/γ), then b ≤ u(t) + v(t) ≤ b/γ, t ∈ [θ, 1− θ].

For 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1, we have

(Aiu)(t) + (Bjv)(t) =
∫ 1

0

ki(t, s)u(s)ds +
∫ 1

0

gj(t, s)v(s)ds ≥ ξb,

(Aiu)(t) + (Bjv)(t) =
∫ 1

0

ki(t, s)u(s)ds +
∫ 1

0

gj(t, s)v(s)ds ≤ ηb/γ.

By (H4),

α(T (u, v)(t)) = min
θ≤t≤1−θ

(T1(u, v)(t) + T2(u, v)(t))

≥ min
θ≤t≤1−θ

T1(u, v)(t) + min
θ≤t≤1−θ

T2(u, v)(t)

≥ min
θ≤t≤1−θ

∫ 1

0

k1(t, s)a(s)f1

(
s, (Am−1u)(s), . . . , (A1u)(s),

u(s), (Bn−1v)(s), . . . , (A1v)(s), v(s)
)
ds

+ min
θ≤t≤1−θ

∫ 1

0

g1(t, s)b(s)f2

(
s, (Am−1u)(s), . . . , (A1u)(s),

u(s), (Bn−1v)(s), . . . , (B1v)(s), v(s)
)
ds

≥ b/2ξ̃1 min
θ≤t≤1−θ

∫ 1

0

k1(t, s)a(s)ds + b/2µ̃1 min
θ≤t≤1−θ

∫ 1

0

g1(t, s)b(s)ds

= b.

Therefore, condition (C1) of Lemma 2.1 is satisfied.
Finally, we show that (C3) is also satisfied. If (u, v) ∈ P (α, b, c) and ‖T (u, v)‖ >

b/γ, then

α(T (u, v)(t)) = min
θ≤t≤1−θ

(T1(u, v)(t) + T2(u, v)(t)) ≥ γ‖T (u, v)‖ > b.

Therefore, (C3) of Lemma 2.1 is also satisfied. By Lemma 2.1, the system (1.1) has
at least three positive fixed points (u1, v1), (u2, v2), (u3, v3) such that ‖(u1, v1)‖ < a,
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b < minθ≤t≤1−θ(u2(t)+v2(t)), and ‖(u3, v3)‖ > a, with minθ≤t≤1−θ(u3(t)+v3(t)) <
b. �

An example. Consider a system of nonlinear second-order and fourth-order ordi-
nary differential equations (with m = 1, n = 2):

−x′′ = a(t)f1(t, x, y,−y′′) = 0,

y(4) = b(t)f2(t, x, y,−y′′) = 0,

x(0)− x′(0) = x(1) + x′(1) = 0,

y(0)− y′(0) = y(1) + y′(1) = 0,

y′′(0)− y′′′(0) = y′′(1) + y′′′(1) = 0.

(3.2)

Let u := x and v := −y′′, then the problem (3.2) is equivalent to the following
system of nonlinear integral equations

u(t) =
∫ 1

0

k1(t, s)a(s)f1(s, u(s),
∫ 1

0

g1(s, τ)v(τ)dτ, v(s)),

v(t) =
∫ 1

0

g1(t, s)b(s)f2(s, u(s),
∫ 1

0

g1(s, τ)v(τ)dτ, v(s)),
(3.3)

where

k1(t, s) = g1(t, s) :=
1
3

{
(1 + s)(2− t), 0 ≤ s ≤ t ≤ 1,

(1 + t)(2− s), 0 ≤ t ≤ s ≤ 1.

We choose a(t) := (1− t)−1/2, b(t) := t−1/2, θ := 1/4, f1(t, x1, x2, x3) equals
t

100 + 1
10 (x1 + x3)2, t ∈ [0, 1], 0 ≤ x1 + x3 ≤ 2, x2 ≥ 0,

t
100 + 6[(x1 + x3)2 − 2(x1 + x3)] + 2

5 , t ∈ [0, 1], 2 < x1 + x3 < 4, x2 ≥ 0,
t

100 + 20 log2(x1 + x3) + 2(x1 + x3) + 2
5 , t ∈ [0, 1], 4 ≤ x1 + x3 ≤ 16, x2 ≥ 0,

t
100 + 1

4 (x1 + x3) + 542
5 , t ∈ [0, 1], x1 + x3 > 16, x2 ≥ 0.

and f2(t, x1, x2, x3) equals
t

100 + 1
10 (x1 + x3)2, t ∈ [0, 1], 0 ≤ x1 + x3 ≤ 2, x2 ≥ 0,

t
100 + 13

8 [(x1 + x3)2 − 2(x1 + x3)] + 2
5 , t ∈ [0, 1], 2 < x1 + x3 < 4, x2 ≥ 0,

t
100 + 5

2 log2(x1 + x3) + 2(x1 + x3) + 2
5 , t ∈ [0, 1], 4 ≤ x1 + x3 ≤ 16, x2 ≥ 0,

t
100 + 1

4 (x1 + x3) + 192
5 , t ∈ [0, 1], x1 + x3 > 16, x2 ≥ 0.

Then by direct calculation, we obtain

ξ ≈ 0.4120, η = 0.5, ξ̃1 ≈ 0.0417, µ̃1 ≈ 0.9273, η̃1 ≈ 0.8889, ν̃1 ≈ 1.1111.

It is easy to check that (H1) holds. Choose γ = 1
4 , a = 1, b = 4, c = 800. Also, it is

easy to verify that f1 and f2 satisfy conditions (H2)-(H4). So the system (3.2) has
at least three positive solutions (u1, v1), (u2, v2), (u3, v3) such that ‖(u1, v1)‖ < 1,
4 < min1/4≤t≤3/4(u2(t) + v2(t)), and ‖(u3, v3)‖ > 1, with min1/4≤t≤3/4(u3(t) +
v3(t)) < 4.
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