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EXISTENCE OF SOLUTIONS TO QUASILINEAR FUNCTIONAL
DIFFERENTIAL EQUATIONS

SYED ABBAS, DHIRENDRA BAHUGUNA

Abstract. In this article we use the theory of C0-semigroup of bounded linear
operators to establish the existence and uniqueness of a classical solution to a

quasilinear functional differential equation considered in a Banach space.

1. Introduction

In this article we study the the existence and uniqueness of a classical solution
to the following quasilinear functional differential equation, considered in a Banach
space X,

du(t)
dt

+A(t, u(t))u(t) = F (t, ut), t ∈ [0, T ],

u0 = φ on [−τ, 0],
(1.1)

where ut(θ) = u(t+θ), θ ∈ [−τ, 0]. For t ∈ [0, T ], we denote by Ct the Banach space
of all continuous functions from [−τ, t] to X endowed with the supremum norm

‖χ‖Ct
= sup

−τ≤θ≤t
‖χ(θ)‖X , χ ∈ Ct.

The function F (t, ψ) is defined on [0, T ] × C0 to X. Here we see that ut ∈ C0. We
assume that for u ∈ CT , F (·, u(·)) : [0, T ] → X is a bounded L1 function. Further
we assume that there is a subset B of X such that for (t, u) ∈ [0, T ] × CT with
u(t) ∈ B for t ∈ [0, T ], A(t, u(t)) is a linear operator in X. Also φ ∈ C0 is Lipschitz
continuous with Lipschitz constant Lφ.

Quasilinear evolution equations forms a very important class of evolution equa-
tions as many time dependent phenomena in physics, chemistry and biology can
be represented by such evolution equations. For more details on the theory and
applications of quasilinear evolution equations we refer to [4, 9, 11].

Kato [6] considered the quasilinear evolution equation

du(t)
dt

+A(t, u(t))u(t) = G(t, u(t)), t ∈ (0, T ],

u(0) = u0,
(1.2)
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in a Banach space and shown the existence of a strong solution under suitable
assumptions on A and G. The various cases of equation (1.2) have been treated
by Amann [1] in the interpolation spaces using the theory of analytic semigroups.
Bahuguna [2] has shown the existence of a classical solution of the following inte-
grodifferential equation considered in a Banach space,

du(t)
dt

+A(t, u(t))u(t) = K(u)(t) + f(t), t ∈ [0, T ],

u(0) = x,
(1.3)

where

K(u)(t) =
∫ t

0

a(t− s)k(s, u(s))ds,

and A(t, w) is a linear operator in X for each (t, w) ∈ [0, T ]×W , W being an open
subset of X. In this paper we strengthen the result of [2] for a functional differential
equation. We show the existence and uniqueness of a classical solution of (1.1).

2. Preliminaries

Let B(X,Y ) be the set of all bounded linear operators from X to Y . B(X,Y )
is a Banach space with the norm

‖A‖B(X,Y ) = sup
x∈X,x 6=0

‖Ax‖Y

‖x‖X
.

We denote B(X,X) by B(X). Let B be a subset of Y , where Y is densely and
continuously embedded in X. Since Y is continuously embedded in X so it is a
subset of X too. A family {A(t, w), (t, w) ∈ [0, T ]×B} of infinitesimal generators of
a C0-semigroup St,w(s), s ≥ 0 on X is called stable if there exist constants M ≥ 1
and w, known as stability constants, such that

ρ(A(t, w)) ⊃ (w,∞) (t, w) ∈ [0, T ]×B,

where ρ(A(t, w)) is the resolvent set of A(t, w) and

∥∥ k∏
j=1

R(λ : A(tj , wj))
∥∥

B(X)
≤ M

(λ− w)k
for λ > w

and every finite sequence

0 ≤ t1 ≤ t2 · · · ≤ tk ≤ T, wj ∈ B.

Let St,w(s), s ≥ 0 be the C0-semigroup generated by A(t, w). A subspace Y of
X is called A(t, w)-admissible if Y is an invariant subspace of St,w(s), s ≥ 0, and
the restriction of St,w(s) to Y is a C0-semigroup in Y . We will use the following
hypothesis on A(t, w):

(H1) There is a subset B in X such that the family {A(t, w), (t, w) ∈ [0, T ]×B}
is stable.

(H2) Y is A(t, w)-admissible for all (t, w) in [0, T ]×B and the family
{Ã(t, w), (t, w) ∈ [0, T ]×B} of parts of A(t, w) in Y is stable in Y .

(H3) For (t, w) ∈ [0, T ] × B, A(t, w) is a bounded linear operator from Y to X
and A(·, w) is continuous in B(Y,X) i.e. A(·, w) ∈ C([0, T ], B(Y,X)) also
D(A(t, w)) ⊃ Y .
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(H4) There exists a positive constant LA such that

‖A(t, w1)−A(t, w2)‖B(Y,X) ≤ LA‖w1 − w2‖Y

for all (t, w1), (t, w2) ∈ [0, T ]×B.

Next we define an evolution family as follows.

Definition 2.1. A two parameter family of bounded linear operators U(t, s), t ≥
s ≥ 0, on X is called an evolution system if

(i) U(s, s) = I and U(t, r)U(r, s) = U(t, s), t ≥ r ≥ s ≥ 0;
(ii) (t, s) → U(t, s) is strongly continuous for t ≥ s ≥ 0.

If u ∈ C([0, T ], X) and the family {A(t, w), (t, w) ∈ [0, T ] × X} of operators
satisfies (H1)–(H4) then there exists an evolution system Uu(t, s) ([10, Theorem
4.6]) in X satisfying:

(i) ‖Uu(t, s)‖B(X) ≤ Meδ(t−s) for t ≥ s ≥ 0, where M and δ are the stability
constants;

(ii) ∂+

∂t Uu(t, s)w|t=s = A(s, u(s))w for w ∈ Y ;
(iii) ∂+

∂s Uu(t, s)w|t=s = −Uu(t, s)A(s, u(s))w for w ∈ Y .

Moreover there exists a constant C0 > 0 such that for every u, v ∈ C([0, T ], X) with
values in B and every y ∈ Y we have

‖Uu(t, s)y − Uv(t, s)y‖X ≤ C0‖y‖Y

∫ t

s

‖u(ξ)− v(ξ)‖X dξ.

Now we mention some additional hypotheses.

(H5) For each u ∈ C(R, X), we have

Uu(t, s)Y ⊂ Y, s, t ∈ R, s ≤ t,

and Uu(t, s) is strongly continuous in Y .
(H6) Every closed convex and bounded subset of Y is also closed in X.
(H7) There exists a constant LF > 0 such that

‖F (t, φ1)− F (s, φ2)‖X ≤ LF (|t− s|+ ‖φ1 − φ2‖C0)

for all (t, φ1), (s, φ2) ∈ [0, T ]× C0.

We note that the condition (H6)) is always satisfied if X and Y are reflexive
Banach spaces.

Definition 2.2. A function u ∈ CT with values in B satisfying

u(t) = Uu(t, 0)φ(0) +
∫ t

0

Uu(t, s)F (s, us)ds, t ∈ [0, T ]

u0 = φ on [−τ, 0],

is called a mild solution to (1.1) on [0, T ].

Definition 2.3. A function u ∈ CT such that u(t) ∈ Y ∩ B for t ∈ (0, T ] and
u ∈ C1((0, T ], X) satisfying the equation (1.1) in X is called a classical solution to
(1.1) on [0, T ]. Where C1([0, T ], X), space of all continuously differentiable functions
from [0, T ] to X and Y is a A(t, w)-admissible subspace of X.
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3. Main result

In this section we prove the existence and uniqueness result for a classical solution
to (1.1). Let φ̃ ∈ CT be given by φ̃(t) = φ(t) for t ∈ [−τ, 0] and φ̃(t) = φ(0) for
t ∈ [0, T ]. Denote

Br(φ(0)) = {x ∈ X : ‖x− φ(0)‖X ≤ r},

B2r(φ̃0) = {χ ∈ C0 : ‖χ− φ̃0‖C0 ≤ 2r}.

Theorem 3.1. Let B and V be open subsets of X and C0, respectively, and the fam-
ily {A(t, w)} of linear operators for t ∈ [0, T ] and w ∈ Br(φ(0)) satisfy assumptions
(H1)-(H6) and A(t, w)φ(0) ∈ Y with

‖A(t, w)φ(0)‖Y ≤ C

for all (t, w) ∈ [0, T ] × B. Suppose F (t, ut) satisfies (H7). Then there exists a
unique local classical solution of (1.1).

Proof. From assumption (H5) for t ≥ s, t, s ∈ [0, T ] and u ∈ C([0, T ];X) with values
in B, we have

‖Uu(t, s)‖B(Y ) ≤ C1.

Take r > 0 such that Br(φ(0)) ⊂ B and B2r(φ̃0) ⊂ V . Choose

T0 = min
{
T,

r

2C1C‖φ(0)‖X
,
r

LF
,

r

2C1(2LF r +N)
,

1
nΛ

,
r

Lφ

}
where Λ = C0‖φ(0)‖X + C1LF + C0(2LF r + N)T0

2 , n > 1 is any natural number
and ‖F (s, u0)‖X ≤ N , where N is a positive constant.

Define the set

S = {ψ ∈ CT0 : ψ0 = φ, for t ∈ [−τ, 0], ψ(t) ∈ Br(φ(0)), t ∈ [0, T0]}.

We easily deduce that S is a closed, convex and bounded subset of CT0 . Take ψ ∈ S.
Now for θ ∈ [−τ, 0] we have the following two cases.

Case 1: If t+ θ ≤ 0 we have

‖ψt(θ)− φ̃0(θ)‖X = ‖ψ(t+ θ)− φ̃(θ)‖X

= ‖φ(t+ θ)− φ(θ)‖X (by the definition of S)
≤ LφT0 ≤ r.

Case 2: If t+ θ ≥ 0 we have

‖ψt(θ)− φ̃0(θ)‖X = ‖ψ(t+ θ)− φ̃(θ)‖X

≤ ‖ψ(t+ θ)− φ(0)‖X + ||φ(0)− φ(θ)‖X

≤ r + Lφ(−θ) (since ψ(t+ θ) ∈ Br(φ(0)))
≤ r + Lφt

≤ r + LφT0 ≤ 2r (since −θ ≤ t ≤ T0).

Thus, for ψ ∈ S, ψt ∈ B2r(φ). Define G : S → S by

Gu(t) =

{
Uu(t, 0)φ(0) +

∫ t

0
Uu(t, s)F (s, us)ds, t ∈ [0, T0],

φ(t), t ∈ [−τ, 0].
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First we show that G is well defined and Gu(0) = φ(0). For t ≥ 0, we have

Gu(t)− φ(0) = Uu(t, 0)φ(0)− φ(0) +
∫ t

0

Uu(t, s)F (s, us)ds.

Taking the norm, we get

‖Gu(t)− φ(0)‖X ≤ ‖Uu(t, 0)φ(0)− φ(0)‖X +
∫ t

0

‖Uu(t, s)F (s, us)‖Xds.

Integrating (iii), we obtain

Uu(t, 0)φ(0)− φ(0) =
∫ t

0

Uu(t, s)A(s, u(s))φ(0)ds.

Thus we have

‖Uu(t, 0)φ(0)− φ(0)‖X ≤
∫ t

0

‖Uu(t, s)A(s, u(s))‖X‖φ(0)‖Xds

≤ C1CT0‖φ(0)‖X ≤ r

2
.

(3.1)

Also, we have∫ t

0

‖Uu(t, s)F (s, us)‖Xds ≤ C1

∫ t

0

(‖F (s, us)− F (s, u0)‖X + ‖F (s, u0)‖X)ds

≤ C1

∫ t

0

(‖F (s, us)− F (s, φ)‖X + ‖F (s, φ)‖X)ds

≤ C1

∫ t

0

(LF ‖us − φ‖X +N)ds

≤ C1(2LF r +N)T0 ≤
r

2
,

using the result that for u ∈ S, us ∈ B2r(φ). Thus, for u ∈ S and t ≥ 0, we get

‖Gu(t)− φ(0)‖X ≤ r.

So G is well defined. For u, v ∈ S, we consider

Gu(t)−Gv(t) = Uu(t, 0)φ(0)− Uv(t, 0)φ(0)

+
∫ t

0

(Uu(t, s)F (s, us)− Uv(t, s)F (s, vs))ds.

Let

I1 = ‖Uu(t, 0)φ(0)− Uv(t, 0)φ(0)‖X

≤ C0‖φ(0)‖
∫ t

0

‖u(s)− v(s)‖Xds

≤ C0‖φ(0)‖X‖u− v‖CT0
T0.

(3.2)
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Also let

I2 =
∥∥∫ t

0

(Uu(t, s)F (s, us)− Uv(t, s)F (s, vs))ds
∥∥

X

≤
∫ t

0

(
‖(Uu(t, s)F (s, us)− Uu(t, s)F (s, vs)‖X

+ ‖Uu(t, s)F (s, vs)− Uv(t, s)F (s, vs))‖X

)
ds

≤ C1LF

∫ t

0

‖us − vs‖C0ds+ C0

∫ t

0

‖F (s, vs)‖X

∫ t

s

‖u(ξ)− v(ξ)‖Xdξds

≤ C1LF

∫ t

0

sup
θ
‖u(s+ θ)− v(s+ θ)‖Xds

+ C0(2LF r +N)
∫ t

0

∫ t

s

‖u(ξ)− v(ξ)‖Xdξds

≤ C1LFT0‖u− v‖CT0
+ C0(2LF r +N)

∫ t

0

∫ s

0

‖u(ξ)− v(ξ)‖Xdξds

≤ C1LFT0‖u− v‖CT0
+ C0(2LF r +N)‖u− v‖CT0

T 2
0

2

≤ (C1LF + C0(2LF r +N))
T 2

0

2
‖u− v‖CT0

.

(3.3)

Hence from (3.2) and (3.3) we get

I1 + I2 = ‖Gu(t)−Gv(t)‖X

≤
(
C0‖φ(0)‖XT0 + (C1LF + C0(2LF r +N))

T 2
0

2

)
‖u− v‖CT0

≤ ΛT0‖u− v‖CT0

≤ 1
n
‖u− v‖CT0

.

(3.4)

Thus G is a contraction from S to S. So, by the Banach contraction mapping
theorem, G has a unique fixed point u ∈ S which satisfies the integral equation.
Hence it is a mild solution of (1.1). Now, we consider the following evolution
equation

dv(t)
dt

+A(t, u(t))v(t) = F (t, ut), t ∈ [0, T0],

u(0) = φ(0).
(3.5)

Denote Ã(t) = A(t, u(t)) and F̃ (t) = F (t, ut), then equation (3.5) can be written
as

dv(t)
dt

+ Ã(t)v(t) = F̃ (t), t ∈ [0, T0],

u(0) = φ(0),
(3.6)

where u is the unique fixed point of G in S.
Now we show that F (·, χ) ∈ CT0 for t, s ∈ [0, T0]. By assumption (H7) we have

‖F (t, χ)− F (s, χ)‖X ≤ LF |t− s|.

Hence for each ε > 0 there exists a δ > 0 such that if |t− s| ≤ δ, implies ‖F (t, χ)−
F (s, χ)‖X ≤ ε.
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Thus, F (t, χ) ∈ CT0 for a fixed χ. Hence from Pazy [10, Theorem 5.5.2], we get
a unique function v ∈ C1((0, T0], X) satisfying (3.6) in X and v given by

v(t) = Uu(t, 0)φ(0) +
∫ t

0

Uu(t, s)F (s, us)ds, t ∈ [0, T0].

Where Uu(t, s), 0 ≤ s ≤ t ≤ T0 is the evolution system generated by the family
{A(t, u(t))}, t ∈ [0, T0]. The uniqueness of v implies that v ≡ u on [0, T0]. Thus u
is a unique local classical solution of (1.1). �

4. Example

Let us consider the equation

du(t)
dt

+A(t, u(t))u(t) = K(u)(t), t ∈ [0, T ], (4.1)

where

K(u)(t) =
∫ t

0

k(t− s)f(s, u(s))ds

and A(t, u(t)) satisfies all the required conditions of Theorem 3.1. Further let
k : [0, T ] → R and f : [0, T ]×B → X be continuous functions, where B is a subset
of X. We also assume that f(·, u(·)) : [0, T ] → X is a bounded function and there
exists a constant Lf ≥ 0 such that

‖f(t, u(s))− f(s, v(s))‖X ≤ Lf (|t− s|+ ‖u(s)− v(s)‖X).

If we put t− s = −η in the second term on the right hand side of (4.1) to obtain∫ t

0

k(t− s)f(s, u(s))ds =
∫ 0

−t

k(−η)f(t+ η, u(t+ η))dη

=
∫ 0

−t

k(−η)f(t+ η, ut(η))dη,

then (4.1) can be rewritten as

du

dt
+A(t, u(t))u(t) = F (t, ut), (4.2)

where F : [0, T ]× C0 → X given by

F (t, φ) =
∫ 0

−t

k(−η)f(t+ η, φ(η))dη.

here k is bounded on [0, T ]; i.e., supt∈[0,T ] |k(t)| ≤ M2 < ∞, for some positive
constant M2. For (t, φ), (s, ψ) ∈ [0, T ]× C0, we have

‖F (t, φ)− F (s, ψ)‖X

≤
∥∥∫ 0

−t

k(−η)f(t+ η, φ(η))dη −
∫ 0

−s

k(−η)f(s+ η, ψ(η))dη
∥∥

X

≤
∫ −s

−t

|k(−η)|‖f(t+ η, φ(η))‖Xdη

+
∫ 0

−s

|k(−η)|‖f(t+ η, φ(η))− f(s+ η, ψ(η))‖Xdη

≤M2M1|t− s|+M2TLf (|t− s|+ ‖φ(η)− ψ(η)‖X)
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≤M2M1|t− s|+M2TLf (|t− s|+ ‖φ− ψ‖C0)

≤ LF (|t− s|+ ‖φ− ψ‖C0),

where LF = M2M1 +TM2Lf and ‖f(t, φ)‖X ≤M1 for some positive constant M1.
Thus all the conditions of theorem 3.1 are satisfied, so we may apply the results

established in the earlier sections to ensure the existence and uniqueness of the
solution.
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