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PERIODIC SOLUTIONS OF NON-AUTONOMOUS SECOND
ORDER SYSTEMS WITH p-LAPLACIAN

ZHIYONG WANG, JIHUI ZHANG

Abstract. We prove the existence of periodic solutions for non-autonomous

second order systems with p-Laplacian. Our main tools are the minimax meth-
ods in critical point theory. Our results are new, even when p = 2.

1. Introduction

In this article concerns the existence of periodic solutions for the problem
d

dt
(|u̇(t)|p−2u̇(t)) = ∇F (t, u(t)) a.e. t ∈ [0, T ],

u(0)− u(T ) = u̇(0)− u̇(T ) = 0,
(1.1)

where p > 1, T > 0, F : [0, T ]× RN → R satisfies the following assumption:
(A) F (t, x) is measurable in t for every x ∈ RN and continuously differentiable

in x for a.e. t ∈ [0, T ], and there exist a ∈ C(R+, R+), b ∈ L1(0, T ; R+),
such that

|F (t, x)| ≤ a(|x|)b(t), |∇F (t, x)| ≤ a(|x|)b(t)
for all x ∈ RN and a.e. t ∈ [0, T ].

Considerable attention has been paid to the periodic solutions of problem (1.1)
for p = 2, in recent years. The firsts to consider this problem when p = 2 were
Berger and Schechter [12] in 1977, they proved the existence of solutions to problem
(1.1) for p = 2 under the condition that F (t, x) → ±∞ as |x| → ∞ uniformly for
a.e. t ∈ [0, T ]. Subsequently, using the variational methods, many existence results
are obtained, we refer the readers to [1, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15] and the
references therein. However, there are few papers discussing periodic solutions for
second order systems with p-Laplacian. In [2], Tian has established the existence
results for problem (1.1) by the dual least action principle. Moreover, if problem
(1.1) with nonlinear boundary conditions, the existence of periodic solutions has
also been proved in [3] by means of the least action principle and the mountain
pass lemma.

For p = 2, under the assumptions that there exists h(t) ∈ L1(0, T ; R+) such that

|∇F (t, x)| ≤ h(t)
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for all x ∈ RN and a.e. t ∈ [0, T ], and that∫ T

0

F (t, x)dt → ±∞ as |x| → ∞,

Mawhin and Willem in [1] have shown that problem (1.1) admitted a periodic
solution. After that, Tang in [4] generalized these results to the sublinear case.
Concertely speaking, it is assumed that the nonlinearity satisfied the following
restrictions

|∇F (t, x)| ≤ k(t)|x|α + p(t) for all x ∈ RN and a.e. t ∈ [0, T ], (1.2)

1
|x|2α

∫ T

0

F (t, x)dt → ±∞ as |x| → ∞, (1.3)

here, k(t), p(t) ∈ L1(0, T ; R+) and α ∈ [0, 1). Under these conditions, periodic
solutions of problem (1.1) with p = 2 have been obtained. In addition, Tang
in [5] first introduced the local α-coercive conditions, that is, there exists q(t) ∈
L1(0, T ; R+) and a subset E of [0, T ] with meas(E) > 0 such that

F (t, x)
|x|2α

≤ q(t) (1.4)

for all x ∈ RN and a.e. t ∈ [0, T ], and that

F (t, x)
|x|2α

→ −∞ as |x| → ∞ (1.5)

for a.e. t ∈ E, to deal with the generalized Josephson-type systems.
An interesting question naturally arises: In all the results [1, 4, 5] discussed

above, the nonlinearity is required to grow at infinity at most like |x|α, is it possible
to handle nonlinearity with faster increase at infinity and get the similar results of
[1, 4, 5]. In the present paper, we will focus on this problem and give a positive
answer. Here, we emphasize that our results are new even for p = 2.

We now state our main theorems.

Theorem 1.1. Suppose that F satisfies assumption (A) and the following condi-
tions:

(H1) There exists a bounded nonincreasing positive function ω ∈ C((0,∞); R+)
with the properties:
(i) lim inft→∞

ω(t)
ω(tγ) > 0 for some γ ∈ (0, 1),

(ii) ω(t) → 0, ω(t)t →∞ as t →∞.
Moreover, there exist f ∈ L2(0, T ; R+) and g ∈ L1(0, T ; R+) such that

|∇F (t, x)| ≤ f(t)[ω(|x|)|x|]p−1 + g(t)

for all x ∈ RN and a.e. t ∈ [0, T ];
(H2) There exists a bounded non-increasing positive function ω ∈ C((0,∞); R+)

which satisfies the conditions (i), (ii) and

1
[ω(|x|)|x|]p

∫ T

0

F (t, x)dx → −∞ as |x| → ∞.
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Then problem (1.1) has at least one solution in the set

W 1,p
T :=

{
u : [0, T ] → RN, u is absolutely continuous,

u(0) = u(T ), u̇ ∈ Lp(0, T ; RN)
}

.

This set is a Banach space with the norm

‖u‖ :=
( ∫ T

0

|u(t)|pdt +
∫ T

0

|u̇(t)|pdt
)1/p

for u ∈ W 1,p
T .

Remark 1.2. Obviously, Theorem 1.1 does not satisfy the corresponding condi-
tions in [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Furthermore, there are functions F (t, x)
that satisfy our Theorem 1.1 and do not satisfy the corresponding results in [1, 4, 5]
even for p = 2. For example, let

∇F (t, x) = − |x|p−2x

[ln(2 + |x|2)]p−1
+ d(t), ∀t ∈ [0, T ], x ∈ RN,

where d(t) ∈ L1(0, T ; R). Let ω(|x|) = 1/ ln(2 + |x|2), γ = 1/2, a straightforward
computation shows that F (t, x) satisfies all the conditions of our Theorem 1.1.
However, it is clear that F (t, x) neither satisfies (1.2), (1.3) nor (1.4), (1.5) for any
α ∈ [0, 1) even for p = 2.

Theorem 1.3. Suppose that F satisfies assumption (A) and (H1). Moreover as-
sume F satisfies the following conditions:
(H2*) (1) There exists a bounded nonincreasing and positive function ω in

C((0,∞); R+) and constant C > 0 such that
(iii) lim supt→∞

ω(t)
ω(tγ) < +∞ for some γ ∈ (0, 1);

(iv) t ≤ Cω2(t)t2 as t →∞;
(2) There exists r(t) ∈ L1(0, T ; R+) such that

F (t, x)
[ω(|x|)|x|]p

≤ r(t) for all x ∈ RN and a.e. t ∈ [0, T ];

(3) There exists a subset E of [0, T ] with meas(E) > 0 such that for a.e.
t ∈ E

F (t, x)
[ω(|x|)|x|]p

→ −∞ as |x| → ∞.

Then problem (1.1) has at least one solution in W 1,p
T .

Remark 1.4. There are functions F (t, x) that satisfy our Theorem 1.3 and not do
not satisfy the corresponding results in [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
For example, let

F (t, x) = −θ(t)
|x|p

[ln(2 + |x|2)]p−1
, ∀t ∈ [0, T ], x ∈ RN,

where

θ(t) =

{
sin 2πt

T , t ∈ [0, T/2],
0, t ∈ [T/2, T ].

Take ω(|x|) = 1/ ln(2 + |x|2), γ = 1/2, E = [T/6, T/4], by simple computation,
F (t, x) satisfies our Theorem 1.3. However, here F (t, x) also neither satisfies (1.2),
(1.3) nor (1.4), (1.5) for any α ∈ [0, 1) even for p = 2.
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2. Preliminaries

For convenience, we will denote various positive constants as Ci, i = 0, 1, 2, . . . .
Define functional ϕ on W 1,p

T by

ϕ(u) =
1
p

∫ T

0

|u̇(t)|pdt +
∫ T

0

F (t, u(t))dt (2.1)

for u ∈ W 1,p
T . It follows from assumption (A) that functional ϕ is continuously

differentiable on W 1,p
T , moreover, one has

(ϕ′(u), v) =
∫ T

0

[(|u̇(t)|p−2u̇(t), v̇(t)) + (∇F (t, u(t)), v(t))]dt

for all u, v ∈ W 1,p
T . It is well known that the solutions to problem (1.1) correspond

to the critical points of the functional ϕ.
For u ∈ W 1,p

T , let ū := 1
T

∫ T

0
u(t)dt and ũ(t) := u(t)− ū, then we have

‖ũ‖∞ ≤ C0‖u̇‖Lp (Sobolev’s inequality),

‖ũ‖Lp ≤ C0‖u̇‖Lp (Wirtinger’s inequality),

where ‖ũ‖∞ := max0≤t≤T |ũ(t)|.
To proof of our main theorems, we need the following auxiliary results.

Lemma 2.1 ([6]). Suppose that G satisfies assumption (A) and E is a measurable
subset of [0, T ]. Assume that

G(t, x) → +∞ as |x| → ∞

for a.e. t ∈ E. Then for every δ > 0, there exists subset Eδ of E with meas(E\Eδ) <
δ such that

G(t, x) → +∞ as |x| → ∞
uniformly for all t ∈ Eδ.

Lemma 2.2 ([5]). For every constant β > 0, there exists a constant mβ > 0 such
that

meas{t ∈ [0, T ]||ū| < mβ‖ū‖} < β for all ū 6= 0.

The proof of the above lemma follows from the first part in [5, Lemma 3], we
omit the details.

Lemma 2.3. Suppose that (H1) holds, then there exists a non-increasing positive
function ω̃(t) ∈ C((0,∞); R+) which satisfies the following conditions:

(a) ω̃(t) → 0, ω̃(t)t →∞ as t →∞;
(b) ‖∇F (t, u(t))‖L1 ≤ ‖f‖L2 [ω̃(‖u‖)‖u‖]p−1 + ‖g‖L1 ;
(c) If (H2) holds, then

1
[ω̃(‖ū‖)‖ū‖]p

∫ T

0

F (t, ū)dt → −∞ as ‖ū‖ → ∞;

(d) If (H2*) holds, moreover assume that lim sup‖u‖→∞
‖ũ‖

ω̃(‖u‖)‖u‖ < +∞, then

1
[ω̃(‖u‖)‖u‖]p

∫ T

0

F (t, u(t))dt → −∞ as ‖u‖ → ∞.
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Proof. Let A := {t ∈ [0, T ]||u(t)| ≥ (T−1/p‖u‖)1/2}, for u(t) 6= 0, by (H1) and the
Hölder’s inequality, we have

‖∇F (t, u(t))‖L1

≤
∫ T

0

[f(t)(ω(|u(t)|)|u(t)|)p−1 + g(t)]dt

≤ ‖f‖L2

[ ∫ T

0

[ω(|u(t)|)|u(t)|]2(p−1)dt
]1/2

+ ‖g‖L1

≤ ‖f‖L2

[ ∫
A

[ω(|u(t)|)|u(t)|]2(p−1)dt +
∫

[0,T ]\A
[ω(|u(t)|)|u(t)|]2(p−1)dt

]1/2

+ ‖g‖L1

≤ ‖f‖L2

[ ∫ T

0

(
ω((T−1/p‖u‖)1/2)|u(t)|

)2(p−1)

dt

+ (sup
s>0

ω(s))2(p−1)

∫ T

0

(T−1/p‖u‖)p−1dt
]1/2

+ ‖g‖L1

≤ ‖f‖L2

[
C1

(
ω((T−1/p‖u‖)1/2)‖u‖

)2(p−1)

+ C2‖u‖p−1

]1/2

+ ‖g‖L1

≤ ‖f‖L2

[
C3

(
ω2((T−1/p‖u‖)1/2)‖u‖2 + ‖u‖

)] p−1
2

+ ‖g‖L1 .

Take ω̃(t) :=
[
C3

(
ω2((T−1/pt)1/2) + 1

t

)]1/2
, t > 0, then

‖∇F (t, u(t))‖L1 ≤ ‖f‖L2 [ω̃(‖u‖)‖u‖]p−1 + ‖g‖L1 .

Obviously, ω̃(t) satisfies (a) due to the properties of ω(t).
Next, we come to check condition (c). Note that lim inft→∞ ω(t)/ω(tγ) > 0 for

γ ∈ (0, 1), we define

ξ := lim inf
t→∞

ω2(T−1/pt)
ω2((T−1/pt)1/2)

> 0,

if (H2) holds, for any M > 0, we get∫ T

0

F (t, u(t))dt ≤ −M [ω(|u(t)|)|u(t)|]p + C4, (2.2)

which implies that for ū 6= 0∫ T

0
F (t, ū)dt

[ω̃(‖ū‖)‖ū‖]p
≤

−M
[
ω(|ū|)|ū|

]p + C4[
C3

(
ω2

(
(T−1/p‖ū‖)1/2

)
‖ū‖2 + ‖ū‖

) ]p/2

=
−M

[
ω(T−1/p‖ū‖)T−1/p‖ū‖

]p
+ C4[

C3

(
ω2

(
(T−1/p‖ū‖)1/2

)
‖ū‖2 + ‖ū‖

)]p/2
.

(2.3)

By the definition of ξ, there exists R > 0 such that

ω2(T−1/pt)t2

ω2
(
(T−1/pt)1/2

)
t2 + t

≥ ξ

2
as t ≥ R. (2.4)
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Therefore,

1
[ω̃(‖ū‖)‖ū‖]p

∫ T

0

F (t, ū)dt

≤
−MT−1

[
ξ
2

(
ω2((T−1/p‖ū‖)1/2)‖ū‖2 + ‖ū‖

) ]p/2 + C4[
C3

(
ω2((T−1/p‖ū‖)1/2)‖ū‖2 + ‖ū‖

)]p/2

≤ −C5M as ‖ū‖ → ∞,

(2.5)

condition (c) holds.
Finally, we show that (d) is true. From Lemma 2.2, for all ū 6= 0, we have

meas
{
t ∈ [0, T ]|ω(|ū|)|ū| < mβω(|ū|)‖ū‖ = mβω(T−1/p‖ū‖)‖ū‖

}
< β.

Consequently, for all ū 6= 0, let B := {t ∈ [0, T ]|ω(|ū|)|ū| ≥ mβω(T−1/p‖ū‖)‖ū‖},
then we have meas([0, T ]\B) < β.

By (H2*)(3) and Lemma 2.1, there exists subset Eδ of E with meas(E\Eδ) < δ
such that

F (t, x)
[ω(|x|)|x|]p

→ −∞ as |x| → ∞ (2.6)

uniformly for all t ∈ Eδ. Then, we find

meas(B ∩ Eδ) ≥ meas(Eδ)−meas([0, T ]\B) ≥ meas(E)− δ − β > 0 (2.7)

for δ and β small enough. By (2.6), for every η > 0, there exists L > 0 such that

F (t, x)
[ω(|x|)|x|]p

≤ −η

for all |x| ≥ L and a.e. t ∈ Eδ. Furthermore, applying assumption (H∗
2 )(2) yields

F (t, x) ≤ −η[ω(|x|)|x|]p + r∗(t)

for all x ∈ RN and a.e. t ∈ Eδ, where r∗(t) := (sups>0 ω(s))pLpr(t). Noting the
definition of ω̃(t), 0 < lim inft→∞

ω(t)
ω(tγ) ≤ lim supt→∞

ω(t)
ω(tγ) < +∞ and assumption

(H∗
2 )(1)(iv), we deduce that there exist C6, C7 > 0 such that

C6ω(T−1/p‖ū‖)‖ū‖ ≤ ω̃(‖ū‖)‖ū‖

= [C3(ω2((T−1/p‖ū‖)1/2)‖ū‖2 + ‖ū‖)]1/2

≤ C7ω(T−1/p‖ū‖)‖ū‖ as ‖ū‖ → ∞,

which implies∫
B∩Eδ

F (t, ū)dt ≤ −η

∫
B∩Eδ

[ω(|ū|)|ū|]pdt +
∫

B∩Eδ

r∗(t)dt

≤ −η

∫
B∩Eδ

[ω(T−1/p‖ū‖)mβ‖ū‖]pdt +
∫

B∩Eδ

r∗(t)dt

≤ −η

∫
B∩Eδ

mβ
p

C7
(ω̃(‖ū‖)‖ū‖)pdt +

∫
B∩Eδ

r∗(t)dt

≤ −ηC8[ω̃(‖ū‖)‖ū‖]p +
∫

B∩Eδ

r∗(t)dt as ‖ū‖ → ∞,

(2.8)
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and ∫
[0,T ]\(B∩Eδ)

F (t, ū)dt ≤
∫

[0,T ]\(B∩Eδ)

r(t)[ω(|ū|)|ū|]pdt

≤
∫ T

0

r(t)[ω(T−1/p‖ū‖)T−1/p‖ū‖]pdt

≤
∫ T

0

T−1

C6
(ω̃(‖ū‖)‖ū‖)pr(t)dt

≤ C9[ω̃(‖ū‖)‖ū‖]p
∫ T

0

r(t)dt as ‖ū‖ → ∞.

(2.9)

So, it follows from (2.8) and (2.9) that

lim sup
‖ū‖→∞

1
[ω̃(‖ū‖)‖ū‖]p

∫ T

0

F (t, ū)dt ≤ −ηC8 + C9

∫ T

0

r(t)dt,

which implies that

1
[ω̃(‖ū‖)‖ū‖]p

∫ T

0

F (t, ū)dt → −∞ as ‖ū‖ → ∞. (2.10)

On the other hand, from (b) and the assumptions of (d), we get

∣∣ ∫ T

0

F (t, u(t))dt−
∫ T

0

F (t, ū)dt
∣∣ ≤ ∫ T

0

∫ 1

0

|∇F (t, ū + sũ)||ũ| ds dt

≤ ‖ũ‖∞[‖f‖L2(ω̃(‖u‖)‖u‖)p−1 + ‖g‖L1 ]

≤ C10[ω̃(‖u‖)‖u‖]p−1‖ũ‖+ C11‖ũ‖.

(2.11)

As a consequence, note lim sup‖u‖→∞
‖ũ‖

ω̃(‖u‖)‖u‖ < +∞, we then have

C12 := lim sup
‖u‖→∞

∣∣∣ 1
[ω̃(‖u‖)‖u‖]p

[ ∫ T

0

F (t, u(t))dt−
∫ T

0

F (t, ū)dt
]∣∣∣ < +∞. (2.12)

In addition, for ‖u‖ → ∞, one knows

1 =
‖u‖
‖u‖

=
‖ū‖+ ‖ũ‖

‖u‖
=
‖ū‖
‖u‖

+
‖ũ‖

ω̃(‖u‖)‖u‖
· ω̃(‖u‖) =

‖ū‖
‖u‖

. (2.13)

This, in conjunction with (2.10)-(2.12), gives

lim sup
‖u‖→∞

1
[ω̃(‖u‖)‖u‖]p

∫ T

0

F (t, u(t))dt

≤ lim sup
‖u‖→∞

1
[ω̃(‖u‖)‖u‖]p

∫ T

0

F (t, ū)dt + C12

= lim sup
‖ū‖→∞

1
[ω̃(‖ū‖)‖ū‖]p

∫ T

0

F (t, ū)dt + C12 → −∞,

(2.14)

which completes the proof. �
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3. Proofs of theorems

Now, we give the proofs of the main results.

Proof of Theorem 1.1. First, we prove that ϕ satisfies the (PS) condition. Suppose
that {un} is a (PS) sequence for ϕ, that is, ϕ′(un) → 0 as n → ∞ and {ϕ(un)} is
bounded. It follows from Wirtinger’s inequality that

‖u̇n‖Lp ≤ ‖ũn‖ ≤ (C0 + 1)1/p‖u̇n‖Lp (3.1)

for all n. By virtue of the properties of ω̃(t), one has

ω̃(‖ū + ũ‖) ≤ min{ω̃(‖ū‖), ω̃(‖ũ‖)}, (3.2)

which implies

∣∣ ∫ T

0

(∇F (t, un(t)), ũn(t))dt
∣∣

≤ ‖ũn‖∞
[
‖f‖L2(ω̃(‖un‖)‖un‖)p−1 + ‖g‖L1

]
≤ ‖ũn‖∞

[
‖f‖L2(ω̃(‖ūn + ũn‖)‖ūn + ũn‖)p−1 + ‖g‖L1

]
≤ ‖ũn‖∞

[
‖f‖L2(ω̃(‖ūn‖)‖ūn‖+ ω̃(‖ũn‖)‖ũn‖)p−1 + ‖g‖L1

]
≤ C13‖ũn‖ [ω̃(‖ūn‖)‖ūn‖]p−1 + C13‖ũn‖ [ω̃(‖ũn‖)‖ũn‖]p−1+ C14‖ũn‖

(3.3)

for all n. Thus, by (3.1) and (3.3), we get

‖ũn‖ ≥ (ϕ′(un), ũn)

=
∫ T

0

|u̇n(t)|pdt +
∫ T

0

(∇F (t, un(t)), ũn(t))dt

≥ C15‖ũn‖p − C13‖ũn‖ [ω̃(‖ūn‖)‖ūn‖]p−1

− C13‖ũn‖ [ω̃(‖ũn‖)‖ũn‖]p−1 − C14‖ũn‖.

(3.4)

Assume that {‖ũn‖} is unbounded; that is, ‖ũn‖ → ∞ as n →∞. Since ω̃(t) → 0
as t →∞, it follows from (3.4) that we can find a constant C16 > 0 such that

C16ω̃(‖ūn‖)‖ūn‖ ≥ ‖ũn‖, (3.5)

which implies

[C3(ω2((T−1/p‖ūn‖)1/2)‖ūn‖2 + ‖ūn‖)]1/2 = ω̃(‖ūn‖)‖ūn‖ → ∞ as n →∞.

Since ω is bounded, this leads to

‖ūn‖ → ∞ as n →∞. (3.6)
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On the other hand, ‖ūn + sũn‖ ≥ ‖ūn‖, s ∈ [0, 1], by Lemma 2.3 (b) and (3.5), we
see that∫ T

0

[F (t, un(t))− F (t, ūn)]dt

≤
∣∣ ∫ T

0

∫ 1

0

(∇F (t, ūn + sũn(t)), ũn(t)) ds dt
∣∣

≤ ‖ũn‖∞
∫ T

0

∫ 1

0

|∇F (t, ūn + sũn(t))| ds dt

≤ ‖f‖L2 [ω̃(‖ūn + sũn‖)‖ūn + sũn‖]p−1 ‖ũn‖∞ + ‖g‖L1‖ũn‖∞
≤ ‖f‖L2 [ω̃(‖ūn‖)‖ūn‖+ ω̃(‖ūn‖)‖ũn‖]p−1‖ũn‖∞ + ‖g‖L1‖ũn‖∞
≤ C17‖ũn‖[ω̃(‖ūn‖)‖ūn‖]p−1 + C17‖ũn‖[ω̃(‖ūn‖)‖ũn‖]p−1 + C18‖ũn‖
≤ C19[ω̃(‖ūn‖)‖ūn‖]p + C20[ω̃(‖ūn‖)‖ūn‖]p[ω̃(‖ūn‖]p−1 + C21ω̃(‖ūn‖)‖ūn‖,

(3.7)
which implies that

ϕ(un) =
1
p
‖u̇n‖p

Lp +
∫ T

0

[F (t, un(t))− F (t, ūn)]dt +
∫ T

0

F (t, ūn)dt

≤ C22[ω̃(‖ūn‖)‖ūn‖]p + C20[ω̃(‖ūn‖)‖ūn‖]p[ω̃(‖ūn‖]p−1

+ C21ω̃(‖ūn‖)‖ūn‖+
∫ T

0

F (t, ūn)dt

≤ [ω̃(‖ūn‖)‖ūn‖]p
[
C22 + C20[ω̃(‖ūn‖]p−1 +

C21

[ω̃(‖ūn‖)‖ūn‖]p−1

+
1

[ω̃(‖ūn‖)‖ūn‖]p

∫ T

0

F (t, ūn)dt
]
→ −∞ as ‖ūn‖ → ∞.

(3.8)

This contradicts the boundedness of ϕ(un). So

{‖ũn‖} is bounded. (3.9)

Suppose that {‖ūn‖} is unbounded and {‖ũn‖} is bounded. With the similar
manner above, we deduce that

ϕ(un) =
1
p
‖u̇n‖p

Lp +
∫ T

0

[F (t, un(t))− F (t, ūn)]dt +
∫ T

0

F (t, ūn)dt

≤ C23‖ũn‖p + C17‖ũn‖[ω̃(‖ūn‖)‖ũn‖]p−1 + C18‖ũn‖+
∫ T

0

F (t, ūn)dt

≤ C24 + C25[ω̃(‖ūn‖)‖ũn‖]p−1 + C26[ω̃(‖ūn‖)]p−1 +
∫ T

0

F (t, ūn)dt

≤ [ω̃(‖ūn‖)‖ūn‖]p
[ C24

[ω̃(‖ūn‖)‖ūn‖]p
+

C25

ω̃(‖ūn‖)‖ūn‖
+

C26

ω̃(‖ūn‖)‖ūn‖p

+
1

[ω̃(‖ūn‖)‖ūn‖]p

∫ T

0

F (t, ūn)dt
]
→ −∞ as ‖ūn‖ → ∞,

(3.10)
which also contradicts the boundedness of ϕ(un). Then

{‖ūn‖} is also bounded. (3.11)
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From (3.9) and (3.11), we have {‖un‖} is bounded, thus ϕ satisfies the (PS) condi-
tion.

Since W 1,p
T = RN ⊕ W̃ 1,p

T , where W̃ 1,p
T := {u ∈ W 1,p

T |
∫ T

0
u(t)dt = 0}. Next, we

shall prove that
ϕ(u) → +∞ as ‖u‖ → ∞ in W̃ 1,p

T . (3.12)
In fact, since ω̃(t) → 0 as t →∞, then there exists A > 0 such that ω̃(A) ≤ 1

2pC29
.

In a similar way to (3.7), we have∣∣ ∫ T

0

[F (t, u(t))− F (t, A)]dt
∣∣

≤ C17‖ũ‖[ω̃(A)A]p−1 + C17‖ũ‖[ω̃(A)‖ũ‖]p−1 + C18‖ũ‖
≤ C27‖ũ‖+ C17ω̃(A)‖ũ‖p

≤ C28‖u̇‖Lp + C29ω̃(A)‖u̇‖p
Lp

≤ C28‖u̇‖Lp +
1
2p
‖u̇‖p

Lp ,

which implies

ϕ(u) =
1
p
‖u̇‖p

Lp +
∫ T

0

[F (t, u(t))− F (t, A)]dt−
∫ T

0

F (t, A)dt

≥ 1
p
‖u̇‖p

Lp −
1
2p
‖u̇‖p

Lp − C28‖u̇‖Lp −
∫ T

0

F (t, A)dt

(3.13)

for all u ∈ W̃ 1,p
T . By Wirtinger’s inequality, one has

‖u‖ → ∞⇔ ‖u̇‖Lp →∞ on W̃ 1,p
T .

Hence, (3.12) follows from (3.13). On the other hand, by (H2),

ϕ(u) → −∞ as |u| → ∞ in RN. (3.14)

Combine (3.12) and (3.14), applying saddle point theorem, then problem (1.1) has
at least one solution in W 1,p

T . �

Proof of Theorem 1.3. We commence by showing that ϕ satisfies (PS) condition.
Let {un} be a sequence in W 1,p

T such that {ϕ(un)} is bounded and ϕ′(un) → 0
as n → ∞. If {un} is unbounded, without loss of generality, we may assume that
‖un‖ → ∞ as n →∞. It follows from Lemma 2.3 (b) that∣∣ ∫ T

0

(∇F (t, un(t)), ũn(t))dt
∣∣ ≤ ‖ũn‖∞[‖f‖L2 [ω̃(‖un‖)‖un‖]p−1 + ‖G‖L1 ]

≤ C30[ω̃(‖un‖)‖un‖]p−1‖ũn‖+ C31‖ũn‖.
(3.15)

Hence, we have

‖ũn‖ ≥ (ϕ′(un), ũn)

=
∫ T

0

|u̇n(t)|pdt +
∫ T

0

(∇F (t, un(t)), ũn(t))dt

≥ C32‖ũn‖p − C30[ω̃(‖un‖)‖un‖]p−1‖ũn‖ − C31‖ũn‖,
which implies

lim sup
‖un‖→∞

‖ũn‖
ω̃(‖un‖)‖un‖

< +∞. (3.16)
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Therefore, by Lemma 2.3 (d), one has

1
[ω̃(‖un‖)‖un‖]p

∫ T

0

F (t, un(t))dt → −∞ as ‖un‖ → ∞. (3.17)

However, by the boundedness of ϕ(un) and (3.16), we get

∣∣ 1
[ω̃(‖un‖)‖un‖]p

∫ T

0

F (t, un(t))dt
∣∣ =

∣∣ ϕ(un)
[ω̃(‖un‖)‖un‖]p

−
1
p

∫ T

0
|u̇n(t)|pdt

[ω̃(‖un‖)‖un‖]p
∣∣

≤
1
p

∫ T

0
|u̇n(t)|pdt

[ω̃(‖un‖)‖un‖]p

≤ C33‖ũn‖p

[ω̃(‖un‖)‖un‖]p
< +∞,

(3.18)

which contradicts (3.17). So, ϕ satisfies the (PS) condition.
As in the proof of Theorem 1.1, we can obtain

ϕ(u) → +∞ as ‖u‖ → ∞ in W̃ 1,p
T .

Furthermore, from (2.10), it is easy to see that

ϕ(u) → −∞ as |u| → ∞ in RN.

Thus, using the saddle point theorem, problem (1.1) has at least one solution in
W 1,p

T . �
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