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EXISTENCE OF CONVEX AND NON CONVEX LOCAL
SOLUTIONS FOR FRACTIONAL DIFFERENTIAL INCLUSIONS

RABHA W. IBRAHIM

Abstract. In this paper, we establish the existence theorems for a class of

fractional differential inclusion of order n − 1 < α ≤ n. The study holds in
two cases, when the set-valued function has convex and non-convex values.

1. Introduction

We study the existence of solutions for a class of nonlinear differential inclusions
of fractional order. The operators are taken in the Riemann-Liouville sense and the
initial conditions are specified according to Caputo’s suggestion, thus allowing for
interpretation in a physically meaningful way. There are numerous books focused
in this direction, that is concerning the linear and nonlinear problems involving
different types of fractional derivatives as well as integral (see [21, 24, 25, 27, 28]).
El-Sayed and Ibrahim [13, 14, 18] gave the concept of the definite integral of frac-
tional order for set-valued function. As applications of this type of problem, it
arises in the study of control systems, game theory and programing languages (see
[2, 3, 20]).

The Riemann-Liouville fractional operators are defined as follows; see [24, 27]:

Definition 1.1. The fractional integral operator Iα of order α > 0 of a continuous
function f(t) is given by

Iα
0 f(t) := Iαf(t) =

1
Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ.

We can write Iα
0 f(t) = f(t) ∗ψα(t) where ψα(t) = tα−1

Γ(α) for t > 0 and ψα(t) = 0 for
t ≤ 0 and ψα(t) → δ(t) (the delta function) as α→ 0 (see [24, 27]).

Definition 1.2. The fractional derivatives Dα of order n − 1 < α ≤ n of the
function f(t) is given by

Dα
a f(t) =

1
Γ(n− α)

dn

dtn

∫ t

0

(t− τ)n−α−1f(τ)dτ.
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This paper concerns the fractional differential inclusion
Dα(u− Tn−1[u])(t) ∈ F (t, u(t), ρ(t)); n− 1 < α ≤ n, t ∈ J := [0, T ],

u(k)(0) = u
(k)
0 ∈ R, k = 0, 1, . . . , n− 1

(1.1)

where Tn−1[u] is the Taylor polynomial of order (n − 1) for u, centered at 0, ρ :
J → R is a continuous function and F : J ×R×R → P(R) is a set-valued function
with nonempty values in R, where P(R) is the family of all nonempty subsets of R.

This paper is organized as follows: In Section 2, we will recall briefly some
basic definitions and preliminary facts from set-valued analysis which will be used
later. In Section 3, we shall establish the existence and uniqueness solution for the
single-valued problem

Dα(u− Tn−1[u])(t) = f(t, u(t), ρ(t)); n− 1 < α ≤ n, t ∈ J = [0, T ],

u(k)(0) = u
(k)
0 , k = 0, 1, . . . , n− 1

(1.2)

by using the Schauder fixed point theorem (see [6]) and the Banach fixed point
theorem (see [29]) respectively. In Section 4, we shall study the existence of solution
for the set-valued problem (1.1) when F has a convex as well as non-convex values
via the single-valued problem as well as fixed point theorems of the set-valued
function. In the first case (convex) a fixed point theorem due to Martelli [23] is
used. A fixed point theorem for contraction set-valued functions due to Covitz and
Nadler [9] is applied in the second one (non-convex).

2. Preliminaries

In this section, we introduce notation, definitions, and preliminary facts from
set-valued analysis which are used throughout this paper. For further background
and details pertaining to this section we refer the reader to [4, 7, 16, 17, 19, 26, 30].
B := C[J,R] is the Banach space of all continuous functions from J into R with

the norm
‖u‖ = sup{|u(t)| : t ∈ J}

for each u ∈ B. L := L1[J,R] denotes the Banach space of measurable functions
u : J → R which are Lebesgue integrable normed by

‖u‖L1 =
∫ T

0

|u(t)|dt,

for u ∈ L. Let (X, | · |) be a normed space, Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact},
Pc(X) = {Y ∈ P(X) : Y is convex}, Pcl,c(X) = {Y ∈ P(X) : Y is closed and convex},
Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}. A set-valued function F :
X → P(X) is called convex (closed) valued if F (x) is convex (closed) for all
x ∈ X. F is called bounded valued on bounded set B if F (B) =

⋃
x∈B F (x) is

bounded in X for all B ∈ Pb(X) i.e. supx∈B{sup{|u| : u ∈ F (x)}} < ∞. F is
called upper semi-continuous (u.s.c) on X if for each x0 ∈ X the set F (x0) is
nonempty closed subset of X and if for each open set N of X containing F (x0),
there exists an open neighborhood N0 of x0 such that F (N0) ⊆ N . In other wards
F is u.s.c if the set F−1(A) = {x ∈ X : Fx ⊂ A} is open in X for every open set
A in X. F is called lower semi-continuous (l.s.c) on X if A is any open subset
of X then F−1(A) = {x ∈ X : Fx ∩ A 6= ∅} is open in X. F is called continuous
if it is lower as well as upper semi-continuous on X. F is called compact if for
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every M bounded subset of X, F (M) is relatively compact. Finally F is called
completely continuous if it is upper semi-continuous and compact on X. The
following definitions are used in the sequel.

Definition 2.1. A mapping p : J × R → R is said to be Carathéodory if

(i) t→ p(t, u) is measurable for each u ∈ R,
(ii) u→ p(t, u) is continuous a.e. for t ∈ J .

A Carathéodory function p(t, u) is called L1(J,R)-Carathéodory if

(iii) for each number r > 0 there exists a function hr ∈ L1(J,R) such that
|p(t, u)| ≤ hr(t) a.e. t ∈ J for all u ∈ R with |u| ≤ r.

A Carathéodory function p(t, u) is called L1
X(J,R)-Carathéodory if

(iv) there exists a function h ∈ L1(J,R) such that |p(t, u)| ≤ h(t) a.e t ∈ J for
all u ∈ R where h is called the bounded function of p.

Definition 2.2. A set-valued function F : J → P(R) is said to be measurable if
for any x ∈ X, the function t 7→ d(x, F (t)) = inf{|x−u| : u ∈ F (t)} is measurable.

Definition 2.3. A set-valued function F : J ×R → P(R) is called Carathéodory if

(i) t 7→ F (t, x) is measurable for each x ∈ R, and
(ii) x 7→ F (t, x) is u.s.c. for almost t ∈ J .

Definition 2.4. A set-valued function F : J×R → P(R) is called L1-Carathéodory
if

(i) F is Carathéodory and
(ii) For each r > 0, there exists hr ∈ L1(J,R) such that ‖F (t, u)‖ = sup{|f | :

f ∈ F (t, u)} ≤ hr(t) for all |u| ≤ r and for a.e. t ∈ J .

Definition 2.5 ([11]). A set-valued function F : J × R → P(R) is called L1
X -

Carathéodory if there exists a function h ∈ L1(J,R) such that

‖F (t, u)‖ = sup{|f | : f ∈ F (t, u)} ≤ h(t), a.e. t ∈ J

for all x ∈ R, and the function h is called a growth function of F on J × R.
Let A,B ∈ Pcl(X), let a ∈ A and let

D(a,B) = inf{‖a− b‖ : b ∈ B} and ρ(A,B) = sup{D(a,B) : a ∈ A} .

The function H : Pcl(X)× Pcl,b(X) → R+ defined by

H(A,B) = max{ρ(A,B), ρ(B,A)}

is a metric and is called Hausdorff metric on X. Moreover (Pcl,b(X),H) is a metric
space and (Pcl(X),H) is a complete metric space (see [22]). It is clear that

H(0, C) = sup{‖c‖ : c ∈ C;C ∈ Pb(X)}.

Definition 2.6. A set-valued function F : R → Pcl(R) is called
(i) γ-Lipschitz if there exists γ > 0 such that

H(F (x), F (y)) ≤ γ‖x− y‖, for each x, y ∈ X

the constant γ is called a Lipschitz constant.
(ii) a contraction if it is γ-Lipschitz with γ < 1.
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Definition 2.7. A set-valued function F : J × R → Pcl(R) is called
(i) γ(t)-Lipschitz if there exists γ ∈ L1(J,R+) such that

H(F (t, x), F (t, y)) ≤ γ(t)‖x− y‖, for each x, y ∈ X.

(ii) a contraction if it is γ(t)-Lipschitz with ‖γ‖ < 1.

The following remark and lemmas are used in the sequel.

Remark 2.8 ([5]). Let M ⊂ X. If F : M → P(X) is closed and F (M) is
relatively compact then F is u.s.c. on M . And if F : X → P(X) is closed and
compact operator then F is u.s.c.on X.

Lemma 2.9 ([23]). Let T : X → Pc,cp(X) be a completely continuous set-valued
function. If

ε = {u ∈ X : λu ∈ Tu, for some λ > 1}

is a bounded set, then T has a fixed point.

Lemma 2.10 ([9]). Let (X, d) be a complete metric space. If G : X → Pcl(X) is
a contraction, then G has a fixed point.

3. Single-valued problem

In this section we prove that the fractional differential equation (1.2) has a
solution u(t) on J . By using some classical results from the fractional calculus, the
following result held (see [28]).

Lemma 3.1. If the function f is continuous, then the initial value problem (1.2)
is equivalent to the nonlinear Volterra integral equation of the second kind,

u(t) =
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1f(τ, u(τ), ρ(τ))dτ, (3.1)

where n− 1 < α ≤ n, t ∈ J = [0, T ]. In other words, every solution of the Volterra
equation (3.1) is also a solution of the initial value problem (1.2) and vice versa.

Diethelm and Ford [10] proved the existence of solutions for (3.1) in the case
0 < α < 1. Let us formulate the following assumption:

(H1) The function f is L1
X -Carathéodory with bounded function h ∈ L1(J ×

R,R+); i.e., |f(t, u, ρ)| ≤ h(t, ρ) a.e t ∈ J for all u ∈ R such that ‖h‖L1 <∞.

Theorem 3.2. Let the assumption (H1) hold. Then the fractional differential
equation (1.2) has at least one solution u(t) on J .

Proof. Define an operator P by

(Pu)(t) :=
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1f(τ, u(τ), ρ(τ))dτ (3.2)
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then by the assumption of the theorem and the properties of fractional calculus we
obtain

|(Pu)(t)| ≤
n−1∑
k=0

tk

k!
|u(k)(0)|+ 1

Γ(α)

∫ t

0

(t− τ)α−1|f(τ, u(τ), ρ(τ))|dτ

≤
n−1∑
k=0

tk

k!
|u(k)(0)|+ 1

Γ(α)

∫ t

0

(t− τ)α−1h(τ, ρ)dτ

≤
n−1∑
k=0

T k

k!
|u(k)(0)|+ ‖h‖L1Tα

Γ(α+ 1)
.

Hence

‖Pu‖ ≤
n−1∑
k=0

T k

k!
|u(k)(0)|+ ‖h‖L1Tα

Γ(α+ 1)
.

Set r :=
∑n−1

k=0
T k

k! |u
(k)(0)| + ‖h‖L1T α

Γ(α+1) that is P : Br → Br. Then P maps Br into
itself. In fact, P maps the convex closure of P [Br] into itself. Since f is bounded
on Br, thus P [Br] is equicontinuous and the Schauder fixed point theorem shows
that P has at least one fixed point u ∈ B = C[J,R] such that Pu = u, which is
corresponding to the solution of (1.2). �

For the uniqueness of solutions, we introduce the following assumption:
(H2) The function f satisfies that there exists a function `(t) ∈ L1(J,R+) with,

‖`‖L1 <∞, such that for each u, v ∈ C[J,R] we have

|f(t, u, ρ)− f(t, v, ρ)| ≤ `(t)‖u− v‖.

Theorem 3.3. Let (H2) hold. If ‖`‖L1Tα/Γ(α+1) < 1, then the fractional differ-
ential equation (1.2) has a unique solution u(t) on J .

Proof. Using the operator P defined in (1.2), we have

|(Pu)(t)− (Pv)(t)| ≤ 1
Γ(α)

∫ t

0

(t− τ)α−1|f(τ, u(τ), ρ(τ))− f(τ, v(τ), ρ(τ))|dτ

≤ ‖u− v‖∞
Γ(α)

∫ t

0

(t− τ)α−1`(τ)dτ

≤ ‖`‖L1Tα

Γ(α+ 1)
‖u− v‖∞.

Hence P is a contraction mapping. Then in virtue of the Banach fixed point
theorem, P has a unique fixed point which is corresponding to the solution of
equation (1.2). �

4. Set-valued problem

In this section we study the existence results for the differential inclusion (1.1)
when the right hand side is convex as well as non-convex valued. The study will be
taken in view of the single-valued problem (Theorems 3.2, 3.3) as well as fixed point
theorems of set-valued function. The definite integral for the set-valued function F
of order α defines as follows:

IαF (t, u(t), ρ(t)) = { 1
Γ(α)

∫ t

0

(t− τ)α−1f(τ, u(τ), ρ(τ))dτ : f(t, u, ρ) ∈ SF (u)},
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where
SF (u) = {f ∈ L1(J,R) : f(t) ∈ F (t, u(t), ρ(t)) a.e. t ∈ J}

denotes the set of selections of F . Let us introduce the following assumption
(H3) The set-valued function F : J × R → Pcl,c(R) is L1

X -Carathéodory with a
growth function h ∈ L1(J × R,R+); i.e., ‖F (t, u, ρ)‖ ≤ h(t, ρ) a.e t ∈ J for
all u ∈ R such that ‖h‖L1 .

Theorem 4.1. Let (H3) hold. If F is lower semi-continuous (l.s.c). Then the
differential inclusion (1.1) has at least one solution u(t) on J .

Proof. This proof depends on the (single-valued problem). Inclusion (1.1) can re-
duce to the integral inclusion

u(t) ∈
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1F (τ, u(τ), ρ(τ))dτ, (4.1)

where n− 1 < α ≤ n, t ∈ J = [0, T ]. For each u(t) in R, the set SF (u) is nonempty
since by (H3), F has a non-empty measurable selection (see [8]). Thus there exists a
function f(t) ∈ F where f is a L1

X -Carathéodory function with a bounded function
h ∈ L1(J × R,R+) such that ‖f‖ ≤ ‖h‖ a.e t ∈ J for all u ∈ R. Hence the
assumptions of Theorem 3.2 are satisfied then the inclusion (4.1) has a solution
and consequently (1.1). �

We define the partial ordering ≤ in Wn,1(J,R), the Sobolev class of functions
u : J → R for which u(n−1)are absolutely continuous and u(n) ∈ L1(J,R) as follows:
Let u, v ∈Wn,1(J,R) then define

u ≤ v ⇔ u(t) ≤ v(t), for all t ∈ J.

If a, b ∈ Wn,1(J,R) and a ≤ b then we define an order interval [a, b] ∈ Wn,1(J,R)
by

[a, b] := {u ∈Wn,1(J,R) : a ≤ u ≤ b}.

Definition 4.2 ([1]). A function u is called a lower solution of (1.1) if there ex-
ists an L1(J,R) function f1(t) in F (t, u(t), ρ(t)) a.e. t ∈ J . such that u(n)(t) ≤
f1(t), a.e.t ∈ J and u(k)(0) ≤ u

(k)
0 , k = 0, 1, . . . , n − 1. Similarly a function u

is called an upper solution of the problem (1.1) if there exists an L1(J,R) func-
tion f2(t) in F (t, u(t), ρ(t)), a.e. t ∈ J such that u(n)(t) ≥ f2(t), a.e. t ∈ J and
u(k)(0) ≥ u

(k)
0 , k = 0, 1, . . . , n− 1.

(H4) The initial value problem (1.1) has a lower solution u and an upper solution
u with u ≤ u.

Theorem 4.3 (Convex case). Let (H3)-(H4) hold. Then the differential inclusion
(1.1) has at least one solution u(t) such that

u(t) ≤ u(t) ≤ u(t), for all t ∈ J.

Proof. Now we shall show that the assumptions of Lemma 2.9 are satisfied in a
suitable Banach space. Consider the problem

Dα(u− Tn−1[u])(t) ∈ F (t, Au(t), ρ(t)), n− 1 < α ≤ n, t ∈ J := [0, T ],

u(k)(0) = u
(k)
0 ∈ R, n = 0, 1, . . . , n− 1

(4.2)
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where A : C(J,R) → C(J,R) is the truncation operator defined by

(Au)(t) =


u(t) if u(t) < u(t);
u(t) if u(t) ≤ u(t) ≤ u(t);
u(t) if u(t) < u(t).

The problem of the existence of a solution to (1.1) reduce to finding a solution to
the integral inclusion

u(t) ∈
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1F (τ,Au(τ), ρ(t))dτ, (4.3)

where n− 1 < α ≤ n, t ∈ J = [0, T ]. We study (4.3) in the space of all continuous
real functions on J endow with a supremun norm. Define a set-valued function
operator N : C(J,R) → P(C(J,R)) by

Nu = {u ∈ C(J,R) : u(t) =
n−1∑
k=0

tk

k!
u(k)(0)+

1
Γ(α)

∫ t

0

(t−τ)α−1f(τ)dτ, f ∈ SF (Au)}

(4.4)
where

SF (Au) = {f ∈ SF (Au) : f(t) ≥ u(t) a.e. t ∈ J1 and f(t) ≤ u(t) a.e. t ∈ J2}

and

J1 = {t ∈ J : u(t) < u(t) ≤ u(t)},
J2 = {t ∈ J : u(t) ≤ u(t) < u(t)},
J3 = {t ∈ J : u(t) ≤ u(t) ≤ u(t)}.

We shall show that the set-valued operator N satisfies all the conditions of Lemma
2.9. Firstly, since F is measurable (H3), then it has a nonempty closed selection
set SF (u) (see [8]) consequently SF (u). The proof holds in several steps.
Step 1: N(u) is convex subset of C(J,R). Let u1, u2 ∈ N(u). Then there exist
f1, f2 ∈ SF (u) satisfy

ui(t) =
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1fi(τ)dτ, i = 1, 2.

Since F (t, u) has convex values, then for 0 ≤ δ ≤ 1 we obtain

[δf1 + (1− δ)f2](t) = δ[
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1f1(τ)dτ ]

+ (1− δ)[
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1f2(τ)dτ ]

=
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1[δf1 + (1− δ)f2](τ)dτ.

Therefore, [δf1+(1−δ)f2] ∈ Nu and consequentlyN has a convex values in C(J,R).
Step 2: N(u) maps bounded sets into bounded sets in C(J,R). Let B be bounded
set in C(J,R). Then there exists a real number r > 0 such that ‖u‖ ≤ r, for all
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u ∈ B. Now for each u ∈ N there exists f ∈ SF (u) such that

u(t) =
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ.

Then for each t ∈ J ,

|u(t)| ≤
n−1∑
k=0

tk

k!
|u(k)(0)|+ 1

Γ(α)

∫ t

0

(t− τ)α−1|f(τ)|dτ

≤
n−1∑
k=0

tk

k!
|u(k)(0)|+ 1

Γ(α)

∫ t

0

(t− τ)α−1h(τ)dτ

≤
n−1∑
k=0

T k

k!
|u(k)(0)|+ ‖h‖L1Tα

Γ(α+ 1)

Implies that N(B) is bounded such that ‖u(t)‖C ≤
∑n−1

k=0
T k

k! |u
(k)(0)|+ ‖h‖L1T α

Γ(α+1) :=
r.
Step 3: N(u) maps bounded sets into equicontinuous sets in C(J,R). From above
we have for any t1, t2 ∈ J such that |t1 − t2| ≤ δ, δ > 0

|u(t1)− u(t2)| =
∣∣ n−1∑

k=0

tk1
k!
u(k)(0) +

1
Γ(α)

∫ t1

0

(t1 − τ)α−1f(τ)dτ

−
n−1∑
k=0

tk2
k!
u(k)(0) +

1
Γ(α)

∫ t2

0

(t2 − τ)α−1f(τ)dτ
∣∣

≤ 2
n−1∑
k=0

T k

k!
|u(k)(0)|+ [

‖h‖L1

Γ(α+ 1)
](tα1 − tα2 + 2(t1 − t2)α))

≤ 2
n−1∑
k=0

T k

k!
|u(k)(0)|+ [

2‖h‖L1

Γ(α+ 1)
]|(t1 − t2)|α

≤ 2[
n−1∑
k=0

T k

k!
|u(k)(0)|+ δα‖h‖L1

Γ(α+ 1)
]

which is independent of u hence N(B) is equicontinuous set.
Step 4: N(u) is u.s.c. As an application of the Arzela-Ascoli theorem yields that
N(B) is relatively compact set. Thus N is compact operator, hence in view of
Remark 2.8, we have that N is u.s.c.
Step 5: Finally we show that the set

ε = {u ∈ C(J,R) : λu ∈ Nu for some λ > 1}
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is bounded. Let u ∈ ε. Then there exists a f ∈ SF (u) such that

|u(t)| ≤ λ−1
n−1∑
k=0

tk

k!
|u(k)(0)|+ 1

Γ(α)

∫ t

0

(t− τ)α−1|f(τ)|dτ

≤
n−1∑
k=0

tk

k!
|u(k)(0)|+ 1

Γ(α)

∫ t

0

(t− τ)α−1h(τ)dτ

≤
n−1∑
k=0

T k

k!
|u(k)(0)|+ ‖h‖L1Tα

Γ(α+ 1)
.

Hence ε is bounded set. As a consequence of Lemma 2.9, we deduce that N has
a fixed point which is a solution for A. Next we show that u is a solution for the
problem (1.1). First we show that u ∈ [u, u]. Suppose not, then either u � u

or u � u on J ⊂ J . If u � u then for t1 < t2 we have u(t) > u(t) for all t in
(t1, t2) ⊂ J . Since u is the lower solution of the problem then for f ∈ SF (u) yields

u(t) =
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ

≥
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1u(τ)dτ = u(t)

for all t ∈ (t1, t2). This is a a contradiction. Similarly for u � u yields a contra-
diction. Hence u(t) ≤ u(t) ≤ u(t), for all t ∈ J . As a result, problem (1.1) has a
solution u ∈ [u, u]. �

Example 4.4. Let J = [0, 1] denote a closed and bounded interval in R. Consider
α = 1/2 and

F (t, u, ρ) =

{
p(t, ρ), if u < 1;
[p(t, ρ) exp(−u2(t)), p(t, ρ)], if u ≥ 1.

in problem (1.1), subject to the condition u(0) = 1. It is clear that F (t, u, ρ) is
L1

X -Carathéodory with a growth function p ∈ L1(J×R,R) such that ‖F (t, u, ρ)‖ ≤
p(t, ρ) a.e t ∈ J for all u ∈ R. Thus we have

u(t) = 1 +
1

Γ(1/2)

∫ t

0

(t− τ)−0.5p(τ)dτ and u(t) = 1.

In view of Theorem 4.3, the problem has a convex solution u ∈ [u, u].

To study the existence for the problem (1.1) in non-convex case by using Theorem
3.3 (the existence of the single valued problem (1.2)) and Lemma 2.10 (the fixed
point theorem for set valued functions), we introduce the following assumptions.

(H5) F : J × R× R → Pcl(R), (t, .) 7→ F (t, u, ρ) is measurable for each u ∈ R.
(H6) F : J × R × R → Pcl(R) is `(t)-Lipschitz; i.e., H(F (t, u, ρ), F (t, v, ρ)) ≤

`(t)‖u− v‖.

Theorem 4.5 (Non-convex case). Let (H5-H6) hold. If ‖`‖L1Tα/Γ(α + 1) < 1,
then the differential inclusion (1.1) has at least one solution u(t) on J .
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Proof. For each u(t) in R, F has a nonempty measurable selection (H5) then the
set SF (u) is nonempty (see [8]). Then there exists a function f(t) ∈ F such that f
is `(t) − Lipschitz. Thus by the assumption (H6), we deduce that the conditions
of Theorem 3.3 hold, which implies that the inclusion (1.1) has a solution. Hence
the proof is complete in view of the single-valued problem. �

Theorem 4.6 (Non-convex case). Let (H4-H6) hold. If ‖`‖L1Tα/Γ(α + 1) < 1,
then the differential inclusion (1.1) has at least one solution u(t) on J such that
u(t) ≤ u(t) ≤ u(t), for all t ∈ J .

Proof. Define the operator N as in (4.4) then the proof is done in two steps.
Step 1: N(u) ∈ Pcl(B) for each u ∈ B := C(J,R). Let {um}m≥0 ∈ N(u) such that
um → ũ in B. Then ũ ∈ B and there exists fm ∈ SF (u) such that for t ∈ J

um(t) =
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1fm(τ)dτ.

Using the fact that F has closed values, we get that fm converges to f in L1(J,R)
and hence f ∈ SF (u). Then for each t ∈ J ,

um(t) → ũ(t) =
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ.

So ũ ∈ N(u).
Step 2: There exists γ < 1 such that

H(N(u), N(v)) ≤ γ‖u− v‖B, for each u, v ∈ B.

Let u, v ∈ Ω. Then by (H6) there exists f ∈ F satisfies

|f(t, u, ρ)− f(t, v, ρ)| ≤ `(t)‖u− v‖B
then for h1(t) ∈ N(u) where

h1(t) =
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1f(τ, u(τ), ρ(τ))dτ.

And for h2(t) ∈ N(v) where

h2(t) =
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1f(τ, v(τ), ρ(τ))dτ

we have

|h1(t)− h2(t)| ≤
1

Γ(α)

∫ t

0

(t− τ)α−1|f(τ, u(τ), ρ(τ))− f(τ, v(τ), ρ(τ))|dτ

≤ ‖u− v‖B
Γ(α)

∫ t

0

(t− τ)α−1`(τ)dτ

≤ ‖`‖L1Tα

Γ(α+ 1)
‖u− v‖B.

Let

γ := [
‖`‖L1Tα

Γ(α+ 1)
].
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It follows that

H(N(u), N(v)) ≤ γ‖u− v‖B, for each u, v ∈ B,

where γ < 1. Implies that N is a contraction set-valued mapping. Then in view of
Lemma ??, N has a fixed point which is corresponding to a solution of inclusion
(1.1). The same conclusion holds in Theorem 4.3, we obtain that problem (1.1) has
a solution u ∈ [u, u]. �

Example 4.7. Let J = [0, 1] denote a closed and bounded interval in R. Consider

F (t, u, ρ) =

{
[0, ul(t)], if 1 ≤ u ≤ 2;
1, if u > 2.

in problem (1.1), subject to the condition u(0) = 1. It is clear that F is γ-
Lipschitzean continuous and bounded function on J × R with bound 1. Thus we
have

u(t) = 1 +
2

Γ(α)

∫ t

0

(t− τ)α−1l(τ)dτ and u(t) = 1

where γ := 2‖l‖/Γ(α + 1) < 1. In view of Theorem 4.6, the problem has a non-
convex solution u ∈ [u, u].

5. Extremal solutions

In this section, we establish the existence of extremal solutions to (1.1) on ordered
Banach spaces. The cone K = {u ∈ C(J,R) : u(t) ≥ 0,∀ t ∈ J} defines an order
relation, ≤ in C(J,R) by u ≤ v ⇔ u(t) ≤ v(t), for all t ∈ J . It is clear that K
is normal in C(J,R) (see [15]). Let S1, S2 ∈ P(X). Then by S1 ≤ S2 we mean
s1 ≤ s2 for all s1 ∈ S1 and s2 ∈ S2. Thus if S1 ≤ S1 then it follows that S1 is a
singleton set.

We need to the following definitions and result due to Dhage.

Definition 5.1. Let X be an ordered Banach space. A mapping T : X → P(X) is
called isotone increasing if x, y ∈ X with x < y, then we have that T (x) ≤ T (y).

Definition 5.2. A solution uM (t) of (1.1) is said to be maximal solution if for
every solution u(t) of (1.1), we have u(t) ≤ uM (t) for all t ∈ J . A solution um(t)
of (1.1) is said to be minimal solution if um(t) ≤ u(t) for all t ∈ J where u(t) is
any solution of (1.1).

Lemma 5.3 ([12]). Let [u, u] be an order interval in a Banach space and let T :
[u, u] → P([u, u]) be a completely continuous and isotone increasing set-valued.
Further if the cone K in X is normal, then T has a least u∗ and a greatest fixed
point v∗ in [u, u]. Moreover, the sequences {un} and {vn} defined by un+1 ∈ Tun,
u0 = u and vn+1 ∈ Tvn, v0 = u, converge to u∗ and v∗ respectively.

Let us consider the following assumptions:
(H7) The set-valued function F : J × R → P(R) is Carathéodory.
(H8) F (t, u(t)) is nondecreasing in u a.e. t ∈ J ; i.e., if u < v then F (t, u) ≤

F (t, v) a.e. t ∈ J .

Theorem 5.4. Assume (H4), (H7), (H8) hold. Then (1.1) has a minimal and a
maximal solution on J .
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Proof. Define an operator H : C(J,R) → P(C(J,R)) as follows

Hu =
{
u ∈ C(J,R) : u(t) =

n−1∑
k=0

tk

k!
u(k)(0)+

1
Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, f ∈ SF (u)
}
.

(5.1)
We show that H satisfies the conditions of Lemma 5.3. Firstly, proceeding as in
Theorem 4.3, is proved that H is completely continuous set-valued operator on
[u, u]. Finally, we show that H is isotone increasing on C(J,R). Let u, v ∈ C(J,R)
be such that u < v. Let u ∈ Hu be arbitrary. Then there is a function f1 ∈ SF (u)
such that

u(t) =
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1f1(τ)dτ.

Since F is nondecreasing in u we obtain that SF (u) ≤ SF (v). As a result for any
f2 ∈ SF (v) we have

u(t) ≤
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1f2(τ)dτ = u

for all t ∈ J and u ∈ Hv. This shows that the set-valued operator H is isotone
increasing on C(J,R). And in particular in [u, u]. Since u and u are lower and
upper solutions of the problem (1.1) on J we have

u(t) ≤
n−1∑
k=0

tk

k!
u(k)(0) +

1
Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ

for all f ∈ SF (u) and so u ≤ Hu. Similarly u ≥ Hu. Hence we have

u ≤ Hu ≤ Hu ≤ u.

Since H satisfies all the conditions of Lemma 5.3, yields that H has a least and
greatest fixed point [u, u]. This implies that problem (1.1) has a minimal and
maximal solution on J . �

Conclusion. We remark that when α = n in problem (1.1), we obtain the existence
of solution of the n-th order differential inclusions studied in [12]. Again problem
(1.1) has special cases that have been discussed in [1]. Further, this work holds for
any kind of fractional operators: Caputo’s, Erdelyi-Kober, Weyl-Riesz, etc.

Acknowledgment. The author thankful to the anonymous referee for his/her
helpful suggestions for the improvement of this article.

References

[1] R. Agarwal, B. Dhage, D. O’Regan; The upper and lower solution method for differential

inclusions via a lattice fixed point theorem, Dynamic System Appl. 12(2003), 1-7.
[2] N. U. Ahmed, K. L. Teo; Optimal Control of Distributed Parameters Systems, North Holland,

New York, 1981.
[3] N. U. Ahmed, X. Xing; Existence of solutions for a class of nonlinear evolution equation

with non-monotone perturbation, Nonlinear Anl. 22(1994), 81-89.

[4] J. P. Aubin, A. Cellina; Differential Inclusions. Springer, Berlin, 1984.

[5] C. Avramescu; A fixed point theorem for multivalued mappings, Electronic J. Qualitative
Theory of Differential Equations, Vol. 17 (2004), 1-10.

[6] K. Balachandar and J. P. Dauer; Elements of Control Theory, Narosa Publishing House,1999.



EJDE-2009/18 EXISTENCE OF CONVEX AND NON CONVEX SOLUTIONS 13

[7] V. Barbu; Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff

international Pupl. Leyden, 1976.

[8] C. Castaing, M. Valadier; Convex Analysis and Measurable Multifunctions, Lecture Notes in
Mathematics Vol. 580, Springer-Verlag, Berline-Heidelberg-New York. 1977.

[9] K. Demling; Multivalued Differential Equations, Walter de Gruyter, New York 1992.

[10] K. Diethelm, N. Ford; Analysis of fractional differential equations,
J.Math.Anal.Appl.,265(2002)229-248.

[11] B. C. Dhage; Multi-valued operators and fixed point theorem in Banach algebras, Taiwanese

J. of. Math. Vol. 10(2006), 1025-1045.
[12] B. Dhage, T. Holambe , S. Ntouyas; The method upper and lower solutions for Caratheodory

n-th order differential inclusions. Electron. J. Diff. Eqns. Vol. 2004(2004) No. 08, 1-9.

[13] A. M. A. El-Sayed, A. G. Ibrahim; Multi-valued fractional differential equations, Appl. Math.
Comput. 68(1995), 15-25.

[14] A. M. A. El-Sayed, A. G. Ibrahim; Set valued integral equations of fractional-orders, Appl.
Math. and Comp. 118(2001), 113-121.

[15] S. Heikkila, V. Lakshmikantham; Monotone Iterative Technique for Nonlinear Discontinuous

Differential Equations, Marcel Dekker Inc. New York, 1994.
[16] S. Hu, N. S. Papageeorgion; Handbook of Multivalued Analysis, Vol. I: Theory. Kluwer, Dor-

drecht, 1997.

[17] S. Hu, N. S. Papageeorgion; Handbook of Multivalued Analysis, Vol. II: Applications. Kluwer,
Dordrecht, 2000.

[18] A. G. Ibrahim, A. M. A. El-Sayed; Define integral of fractional order for set valued function,J.

Frac. Calculus 11 (1997).
[19] A. G. Kartsatos, K. Y. Shin; Solvability of functional evolutions via compactness methods in

general Banach spaces. Nonlinear Anal., 21(1993), 517-535.

[20] M. A. Khamsi, D. Misane; Disjuntive Signal Logic Programing, Preprint.
[21] V. Kiryakova; Generalized Fractional Calculus and Applications, Pitman Res. Notes Math.

Ser., Vol. 301, Longman/Wiley, New York, 1994.
[22] M. Kisielewicz; Differential Inclusions and Optimal Control. Dordrecht, The Netherlands,

1991.

[23] M. Martelli; Rothe‘s type theorem for non compact acyclic-valued maps, Boll. Math. Ital.
4(Suppl. Fasc.)(1975)70-76.

[24] K. S. Miller and B. Ross; An Introduction to The Fractional Calculus and Fractional Differ-

ential Equations, John-Wily and Sons, Inc., 1993.
[25] K. B. Oldham and J. Spanier; The Fractional Calculus, Math. in Science and Engineering,

Acad. Press, New York/London, 1974.

[26] N. H. Pavel; Nonlinear Evolution Operators and Semigroups, Lecture Notes in Mathematics,
Vol. 1260. Springer, Berlin, 1987.

[27] I. Podlubny; Fractional Differential Equations, Acad. Press, London,1999.

[28] S. G. Samko, A. A. Kilbas, O. I. Marichev; Fractional Integrals and Derivatives (Theory and
Applications), Gorden and Breach, New York, 1993.

[29] D. R. Smart; Fixed Point Theorems, Cambridge University Press, 1980.
[30] I. I. Vrabie; Compactness Methods for Nonlinear Evolutions, Longman, Harlow, 1987.

Rabha W. Ibrahim

School of Mathematical Sciences, Faculty of Sciences and Technology, UKM, Malaysia
E-mail address: rabhaibrahim@yahoo.com


	1.  Introduction
	2. Preliminaries
	3. Single-valued problem
	4. Set-valued problem
	5. Extremal solutions
	Conclusion
	Acknowledgment

	References

