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EXISTENCE OF CONVEX AND NON CONVEX LOCAL
SOLUTIONS FOR FRACTIONAL DIFFERENTIAL INCLUSIONS

RABHA W. IBRAHIM

ABSTRACT. In this paper, we establish the existence theorems for a class of
fractional differential inclusion of order n — 1 < a < m. The study holds in
two cases, when the set-valued function has convex and non-convex values.

1. INTRODUCTION

We study the existence of solutions for a class of nonlinear differential inclusions
of fractional order. The operators are taken in the Riemann-Liouville sense and the
initial conditions are specified according to Caputo’s suggestion, thus allowing for
interpretation in a physically meaningful way. There are numerous books focused
in this direction, that is concerning the linear and nonlinear problems involving
different types of fractional derivatives as well as integral (see [211 24] 25] 27, 28]).
El-Sayed and Ibrahim [13] [14] [I8] gave the concept of the definite integral of frac-
tional order for set-valued function. As applications of this type of problem, it
arises in the study of control systems, game theory and programing languages (see
2, 13, 20]).

The Riemann-Liouville fractional operators are defined as follows; see [24] 27]:

Definition 1.1. The fractional integral operator I of order a > 0 of a continuous
function f(t) is given by

I8 F(t) = I f(t) = ﬁ / (t— 1) f(r)dr.

We can write I§ f(t) = f(t) * o (t) where 9, (t) = % for t > 0 and ¥, (t) = 0 for

t <0 and 9, (t) — d(t) (the delta function) as o — 0 (see [24, 27]).

Definition 1.2. The fractional derivatives D* of order n — 1 < a < n of the
function f(t) is given by

« — 1 d" ! n—a—1
Dg f(t) = F(nfoz)dtin/o (t—7) f(r)dr.
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This paper concerns the fractional differential inclusion
DY(u — T,—1[u])(t) € F(t,u(t),p(t)); n—-1<a<n,teJ:=[0,T],

1.1
W) =ul? eR, k=01,....n—1 (1)

where T),_1[u] is the Taylor polynomial of order (n — 1) for u, centered at 0, p :
J — R is a continuous function and F': J X R x R — P(R) is a set-valued function
with nonempty values in R, where P(R) is the family of all nonempty subsets of R.

This paper is organized as follows: In Section 2, we will recall briefly some
basic definitions and preliminary facts from set-valued analysis which will be used
later. In Section 3, we shall establish the existence and uniqueness solution for the
single-valued problem

D%(u — Ty—1[u])(t) = f(t,u(t), pt)); n—1l<a<n,teJ=][0,T],

1.2
u®0)=ul?, k=0,1,....n—1 (1.2)

by using the Schauder fixed point theorem (see [6]) and the Banach fixed point
theorem (see [29]) respectively. In Section 4, we shall study the existence of solution
for the set-valued problem when F' has a convex as well as non-convex values
via the single-valued problem as well as fixed point theorems of the set-valued
function. In the first case (convex) a fixed point theorem due to Martelli [23] is
used. A fixed point theorem for contraction set-valued functions due to Covitz and
Nadler [9] is applied in the second one (non-convex).

2. PRELIMINARIES

In this section, we introduce notation, definitions, and preliminary facts from
set-valued analysis which are used throughout this paper. For further background
and details pertaining to this section we refer the reader to [4} [7], 16, 17} 19, 26, [30].

B := C[J,R] is the Banach space of all continuous functions from J into R with
the norm

[[ull = sup{[u(®)| : t € J}
for each u € B. £ := L'[J,R] denotes the Banach space of measurable functions
u : J — R which are Lebesgue integrable normed by

T
lull e = / fu(t)|dt,

for u € L. Let (X,]-]) be a normed space, Py(X) = {Y € P(X) : Y is closed},
Py(X) ={Y € P(X) : Y is bounded}, P(X) = {Y € P(X) : Y is compact},
P(X)={Y € P(X) : Y is convex}, P o(X) ={Y € P(X) : Y is closed and convex},
Pepe(X) = {Y € P(X) : Y is compact and convex}. A set-valued function F :
X — P(X) is called convex (closed) valued if F(z) is convex (closed) for all
r € X. F is called bounded valued on bounded set B if F(B) = |J,.p F(x) is
bounded in X for all B € Py(X) i.e. sup,cp{sup{|u| : u € F(z)}} < oo. F is
called upper semi-continuous (u.s.c) on X if for each z¢y € X the set F(xg) is
nonempty closed subset of X and if for each open set N of X containing F(xg),
there exists an open neighborhood Ny of xy such that F/(Ny) C N. In other wards
Fis us.c if the set F~1(A) = {x € X : Fo C A} is open in X for every open set
Ain X. F is called lower semi-continuous (l.s.c) on X if A is any open subset
of X then F7'(4A)={z € X : FxtN A +# 0} is open in X. F is called continuous
if it is lower as well as upper semi-continuous on X. F' is called compact if for
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every M bounded subset of X, F(M) is relatively compact. Finally F is called
completely continuous if it is upper semi-continuous and compact on X. The
following definitions are used in the sequel.

Definition 2.1. A mapping p: J x R — R is said to be Carathéodory if

(i) t — p(t,u) is measurable for each u € R,
(ii) v — p(t,u) is continuous a.e. for t € J.

A Carathéodory function p(t,u) is called L' (J, R)-Carathéodory if

(iii) for each number r > 0 there exists a function h, € L'(J,R) such that
Ip(t,w)| < he(t) ae. t € J for all u € R with |u| <.

A Carathéodory function p(t, u) is called L% (J, R)-Carathéodory if

(iv) there exists a function h € L*(J,R) such that |p(t,u)| < h(t) a.e t € J for
all u € R where h is called the bounded function of p.

Definition 2.2. A set-valued function F' : J — P(R) is said to be measurable if
for any x € X, the function t — d(x, F(t)) = inf{|x —u| : w € F(t)} is measurable.

Definition 2.3. A set-valued function F': J x R — P(R) is called Carathéodory if

(i) t — F(t,z) is measurable for each x € R, and
(ii) = — F(t,z) is u.s.c. for almost t € J.

Definition 2.4. A set-valued function F : JxR — P(R) is called L!-Carathéodory
if
(i) F is Carathéodory and
(ii) For each r > 0, there exists h, € L'(J,R) such that |F(¢,u)|| = sup{|f] :
feF(tu)} <h(t) for all ju] <r and for a.e. t € J.

Definition 2.5 ([1I]). A set-valued function F' : J x R — P(R) is called L%-
Carathéodory if there exists a function h € L'(J,R) such that

|1E(t,w)|| =sup{|f|: f € F(t,u)} < h(t), ae. teJ

for all x € R, and the function h is called a growth function of F on J x R.
Let A, B € Py(X), let a € A and let

D(a,B) =inf{]la—b|| : b€ B} and p(A,B)=sup{D(a,B):a€ A}.
The function H : Py (X) x Pap(X) — RT defined by
H(A, B) = max{p(A, B), p(B, A)}

is a metric and is called Hausdorff metric on X. Moreover (P (X), H) is a metric
space and (P.(X), H) is a complete metric space (see [22]). It is clear that

H(0,C) = sup{|lc|| : c€ C;C € Pp(X)}.

Definition 2.6. A set-valued function F : R — P, (R) is called
(i) ~v-Lipschitz if there exists v > 0 such that

H(F(z), F(y)) <7lle —yl, foreachz,ye X

the constant ~ is called a Lipschitz constant.
(ii) a contraction if it is 7-Lipschitz with v < 1.
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Definition 2.7. A set-valued function F : J x R — P (R) is called
(i) ~(t)-Lipschitz if there exists v € L!(J,RT) such that

H(F(tax)7F(t7y)) SV(t)”x—y”, for each %Z/EX-
(ii) a contraction if it is v(¢)-Lipschitz with ||| < 1.
The following remark and lemmas are used in the sequel.

Remark 2.8 ([5]). Let M Cc X. If F : M — P(X) is closed and F(M) is
relatively compact then F' is u.s.c. on M. And if F: X — P(X) is closed and
compact operator then F' is u.s.c.on X.

Lemma 2.9 ([23]). Let T : X — P cp(X) be a completely continuous set-valued
function. If

e={ue€ X :u€Tu, for some > 1}
is a bounded set, then T has a fixed point.

Lemma 2.10 ([9]). Let (X,d) be a complete metric space. If G : X — Py(X) is
a contraction, then G has a fized point.

3. SINGLE-VALUED PROBLEM

In this section we prove that the fractional differential equation (1.2)) has a
solution u(t) on J. By using some classical results from the fractional calculus, the
following result held (see [2§]).

Lemma 3.1. If the function f is continuous, then the initial value problem (1.2)
is equivalent to the nonlinear Volterra integral equation of the second kind,

u(t) = —u® 1 t — 1) (1, u(T), p(T))dr .
0= 3 u00+ g [0 G @)

wheren —1 < a <n,teJ=1I0,T]. In other words, every solution of the Volterra
equation (3.1) is also a solution of the initial value problem (1.2) and vice versa.

Diethelm and Ford [I0] proved the existence of solutions for (3.1) in the case

0 < a < 1. Let us formulate the following assumption:
(H1) The function f is L%-Carathéodory with bounded function h € L'(J x
R,R); ice., | f(t,u, p)] < h(t,p) a.et € J for all u € R such that ||h||z1 < oo.

Theorem 3.2. Let the assumption (H1) hold. Then the fractional differential
equation (1.2)) has at least one solution u(t) on J.

Proof. Define an operator P by

- n—1 tk (k) 1 t -
k=0 0
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then by the assumption of the theorem and the properties of fractional calculus we
obtain

<n t* 1 t t a-l d
(t) Zk, O+ Fag [ (€= (o). (o)

< Z %w) (0)] + ﬁ/o (t — )2 h(r, p)dr

Z ”h”LlT
- k' F(a +1)°
Hence
1P < 3 o ) 4 Wl T
u — U —_— .
e I'a+1)
Set == YL TE 40 (0)] + ug(luﬁ)” that is P : B, — B,. Then P maps B, into

itself. In fact, P maps the convex closure of P[B,] into itself. Since f is bounded
on B,, thus P[B,] is equicontinuous and the Schauder fixed point theorem shows
that P has at least one fixed point v € B = C[J,R] such that Pu = w, which is
corresponding to the solution of . O

For the uniqueness of solutions, we introduce the following assumption:
(H2) The function f satisfies that there exists a function £(t) € L'(J,R*) with,
Il4ll 1 < oo, such that for each u,v € C[J,R] we have
|f(ta U,p) - f(ta v, p)| < E(t)”u - UH
Theorem 3.3. Let (H2) hold. If ||€||;2 T /T(a+1) < 1, then the fractional differ-

ential equation (1.2)) has a unique solution u(t) on J.

Proof. Using the operator P defined in (|1.2)), we have

[(Pu)(t) = (Po)(t)] < ﬁ/o (t =) (rulr), p(r)) = (7, 0(7), p(7))ldT

u=vloe [ rgma
<l /Ou )" Le(r)d
Il 7

Hence P is a contraction mapping. Then in virtue of the Banach fixed point
theorem, P has a unique fixed point which is corresponding to the solution of

equation (|1.2)). O
4. SET-VALUED PROBLEM

In this section we study the existence results for the differential inclusion
when the right hand side is convex as well as non-convex valued. The study will be
taken in view of the single-valued problem (Theorems as well as fixed point
theorems of set-valued function. The definite integral for the set-valued function F’
of order « defines as follows:

IF(t, u(t), p(t) = ﬁ / (t = 1) f(ryu(r), p(r))dr = f(t . p) € Sp(w)},
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where
Sp(u) = {f € LY(J,R) : f(t) € F(t,u(t),p(t)) a.e. t € J}
denotes the set of selections of F'. Let us introduce the following assumption
(H3) The set-valued function F : J x R — P, .(R) is L -Carathéodory with a

growth function h € L*(J x R,RY); i.e., ||[F(t,u, p)|| < h(t,p) a.et € J for
all u € R such that ||h|| 1.

Theorem 4.1. Let (H3) hold. If F is lower semi-continuous (I.s.c). Then the
differential inclusion (1.1)) has at least one solution u(t) on J.

Proof. This proof depends on the (single-valued problem). Inclusion (1.1) can re-
duce to the integral inclusion

n—1

t

u(ty e 3 Lu® (o) + L/ (t —7)*  F(1,u(r), p(7))dT, (4.1)

— k! T'(a) Jo

wheren—1<a <n,teJ=][0,T]. For each u(t) in R, the set Sp(u) is nonempty
since by (H3), F' has a non-empty measurable selection (see [§]). Thus there exists a
function f(t) € F where f is a L-Carathéodory function with a bounded function
h € LY(J x R,R*) such that ||f|| < ||| a.e t € J for all u € R. Hence the
assumptions of Theorem are satisfied then the inclusion has a solution

and consequently (|1.1)). O

We define the partial ordering < in W™1(J,R), the Sobolev class of functions
u : J — R for which u(®~Yare absolutely continuous and u(™) € L'(J,R) as follows:
Let u,v € W™1(J,R) then define

u<veu(t) <u(t), foralteld
If a,b € W™ (J R) and a < b then we define an order interval [a,b] € W™ (J,R)
by

[a,0] := {u € W™ (J,R) :a < u < b}.
Definition 4.2 ([I]). A function u is called a lower solution of (1.1)) if there ex-
ists an L'(J,R) function f,(t) in F(t,u(t), p(t)) a.e. t € J. such that u(™(t) <
fi(t),a.et € J and u®(0) < yék), k =0,1,...,n — 1. Similarly a function @
is called an upper solution of the problem (1.1) if there exists an L!'(J,R) func-
tion fo(t) in F(t,a(t), p(t)), a.e. t € J such that 7™ (t) > fo(t), a.e. t € J and
a® ) >a?, k=0,1,...,n— 1.

(H4) The initial value problem ([1.1]) has a lower solution u and an upper solution
u with u <.

Theorem 4.3 (Convex case). Let (H3)-(H4) hold. Then the differential inclusion
(1.1) has at least one solution u(t) such that

w(t) <wu(t) <u(t), forallt e J.

Proof. Now we shall show that the assumptions of Lemma [2.9| are satisfied in a
suitable Banach space. Consider the problem
Du —Ty-1[u])(t) € F(t, Au(t),pt)), n—1<a<n,teJ:=][0,T],

u(k)(O):ugk)ER, n=01,...,n—1

(4.2)
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where A : C(J,R) — C(J,R) is the truncation operator defined by

u(t) if u(t) <u(t);
(Au)(t) = qu(t) if u(t) <wu(t) <ut);
u(t) if u(t) < u(t).

The problem of the existence of a solution to (|L.1]) reduce to finding a solution to
the integral inclusion

n—1 1

u(t) € Eu(k)(O) +
k=0

t
T\ (t - T)ailF(Ta AU(T)7 p(t))dT, (43)
I(c) /0

wheren — 1 <a<n,teJ=][0,T]. We study (4.3) in the space of all continuous
real functions on J endow with a supremun norm. Define a set-valued function
operator N : C(J,R) — P(C(J,R)) by

n—1 t
Nu={u € C(J,R) : u(t) = %u<k>(0)+ﬁ/o (t—7)*"Lf(r)dr, f € Sp(Au)}
= (4.4)
where

Sr(Au) = {f € Sp(Au) : f(t) > u(t) a.e. t € J; and f(t) <u(t) a.e. t € Jo}
and
J={teJ: ult) <u(t) <u(t)},
Jo={t e J:ut) <u(t) <ut)},
Js={te J:ult) <u(t) <u(t)}.
‘We shall show that the set-valued operator NV satisfies all the conditions of Lemma,
Firstly, since F' is measurable (H3), then it has a nonempty closed selection

set Sp(u) (see [8]) consequently Sg(u). The proof holds in several steps.
Step 1: N(u) is convex subset of C(J,R). Let uy,us € N(u). Then there exist

f1, f2 € Sp(u) satisfy

n—1 tk 1 t " -
ui(t) = 2 Eu(k)(O) + m/o (t—1)*fi(r)dr, i=1,2.
Since F(t,u) has convex values, then for 0 < § < 1 we obtain
n—1 tk 1 t
B+ (1= 0)l(0) = 33 u 0 + s [ =) (e
k=0 0
=t (k) I a-1
+(1=0( % a0+ g [0 prar
=t 1t o
- 0+ g [ a=mtn - @ - o piar

Therefore, [0 f1+(1—0) f2] € Nu and consequently N has a convex values in C(J, R).
Step 2: N(u) maps bounded sets into bounded sets in C(J,R). Let B be bounded
set in C(J,R). Then there exists a real number r > 0 such that |lu|| < r, for all
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u € B. Now for each u € N there exists f € Sp(u) such that

Z W0 + g [ =7 p(er

k=

Then for each t € J,

|
—

n

n fu(k) L t — ) () |dr
)] < X Gl 0)+ g [ = s

P I'(a)
=t 4 (0 I 1
<N = — — )
_Z%M\ (”+FWLA“ ) h(r)dr
n—1
Tk Al T
< D)) NWeNLZ =
=2 e O+ T

Tmplies that N (B) is bounded such that [[u(t)]|c < 27—, 7,:: u®)(0)] + H?(”ofj_;a =
r.

Step 3: N(u) maps bounded sets into equicontinuous sets in C'(J,R). From above
we have for any ¢1,t2 € J such that |t; —t2] <6, § >0

—u = —(k) —_— " — 1) (r)dr
lu(t1) — u(te)| = |Z )+ (a)/o (ty=7)* f(7)d

B ST ST S e ()
k= ok' (O)JFF(O‘)/O (t2 Y d|
<2§: |(“ %%kﬁﬂ%“%§+%ﬁ—mwp
SQZZW(M(O)JF[%H@t2)|a
ST w gy MRl
S%ko e (”+FW+U]

which is independent of u hence N(B) is equicontinuous set.

Step 4: N(u) is u.s.c. As an application of the Arzela-Ascoli theorem yields that
N(B) is relatively compact set. Thus N is compact operator, hence in view of
Remark 2:8] we have that N is u.s.c.

Step 5: Finally we show that the set

e ={ue C(J,R): Au € Nu for some A > 1}
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is bounded. Let u € e. Then there exists a f € Sp(u) such that

n—1 t
t 1
1N 7/ a1
) 370 X GO+ gy [
n—1 tk * 1 + )
<N _— —r)e-
=2 k!|u (O)H_F(oz)/o(t 7)Y h(r)dr
n—1
" Al T
< Ty 4 MRILT?
= 2 PO Fa D

Hence ¢ is bounded set. As a consequence of Lemma we deduce that N has
a fixed point which is a solution for A. Next we show that u is a solution for the
problem (L.I). First we show that u € [u,u]. Suppose not, then either u ¢ u
oru £ uwonJ CJ. If u uthen for t; < to we have u(t) > u(t) for all ¢ in
(t1,t2) C J. Since u is the lower solution of the problem then for f € Sg(u) yields

U —n_lﬁu(k) L t — ) L (r)dr
0 =3 0+ g €=
S ﬁu("”') 1 t — ) ly(r)dr =u
> 32 [0+ g =0 )i =t

for all t € (t1,t2). This is a a contradiction. Similarly for u £ @ yields a contra-
diction. Hence u(t) < u(t) < u(t), for all ¢ € J. As a result, problem (l.1) has a
solution u € [u, . O

Example 4.4. Let J = [0,1] denote a closed and bounded interval in R. Consider
a=1/2 and

[p(t, p) exp(—u?(t)), p(t, p)], ifu>1.

in problem (1.1, subject to the condition u(0) = 1. It is clear that F(¢,u,p) is
L% -Carathéodory with a growth function p € L'(J x R, R) such that ||[F'(¢,u, p)|| <
p(t,p) a.e t € J for all u € R. Thus we have

Fltu,p) = {pa,px ifu< 1

_ L AP _
u(t)1+F<1/2)/0(t7) O5p(r)dr and wu(t) = 1.

In view of Theorem the problem has a convex solution u € [u, 4.

To study the existence for the problem (|1.1)) in non-convex case by using Theorem
[3-3] (the existence of the single valued problem (L.2))) and Lemma (the fixed
point theorem for set valued functions), we introduce the following assumptions.

(H5) F:J xR xR — Py(R), (t,.) — F(t,u,p) is measurable for each u € R.
(H6) F : J x R xR — Py(R) is £(t)-Lipschitz; i.e., H(F(t,u,p), F(t,v,p)) <
(B)]lw — vl

Theorem 4.5 (Non-convex case). Let (H5-H6) hold. If |47/ T(a+1) < 1,
then the differential inclusion (L.1|) has at least one solution u(t) on J.
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Proof. For each u(t) in R, F' has a nonempty measurable selection (H5) then the
set Sp(u) is nonempty (see [§]). Then there exists a function f(t) € F such that f
is £(t) — Lipschitz. Thus by the assumption (H6), we deduce that the conditions
of Theorem hold, which implies that the inclusion has a solution. Hence
the proof is complete in view of the single-valued problem. O

Theorem 4.6 (Non-convex case). Let (H4-H6) hold. If |[€]|,2T%/T(+1) < 1,
then the differential inclusion (L.1) has at least one solution u(t) on J such that
u(t) < u(t) <u(t), for allt € J.

Proof. Define the operator N as in (4.4) then the proof is done in two steps.
Step 1: N(u) € Py(B) for each u € B := C(J,R). Let {um }m>0 € N(u) such that
Uy, — @ in B. Then @ € B and there exists f,, € Sp(u) such that for t € J

n—1

)= 3 o0+ iy [ ot

k=0

Using the fact that F' has closed values, we get that f,, converges to f in L(J,R)
and hence f € Sp(u). Then for each t € J,

) = 70 = S Lm0 4 L [ et s
w0 =0 =3 O+ 57 | (t= (o)

0

So w € N(u).
Step 2: There exists v < 1 such that

H(N(u), N(v)) < v|lu—v||g, foreach u,v e B.
Let u,v € Q. Then by (H6) there exists f € F satisfies

[f(t,u, p) = f(t 0, p)| < £(t)|lu—vlB
then for hi(t) € N(u) where

n—

*u(k) L t — 1) (1, u(r), p(7))dr.
kZ )+ e [ = (o). pl))a

And for hy(t) € N(v) where

n—1

ha(t) = el

u®(0) + ﬁ / (t = 1)L f(ry (7). p(7))dr

we have

7 (t) = ha(t)] < ﬁ/o (t =) f(r,u(r), p()) = f(7,0(7), p(7))ldT

l[u—vlls /t -1
<——— [ =71 (r)dr
<letle Moot
~Ia+1) '

Let
]| T
I'a+1)

= ].
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It follows that
H(N(u), N(v)) < v|lu —v||g, for each u,v € B,

where v < 1. Implies that N is a contraction set-valued mapping. Then in view of
Lemma ??, N has a fixed point which is corresponding to a solution of inclusion
(1.1). The same conclusion holds in Theorem we obtain that problem has
a solution u € [u,T]. O

Example 4.7. Let J = [0, 1] denote a closed and bounded interval in R. Consider

0,ul(?)], fl<u<2
1, if u > 2.

F(t, u,p) _{

in problem (L.I]), subject to the condition u(0) = 1. It is clear that F is ~-
Lipschitzean continuous and bounded function on J x R with bound 1. Thus we
have
ut) =1+ 2 /t(t ) H(r)dr and wu(t) =1
@) J, T T)dr u
where 7 := 2||l||/T(a + 1) < 1. In view of Theorem the problem has a non-
convex solution u € [u, ).

5. EXTREMAL SOLUTIONS

In this section, we establish the existence of extremal solutions to on ordered
Banach spaces. The cone K = {u € C(J,R) : u(t) > 0,¥¢ € J} defines an order
relation, < in C(J,R) by u < v < u(t) < v(t), for all t € J. It is clear that K
is normal in C(J,R) (see [15]). Let S1,S2 € P(X). Then by S; < Sz we mean
81 < 89 for all s7 € S; and so € Sy. Thus if S; < S; then it follows that S; is a
singleton set.

We need to the following definitions and result due to Dhage.

Definition 5.1. Let X be an ordered Banach space. A mapping T': X — P(X) is
called isotone increasing if z,y € X with z < y, then we have that T'(z) < T'(y).

Definition 5.2. A solution wup(t) of (1.1]) is said to be maximal solution if for
every solution u(t) of (1.1)), we have u(t) < up(t) for all ¢ € J. A solution wu,(t)
of (1.1 is said to be minimal solution if u,,(t) < u(t) for all t € J where u(t) is

any solution of (L.1)).

Lemma 5.3 ([I12]). Let [u, @] be an order interval in a Banach space and let T :
[u,a] — P(lu,u]) be a completely continuous and isotone increasing set-valued.
Further if the cone K in X is normal, then T has a least u, and a greatest fixed
point v* in [u,u]. Moreover, the sequences {u,} and {v,} defined by upi1 € Tuy,
uyg = u and vp41 € Ty, vo =0, converge to u, and v* respectively.

Let us consider the following assumptions:

(H7) The set-valued function F': J x R — P(R) is Carathéodory.
(H8) F(t,u(t)) is nondecreasing in u a.e. ¢t € J; ie., if u < v then F(t,u) <
F(t,v) a.e. t € J.

Theorem 5.4. Assume (H4), (H7), (H8) hold. Then (1.1) has a minimal and a
mazimal solution on J.
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Proof. Define an operator H : C(J,R) — P(C(J,R)) as follows

_ R St L a1
Hu={ue€C(JR):u(t) = —u (O)+w/0 (t—7)* " f(r)dr, f € Sp(u)}.

(5.1)

We show that H satisfies the conditions of Lemma [5.3] Firstly, proceeding as in

Theorem [4.3] is proved that H is completely continuous set-valued operator on

[u, ). Finally, we show that H is isotone increasing on C(J,R). Let u,v € C(J,R)

be such that u < v. Let u € Hu be arbitrary. Then there is a function f; € Sp(u)
such that

n—1 tk ® 1
u(t) = kZ:O Tk (0) + o)

Since F' is nondecreasing in u we obtain that Sp(u) < Sp(v). As a result for any
f2 € Sp(v) we have

[e-ntnmar

At L/
<Y —u™0)+ [ t—7) fo(r)dr =7
) < 32 )+ e [ = atr)ar =7
for all t € J and w € Hv. This shows that the set-valued operator H is isotone
increasing on C(J,R). And in particular in [u,u]. Since u and @ are lower and
upper solutions of the problem (1.1)) on J we have

nol g “ 1 ¢ -
) < 32 a0+ i [ 6= s
for all f € Sp(u) and so u < Hu. Similarly © > Hu. Hence we have
uw < Hu < Hu <.

Since H satisfies all the conditions of Lemma yields that H has a least and
greatest fixed point [u,@]. This implies that problem (1.1) has a minimal and
maximal solution on J. O

Conclusion. We remark that when a = n in problem ([L.1]), we obtain the existence
of solution of the n-th order differential inclusions studied in [12]. Again problem
has special cases that have been discussed in [I]. Further, this work holds for
any kind of fractional operators: Caputo’s, Erdelyi-Kober, Weyl-Riesz, etc.
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