Electronic Journal of Differential Equations, Vol. 2009(2009), No. 18, pp. 1-13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF CONVEX AND NON CONVEX LOCAL SOLUTIONS FOR FRACTIONAL DIFFERENTIAL INCLUSIONS

RABHA W. IBRAHIM

Abstract

In this paper, we establish the existence theorems for a class of fractional differential inclusion of order $n-1<\alpha \leq n$. The study holds in two cases, when the set-valued function has convex and non-convex values.

1. Introduction

We study the existence of solutions for a class of nonlinear differential inclusions of fractional order. The operators are taken in the Riemann-Liouville sense and the initial conditions are specified according to Caputo's suggestion, thus allowing for interpretation in a physically meaningful way. There are numerous books focused in this direction, that is concerning the linear and nonlinear problems involving different types of fractional derivatives as well as integral (see [21, 24, 25, 27, 28]). El-Sayed and Ibrahim [13, 14, 18] gave the concept of the definite integral of fractional order for set-valued function. As applications of this type of problem, it arises in the study of control systems, game theory and programing languages (see [2, 3, 20]).

The Riemann-Liouville fractional operators are defined as follows; see 24, 27]:
Definition 1.1. The fractional integral operator I^{α} of order $\alpha>0$ of a continuous function $f(t)$ is given by

$$
I_{0}^{\alpha} f(t):=I^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f(\tau) d \tau
$$

We can write $I_{0}^{\alpha} f(t)=f(t) * \psi_{\alpha}(t)$ where $\psi_{\alpha}(t)=\frac{t^{\alpha-1}}{\Gamma(\alpha)}$ for $t>0$ and $\psi_{\alpha}(t)=0$ for $t \leq 0$ and $\psi_{\alpha}(t) \rightarrow \delta(t)$ (the delta function) as $\alpha \rightarrow 0$ (see [24, 27]).

Definition 1.2. The fractional derivatives D^{α} of order $n-1<\alpha \leq n$ of the function $f(t)$ is given by

$$
D_{a}^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{d t^{n}} \int_{0}^{t}(t-\tau)^{n-\alpha-1} f(\tau) d \tau
$$

[^0]This paper concerns the fractional differential inclusion

$$
\begin{gather*}
D^{\alpha}\left(u-T_{n-1}[u]\right)(t) \in F(t, u(t), \rho(t)) ; \quad n-1<\alpha \leq n, t \in J:=[0, T] \\
u^{(k)}(0)=u_{0}^{(k)} \in \mathbb{R}, \quad k=0,1, \ldots, n-1 \tag{1.1}
\end{gather*}
$$

where $T_{n-1}[u]$ is the Taylor polynomial of order $(n-1)$ for u, centered at $0, \rho$: $J \rightarrow \mathbb{R}$ is a continuous function and $F: J \times \mathbb{R} \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is a set-valued function with nonempty values in \mathbb{R}, where $\mathcal{P}(\mathbb{R})$ is the family of all nonempty subsets of \mathbb{R}.

This paper is organized as follows: In Section 2, we will recall briefly some basic definitions and preliminary facts from set-valued analysis which will be used later. In Section 3, we shall establish the existence and uniqueness solution for the single-valued problem

$$
\begin{gather*}
D^{\alpha}\left(u-T_{n-1}[u]\right)(t)=f(t, u(t), \rho(t)) ; \quad n-1<\alpha \leq n, t \in J=[0, T] \\
u^{(k)}(0)=u_{0}^{(k)}, k=0,1, \ldots, n-1 \tag{1.2}
\end{gather*}
$$

by using the Schauder fixed point theorem (see [6]) and the Banach fixed point theorem (see [29]) respectively. In Section 4, we shall study the existence of solution for the set-valued problem (1.1) when F has a convex as well as non-convex values via the single-valued problem as well as fixed point theorems of the set-valued function. In the first case (convex) a fixed point theorem due to Martelli [23] is used. A fixed point theorem for contraction set-valued functions due to Covitz and Nadler [9] is applied in the second one (non-convex).

2. Preliminaries

In this section, we introduce notation, definitions, and preliminary facts from set-valued analysis which are used throughout this paper. For further background and details pertaining to this section we refer the reader to [4, 7, 16, 17, 19, 26, 30 .
$\mathcal{B}:=C[J, \mathbb{R}]$ is the Banach space of all continuous functions from J into \mathbb{R} with the norm

$$
\|u\|=\sup \{|u(t)|: t \in J\}
$$

for each $u \in \mathcal{B} . \mathcal{L}:=L^{1}[J, \mathbb{R}]$ denotes the Banach space of measurable functions $u: J \rightarrow \mathbb{R}$ which are Lebesgue integrable normed by

$$
\|u\|_{L^{1}}=\int_{0}^{T}|u(t)| d t
$$

for $u \in \mathcal{L}$. Let $(X,|\cdot|)$ be a normed space, $\mathcal{P}_{c l}(X)=\{Y \in \mathcal{P}(X): Y$ is closed $\}$, $\mathcal{P}_{b}(X)=\{Y \in \mathcal{P}(X): Y$ is bounded $\}, \mathcal{P}_{c p}(X)=\{Y \in \mathcal{P}(X): Y$ is compact $\}$, $\mathcal{P}_{c}(X)=\{Y \in \mathcal{P}(X): Y$ is convex $\}, \mathcal{P}_{c l, c}(X)=\{Y \in \mathcal{P}(X): Y$ is closed and convex $\}$, $\mathcal{P}_{c p, c}(X)=\{Y \in \mathcal{P}(X): Y$ is compact and convex $\}$. A set-valued function $F:$ $X \rightarrow \mathcal{P}(X)$ is called convex (closed) valued if $F(x)$ is convex (closed) for all $x \in X . F$ is called bounded valued on bounded set B if $F(B)=\bigcup_{x \in B} F(x)$ is bounded in X for all $B \in \mathcal{P}_{b}(X)$ i.e. $\sup _{x \in B}\{\sup \{|u|: u \in F(x)\}\}<\infty$. F is called upper semi-continuous (u.s.c) on X if for each $x_{0} \in X$ the set $F\left(x_{0}\right)$ is nonempty closed subset of X and if for each open set N of X containing $F\left(x_{0}\right)$, there exists an open neighborhood N_{0} of x_{0} such that $F\left(N_{0}\right) \subseteq N$. In other wards F is u.s.c if the set $F^{-1}(A)=\{x \in X: F x \subset A\}$ is open in X for every open set A in X. F is called lower semi-continuous (l.s.c) on X if A is any open subset of X then $F^{-1}(A)=\{x \in X: F x \cap A \neq \emptyset\}$ is open in $X . F$ is called continuous if it is lower as well as upper semi-continuous on $X . F$ is called compact if for
every M bounded subset of $X, F(M)$ is relatively compact. Finally F is called completely continuous if it is upper semi-continuous and compact on X. The following definitions are used in the sequel.

Definition 2.1. A mapping $p: J \times \mathbb{R} \rightarrow \mathbb{R}$ is said to be Carathéodory if
(i) $t \rightarrow p(t, u)$ is measurable for each $u \in \mathbb{R}$,
(ii) $u \rightarrow p(t, u)$ is continuous a.e. for $t \in J$.

A Carathéodory function $p(t, u)$ is called $L^{1}(J, \mathbb{R})$-Carathéodory if
(iii) for each number $r>0$ there exists a function $h_{r} \in L^{1}(J, \mathbb{R})$ such that $|p(t, u)| \leq h_{r}(t)$ a.e. $t \in J$ for all $u \in \mathbb{R}$ with $|u| \leq r$.
A Carathéodory function $p(t, u)$ is called $L_{X}^{1}(J, \mathbb{R})$-Carathéodory if
(iv) there exists a function $h \in L^{1}(J, \mathbb{R})$ such that $|p(t, u)| \leq h(t)$ a.e $t \in J$ for all $u \in \mathbb{R}$ where h is called the bounded function of p.

Definition 2.2. A set-valued function $F: J \rightarrow \mathcal{P}(\mathbb{R})$ is said to be measurable if for any $x \in X$, the function $t \mapsto d(x, F(t))=\inf \{|x-u|: u \in F(t)\}$ is measurable.

Definition 2.3. A set-valued function $F: J \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is called Carathéodory if
(i) $t \mapsto F(t, x)$ is measurable for each $x \in \mathbb{R}$, and
(ii) $x \mapsto F(t, x)$ is u.s.c. for almost $t \in J$.

Definition 2.4. A set-valued function $F: J \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is called L^{1}-Carathéodory if
(i) F is Carathéodory and
(ii) For each $r>0$, there exists $h_{r} \in L^{1}(J, \mathbb{R})$ such that $\|F(t, u)\|=\sup \{|f|$: $f \in F(t, u)\} \leq h_{r}(t)$ for all $|u| \leq r$ and for a.e. $t \in J$.
Definition 2.5 ([11]). A set-valued function $F: J \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is called $L_{X^{-}}^{1}$ Carathéodory if there exists a function $h \in L^{1}(J, \mathbb{R})$ such that

$$
\|F(t, u)\|=\sup \{|f|: f \in F(t, u)\} \leq h(t), \quad \text { a.e. } t \in J
$$

for all $x \in \mathbb{R}$, and the function h is called a growth function of F on $J \times \mathbb{R}$.
Let $A, B \in \mathcal{P}_{c l}(X)$, let $a \in A$ and let

$$
D(a, B)=\inf \{\|a-b\|: b \in B\} \quad \text { and } \quad \rho(A, B)=\sup \{D(a, B): a \in A\}
$$

The function $H: \mathcal{P}_{c l}(X) \times \mathcal{P}_{c l, b}(X) \rightarrow \mathbb{R}^{+}$defined by

$$
H(A, B)=\max \{\rho(A, B), \rho(B, A)\}
$$

is a metric and is called Hausdorff metric on X. Moreover $\left(\mathcal{P}_{c l, b}(X), H\right)$ is a metric space and $\left(\mathcal{P}_{c l}(X), H\right)$ is a complete metric space (see [22]). It is clear that

$$
H(0, C)=\sup \left\{\|c\|: c \in C ; C \in \mathcal{P}_{b}(X)\right\}
$$

Definition 2.6. A set-valued function $F: \mathbb{R} \rightarrow \mathcal{P}_{c l}(\mathbb{R})$ is called (i) γ-Lipschitz if there exists $\gamma>0$ such that

$$
H(F(x), F(y)) \leq \gamma\|x-y\|, \quad \text { for each } x, y \in X
$$

the constant γ is called a Lipschitz constant.
(ii) a contraction if it is γ-Lipschitz with $\gamma<1$.

Definition 2.7. A set-valued function $F: J \times \mathbb{R} \rightarrow \mathcal{P}_{c l}(\mathbb{R})$ is called (i) $\gamma(t)$-Lipschitz if there exists $\gamma \in L^{1}\left(J, \mathbb{R}^{+}\right)$such that

$$
H(F(t, x), F(t, y)) \leq \gamma(t)\|x-y\|, \quad \text { for each } x, y \in X
$$

(ii) a contraction if it is $\gamma(t)$-Lipschitz with $\|\gamma\|<1$.

The following remark and lemmas are used in the sequel.
Remark 2.8 ([5]). Let $M \subset X$. If $F: M \rightarrow \mathcal{P}(X)$ is closed and $F(M)$ is relatively compact then F is u.s.c. on M. And if $F: X \rightarrow \mathcal{P}(X)$ is closed and compact operator then F is u.s.c.on X.

Lemma 2.9 ([23). Let $T: X \rightarrow \mathcal{P}_{c, c p}(X)$ be a completely continuous set-valued function. If

$$
\varepsilon=\{u \in X: \lambda u \in T u, \text { for some } \lambda>1\}
$$

is a bounded set, then T has a fixed point.
Lemma $2.10(9)$. Let (X, d) be a complete metric space. If $G: X \rightarrow \mathcal{P}_{c l}(X)$ is a contraction, then G has a fixed point.

3. Single-valued problem

In this section we prove that the fractional differential equation 1.2 has a solution $u(t)$ on J. By using some classical results from the fractional calculus, the following result held (see [28]).

Lemma 3.1. If the function f is continuous, then the initial value problem 1.2 is equivalent to the nonlinear Volterra integral equation of the second kind,

$$
\begin{equation*}
u(t)=\sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f(\tau, u(\tau), \rho(\tau)) d \tau \tag{3.1}
\end{equation*}
$$

where $n-1<\alpha \leq n, t \in J=[0, T]$. In other words, every solution of the Volterra equation (3.1) is also a solution of the initial value problem 1.2 and vice versa.

Diethelm and Ford [10] proved the existence of solutions for (3.1) in the case $0<\alpha<1$. Let us formulate the following assumption:
(H1) The function f is L_{X}^{1}-Carathéodory with bounded function $h \in L^{1}(J \times$ $\left.\mathbb{R}, \mathbb{R}^{+}\right)$; i.e., $|f(t, u, \rho)| \leq h(t, \rho)$ a.e $t \in J$ for all $u \in \mathbb{R}$ such that $\|h\|_{L^{1}}<\infty$.

Theorem 3.2. Let the assumption (H1) hold. Then the fractional differential equation 1.2 has at least one solution $u(t)$ on J.

Proof. Define an operator P by

$$
\begin{equation*}
(P u)(t):=\sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f(\tau, u(\tau), \rho(\tau)) d \tau \tag{3.2}
\end{equation*}
$$

then by the assumption of the theorem and the properties of fractional calculus we obtain

$$
\begin{aligned}
|(P u)(t)| & \leq \sum_{k=0}^{n-1} \frac{t^{k}}{k!}\left|u^{(k)}(0)\right|+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1}|f(\tau, u(\tau), \rho(\tau))| d \tau \\
& \leq \sum_{k=0}^{n-1} \frac{t^{k}}{k!}\left|u^{(k)}(0)\right|+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} h(\tau, \rho) d \tau \\
& \leq \sum_{k=0}^{n-1} \frac{T^{k}}{k!}\left|u^{(k)}(0)\right|+\frac{\|h\|_{L^{1}} T^{\alpha}}{\Gamma(\alpha+1)}
\end{aligned}
$$

Hence

$$
\|P u\| \leq \sum_{k=0}^{n-1} \frac{T^{k}}{k!}\left|u^{(k)}(0)\right|+\frac{\|h\|_{L^{1}} T^{\alpha}}{\Gamma(\alpha+1)}
$$

Set $r:=\sum_{k=0}^{n-1} \frac{T^{k}}{k!}\left|u^{(k)}(0)\right|+\frac{\|h\|_{L_{1}} T^{\alpha}}{\Gamma(\alpha+1)}$ that is $P: B_{r} \rightarrow B_{r}$. Then P maps B_{r} into itself. In fact, P maps the convex closure of $P\left[B_{r}\right]$ into itself. Since f is bounded on B_{r}, thus $P\left[B_{r}\right]$ is equicontinuous and the Schauder fixed point theorem shows that P has at least one fixed point $u \in \mathcal{B}=C[J, \mathbb{R}]$ such that $P u=u$, which is corresponding to the solution of 1.2 .

For the uniqueness of solutions, we introduce the following assumption:
(H2) The function f satisfies that there exists a function $\ell(t) \in L^{1}\left(J, \mathbb{R}^{+}\right)$with, $\|\ell\|_{L^{1}}<\infty$, such that for each $u, v \in C[J, \mathbb{R}]$ we have

$$
|f(t, u, \rho)-f(t, v, \rho)| \leq \ell(t)\|u-v\| .
$$

Theorem 3.3. Let (H2) hold. If $\|\ell\|_{L^{1}} T^{\alpha} / \Gamma(\alpha+1)<1$, then the fractional differential equation 1.2 has a unique solution $u(t)$ on J.
Proof. Using the operator P defined in $\sqrt{1.2}$, we have

$$
\begin{aligned}
|(P u)(t)-(P v)(t)| & \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1}|f(\tau, u(\tau), \rho(\tau))-f(\tau, v(\tau), \rho(\tau))| d \tau \\
& \leq \frac{\|u-v\|_{\infty}}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} \ell(\tau) d \tau \\
& \leq \frac{\|\ell\|_{L^{1}} T^{\alpha}}{\Gamma(\alpha+1)}\|u-v\|_{\infty}
\end{aligned}
$$

Hence P is a contraction mapping. Then in virtue of the Banach fixed point theorem, P has a unique fixed point which is corresponding to the solution of equation 1.2 .

4. Set-valued problem

In this section we study the existence results for the differential inclusion 1.1 when the right hand side is convex as well as non-convex valued. The study will be taken in view of the single-valued problem (Theorems $3.2,3.3$) as well as fixed point theorems of set-valued function. The definite integral for the set-valued function F of order α defines as follows:

$$
I^{\alpha} F(t, u(t), \rho(t))=\left\{\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f(\tau, u(\tau), \rho(\tau)) d \tau: f(t, u, \rho) \in S_{F}(u)\right\}
$$

where

$$
S_{F}(u)=\left\{f \in L^{1}(J, \mathbb{R}): f(t) \in F(t, u(t), \rho(t)) \text { a.e. } t \in J\right\}
$$

denotes the set of selections of F. Let us introduce the following assumption
(H3) The set-valued function $F: J \times \mathbb{R} \rightarrow \mathcal{P}_{c l, c}(\mathbb{R})$ is L_{X}^{1}-Carathéodory with a growth function $h \in L^{1}\left(J \times \mathbb{R}, \mathbb{R}^{+}\right)$; i.e., $\|F(t, u, \rho)\| \leq h(t, \rho)$ a.e $t \in J$ for all $u \in \mathbb{R}$ such that $\|h\|_{L^{1}}$.
Theorem 4.1. Let (H3) hold. If F is lower semi-continuous (l.s.c). Then the differential inclusion (1.1) has at least one solution $u(t)$ on J.

Proof. This proof depends on the (single-valued problem). Inclusion (1.1) can reduce to the integral inclusion

$$
\begin{equation*}
u(t) \in \sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} F(\tau, u(\tau), \rho(\tau)) d \tau \tag{4.1}
\end{equation*}
$$

where $n-1<\alpha \leq n, t \in J=[0, T]$. For each $u(t)$ in \mathbb{R}, the set $S_{F}(u)$ is nonempty since by (H3), F has a non-empty measurable selection (see [8]). Thus there exists a function $f(t) \in F$ where f is a L_{X}^{1}-Carathéodory function with a bounded function $h \in L^{1}\left(J \times \mathbb{R}, \mathbb{R}^{+}\right)$such that $\|f\| \leq\|h\|$ a.e $t \in J$ for all $u \in \mathbb{R}$. Hence the assumptions of Theorem 3.2 are satisfied then the inclusion (4.1) has a solution and consequently (1.1).

We define the partial ordering \leq in $W^{n, 1}(J, \mathbb{R})$, the Sobolev class of functions $u: J \rightarrow \mathbb{R}$ for which $u^{(n-1)}$ are absolutely continuous and $u^{(n)} \in L^{1}(J, \mathbb{R})$ as follows: Let $u, v \in W^{n, 1}(J, \mathbb{R})$ then define

$$
u \leq v \Leftrightarrow u(t) \leq v(t), \quad \text { for all } t \in J
$$

If $a, b \in W^{n, 1}(J, \mathbb{R})$ and $a \leq b$ then we define an order interval $[a, b] \in W^{n, 1}(J, \mathbb{R})$ by

$$
[a, b]:=\left\{u \in W^{n, 1}(J, \mathbb{R}): a \leq u \leq b\right\}
$$

Definition 4.2 ([1]). A function \underline{u} is called a lower solution of (1.1) if there exists an $L^{1}(J, \mathbb{R})$ function $f_{1}(t)$ in $F(t, \underline{u}(t), \rho(t))$ a.e. $t \in J$. such that $\underline{u}^{(n)}(t) \leq$ $f_{1}(t)$, a.e. $\in J$ and $\underline{u}^{(k)}(0) \leq \underline{u}_{0}^{(k)}, k=0,1, \ldots, n-1$. Similarly a function \bar{u} is called an upper solution of the problem 1.1) if there exists an $L^{1}(J, \mathbb{R})$ function $f_{2}(t)$ in $F(t, \bar{u}(t), \rho(t))$, a.e. $t \in J$ such that $\bar{u}^{(n)}(t) \geq f_{2}(t)$, a.e. $t \in J$ and $\bar{u}^{(k)}(0) \geq \bar{u}_{0}^{(k)}, k=0,1, \ldots, n-1$.
(H4) The initial value problem 1.1 has a lower solution \underline{u} and an upper solution \bar{u} with $\underline{u} \leq \bar{u}$.

Theorem 4.3 (Convex case). Let (H3)-(H4) hold. Then the differential inclusion (1.1) has at least one solution $u(t)$ such that

$$
\underline{u}(t) \leq u(t) \leq \bar{u}(t), \quad \text { for all } t \in J
$$

Proof. Now we shall show that the assumptions of Lemma 2.9 are satisfied in a suitable Banach space. Consider the problem

$$
\begin{gather*}
D^{\alpha}\left(u-T_{n-1}[u]\right)(t) \in F(t, A u(t), \rho(t)), \quad n-1<\alpha \leq n, t \in J:=[0, T] \\
u^{(k)}(0)=u_{0}^{(k)} \in \mathbb{R}, \quad n=0,1, \ldots, n-1 \tag{4.2}
\end{gather*}
$$

where $A: C(J, \mathbb{R}) \rightarrow C(J, \mathbb{R})$ is the truncation operator defined by

$$
(A u)(t)= \begin{cases}\underline{u}(t) & \text { if } u(t)<\underline{u}(t) \\ u(t) & \text { if } \underline{u}(t) \leq u(t) \leq \bar{u}(t) \\ \bar{u}(t) & \text { if } \bar{u}(t)<u(t)\end{cases}
$$

The problem of the existence of a solution to 1.1 reduce to finding a solution to the integral inclusion

$$
\begin{equation*}
u(t) \in \sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} F(\tau, A u(\tau), \rho(t)) d \tau \tag{4.3}
\end{equation*}
$$

where $n-1<\alpha \leq n, t \in J=[0, T]$. We study 4.3) in the space of all continuous real functions on J endow with a supremun norm. Define a set-valued function operator $N: C(J, \mathbb{R}) \rightarrow \mathcal{P}(C(J, \mathbb{R}))$ by
$N u=\left\{u \in C(J, \mathbb{R}): u(t)=\sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f(\tau) d \tau, f \in \bar{S}_{F}(A u)\right\}$
where

$$
\bar{S}_{F}(A u)=\left\{f \in S_{F}(A u): f(t) \geq \underline{u}(t) \text { a.e. } t \in J_{1} \text { and } f(t) \leq \bar{u}(t) \text { a.e. } t \in J_{2}\right\}
$$

and

$$
\begin{aligned}
J_{1} & =\{t \in J: u(t)<\underline{u}(t) \leq \bar{u}(t)\}, \\
J_{2} & =\{t \in J: \underline{u}(t) \leq \bar{u}(t)<u(t)\}, \\
J_{3} & =\{t \in J: \underline{u}(t) \leq u(t) \leq \bar{u}(t)\} .
\end{aligned}
$$

We shall show that the set-valued operator N satisfies all the conditions of Lemma 2.9 . Firstly, since F is measurable (H3), then it has a nonempty closed selection set $S_{F}(u)$ (see [8]) consequently $\bar{S}_{F}(u)$. The proof holds in several steps.
Step 1: $N(u)$ is convex subset of $C(J, \mathbb{R})$. Let $u_{1}, u_{2} \in N(u)$. Then there exist $f_{1}, f_{2} \in \bar{S}_{F}(u)$ satisfy

$$
u_{i}(t)=\sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f_{i}(\tau) d \tau, \quad i=1,2
$$

Since $F(t, u)$ has convex values, then for $0 \leq \delta \leq 1$ we obtain

$$
\begin{aligned}
{\left[\delta f_{1}+(1-\delta) f_{2}\right](t)=} & \delta\left[\sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f_{1}(\tau) d \tau\right] \\
& +(1-\delta)\left[\sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f_{2}(\tau) d \tau\right] \\
= & \sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1}\left[\delta f_{1}+(1-\delta) f_{2}\right](\tau) d \tau
\end{aligned}
$$

Therefore, $\left[\delta f_{1}+(1-\delta) f_{2}\right] \in N u$ and consequently N has a convex values in $C(J, \mathbb{R})$. Step 2: $N(u)$ maps bounded sets into bounded sets in $C(J, \mathbb{R})$. Let B be bounded set in $C(J, \mathbb{R})$. Then there exists a real number $r>0$ such that $\|u\| \leq r$, for all
$u \in B$. Now for each $u \in N$ there exists $f \in \bar{S}_{F}(u)$ such that

$$
u(t)=\sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f(\tau) d \tau
$$

Then for each $t \in J$,

$$
\begin{aligned}
|u(t)| & \leq \sum_{k=0}^{n-1} \frac{t^{k}}{k!}\left|u^{(k)}(0)\right|+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1}|f(\tau)| d \tau \\
& \leq \sum_{k=0}^{n-1} \frac{t^{k}}{k!}\left|u^{(k)}(0)\right|+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} h(\tau) d \tau \\
& \leq \sum_{k=0}^{n-1} \frac{T^{k}}{k!}\left|u^{(k)}(0)\right|+\frac{\|h\|_{L^{1}} T^{\alpha}}{\Gamma(\alpha+1)}
\end{aligned}
$$

Implies that $N(B)$ is bounded such that $\|u(t)\|_{C} \leq \sum_{k=0}^{n-1} \frac{T^{k}}{k!}\left|u^{(k)}(0)\right|+\frac{\|h\|_{L^{1}} T^{\alpha}}{\Gamma(\alpha+1)}:=$ r.
Step 3: $N(u)$ maps bounded sets into equicontinuous sets in $C(J, \mathbb{R})$. From above we have for any $t_{1}, t_{2} \in J$ such that $\left|t_{1}-t_{2}\right| \leq \delta, \delta>0$

$$
\begin{aligned}
\left|u\left(t_{1}\right)-u\left(t_{2}\right)\right|= & \left\lvert\, \sum_{k=0}^{n-1} \frac{t_{1}^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t_{1}}\left(t_{1}-\tau\right)^{\alpha-1} f(\tau) d \tau\right. \\
& \left.-\sum_{k=0}^{n-1} \frac{t_{2}^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t_{2}}\left(t_{2}-\tau\right)^{\alpha-1} f(\tau) d \tau \right\rvert\, \\
\leq & \left.2 \sum_{k=0}^{n-1} \frac{T^{k}}{k!}\left|u^{(k)}(0)\right|+\left[\frac{\|h\|_{L^{1}}}{\Gamma(\alpha+1)}\right]\left(t_{1}^{\alpha}-t_{2}^{\alpha}+2\left(t_{1}-t_{2}\right)^{\alpha}\right)\right) \\
\leq & 2 \sum_{k=0}^{n-1} \frac{T^{k}}{k!}\left|u^{(k)}(0)\right|+\left[\frac{2\|h\|_{L^{1}}}{\Gamma(\alpha+1)}\right]\left|\left(t_{1}-t_{2}\right)\right|^{\alpha} \\
\leq & 2\left[\sum_{k=0}^{n-1} \frac{T^{k}}{k!}\left|u^{(k)}(0)\right|+\frac{\delta^{\alpha}\|h\|_{L^{1}}}{\Gamma(\alpha+1)}\right]
\end{aligned}
$$

which is independent of u hence $N(B)$ is equicontinuous set.
Step 4: $N(u)$ is u.s.c. As an application of the Arzela-Ascoli theorem yields that $N(B)$ is relatively compact set. Thus N is compact operator, hence in view of Remark 2.8, we have that N is u.s.c.
Step 5: Finally we show that the set

$$
\varepsilon=\{u \in C(J, \mathbb{R}): \lambda u \in N u \text { for some } \lambda>1\}
$$

is bounded. Let $u \in \varepsilon$. Then there exists a $f \in \bar{S}_{F}(u)$ such that

$$
\begin{aligned}
|u(t)| & \leq \lambda^{-1} \sum_{k=0}^{n-1} \frac{t^{k}}{k!}\left|u^{(k)}(0)\right|+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1}|f(\tau)| d \tau \\
& \leq \sum_{k=0}^{n-1} \frac{t^{k}}{k!}\left|u^{(k)}(0)\right|+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} h(\tau) d \tau \\
& \leq \sum_{k=0}^{n-1} \frac{T^{k}}{k!}\left|u^{(k)}(0)\right|+\frac{\|h\|_{L^{1}} T^{\alpha}}{\Gamma(\alpha+1)}
\end{aligned}
$$

Hence ε is bounded set. As a consequence of Lemma 2.9, we deduce that N has a fixed point which is a solution for A. Next we show that u is a solution for the problem (1.1). First we show that $u \in[\underline{u}, \bar{u}]$. Suppose not, then either $\underline{u} \not \leq u$ or $u \not \leq \bar{u}$ on $\bar{J} \subset J$. If $\underline{u} \not \leq u$ then for $t_{1}<t_{2}$ we have $\underline{u}(t)>u(t)$ for all t in $\left(t_{1}, t_{2}\right) \subset J$. Since \underline{u} is the lower solution of the problem then for $f \in \bar{S}_{F}(u)$ yields

$$
\begin{aligned}
u(t) & =\sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f(\tau) d \tau \\
& \geq \sum_{k=0}^{n-1} \frac{t^{k}}{k!} \underline{u}^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} \underline{u}(\tau) d \tau=\underline{u}(t)
\end{aligned}
$$

for all $t \in\left(t_{1}, t_{2}\right)$. This is a a contradiction. Similarly for $u \not \leq \bar{u}$ yields a contradiction. Hence $\underline{u}(t) \leq u(t) \leq \bar{u}(t)$, for all $t \in J$. As a result, problem 1.1) has a solution $u \in[\underline{u}, \bar{u}]$.

Example 4.4. Let $J=[0,1]$ denote a closed and bounded interval in \mathbb{R}. Consider $\alpha=1 / 2$ and

$$
F(t, u, \rho)= \begin{cases}p(t, \rho), & \text { if } u<1 \\ {\left[p(t, \rho) \exp \left(-u^{2}(t)\right), p(t, \rho)\right],} & \text { if } u \geq 1\end{cases}
$$

in problem (1.1), subject to the condition $u(0)=1$. It is clear that $F(t, u, \rho)$ is L_{X}^{1}-Carathéodory with a growth function $p \in L^{1}(J \times \mathbb{R}, \mathbb{R})$ such that $\|F(t, u, \rho)\| \leq$ $p(t, \rho)$ a.e $t \in J$ for all $u \in \mathbb{R}$. Thus we have

$$
\bar{u}(t)=1+\frac{1}{\Gamma(1 / 2)} \int_{0}^{t}(t-\tau)^{-0.5} p(\tau) d \tau \quad \text { and } \quad \underline{u}(t)=1
$$

In view of Theorem 4.3, the problem has a convex solution $u \in[\underline{u}, \bar{u}]$.
To study the existence for the problem (1.1) in non-convex case by using Theorem 3.3 (the existence of the single valued problem $\sqrt[1.2]{ }$) and Lemma 2.10 (the fixed point theorem for set valued functions), we introduce the following assumptions.
(H5) $F: J \times \mathbb{R} \times \mathbb{R} \rightarrow \mathcal{P}_{c l}(\mathbb{R}),(t,.) \mapsto F(t, u, \rho)$ is measurable for each $u \in \mathbb{R}$.
(H6) $F: J \times \mathbb{R} \times \mathbb{R} \rightarrow \mathcal{P}_{c l}(\mathbb{R})$ is $\ell(t)$-Lipschitz; i.e., $H(F(t, u, \rho), F(t, v, \rho)) \leq$ $\ell(t)\|u-v\|$.

Theorem 4.5 (Non-convex case). Let (H5-H6) hold. If $\|\ell\|_{L^{1}} T^{\alpha} / \Gamma(\alpha+1)<1$, then the differential inclusion (1.1) has at least one solution $u(t)$ on J.

Proof. For each $u(t)$ in \mathbb{R}, F has a nonempty measurable selection (H5) then the set $S_{F}(u)$ is nonempty (see [8]). Then there exists a function $f(t) \in F$ such that f is $\ell(t)$-Lipschitz. Thus by the assumption (H6), we deduce that the conditions of Theorem 3.3 hold, which implies that the inclusion (1.1) has a solution. Hence the proof is complete in view of the single-valued problem.

Theorem 4.6 (Non-convex case). Let (H4-H6) hold. If $\|\ell\|_{L^{1}} T^{\alpha} / \Gamma(\alpha+1)<1$, then the differential inclusion (1.1) has at least one solution $u(t)$ on J such that $\underline{u}(t) \leq u(t) \leq \bar{u}(t)$, for all $t \in J$.
Proof. Define the operator N as in (4.4) then the proof is done in two steps.
Step 1: $N(u) \in \mathcal{P}_{c l}(\mathcal{B})$ for each $u \in \mathcal{B}:=C(J, \mathbb{R})$. Let $\left\{u_{m}\right\}_{m \geq 0} \in N(u)$ such that $u_{m} \rightarrow \widetilde{u}$ in \mathcal{B}. Then $\widetilde{u} \in \mathcal{B}$ and there exists $f_{m} \in S_{F}(u)$ such that for $t \in J$

$$
u_{m}(t)=\sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f_{m}(\tau) d \tau
$$

Using the fact that F has closed values, we get that f_{m} converges to f in $L^{1}(J, \mathbb{R})$ and hence $f \in S_{F}(u)$. Then for each $t \in J$,

$$
u_{m}(t) \rightarrow \widetilde{u}(t)=\sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f(\tau) d \tau
$$

So $\widetilde{u} \in N(u)$.
Step 2: There exists $\gamma<1$ such that

$$
H(N(u), N(v)) \leq \gamma\|u-v\|_{\mathcal{B}}, \quad \text { for each } u, v \in \mathcal{B} .
$$

Let $u, v \in \Omega$. Then by (H6) there exists $f \in F$ satisfies

$$
|f(t, u, \rho)-f(t, v, \rho)| \leq \ell(t)\|u-v\|_{\mathcal{B}}
$$

then for $h_{1}(t) \in N(u)$ where

$$
h_{1}(t)=\sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f(\tau, u(\tau), \rho(\tau)) d \tau
$$

And for $h_{2}(t) \in N(v)$ where

$$
h_{2}(t)=\sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f(\tau, v(\tau), \rho(\tau)) d \tau
$$

we have

$$
\begin{aligned}
\left|h_{1}(t)-h_{2}(t)\right| & \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1}|f(\tau, u(\tau), \rho(\tau))-f(\tau, v(\tau), \rho(\tau))| d \tau \\
& \leq \frac{\|u-v\|_{\mathcal{B}}}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} \ell(\tau) d \tau \\
& \leq \frac{\|\ell\|_{L^{1}} T^{\alpha}}{\Gamma(\alpha+1)}\|u-v\|_{\mathcal{B}}
\end{aligned}
$$

Let

$$
\gamma:=\left[\frac{\|\ell\|_{L^{1}} T^{\alpha}}{\Gamma(\alpha+1)}\right]
$$

It follows that

$$
H(N(u), N(v)) \leq \gamma\|u-v\|_{\mathcal{B}}, \quad \text { for each } u, v \in \mathcal{B}
$$

where $\gamma<1$. Implies that N is a contraction set-valued mapping. Then in view of Lemma ??, N has a fixed point which is corresponding to a solution of inclusion (1.1). The same conclusion holds in Theorem 4.3, we obtain that problem (1.1) has a solution $u \in[\underline{u}, \bar{u}]$.

Example 4.7. Let $J=[0,1]$ denote a closed and bounded interval in \mathbb{R}. Consider

$$
F(t, u, \rho)= \begin{cases}{[0, u l(t)],} & \text { if } 1 \leq u \leq 2 \\ 1, & \text { if } u>2\end{cases}
$$

in problem 1.1, subject to the condition $u(0)=1$. It is clear that F is $\gamma-$ Lipschitzean continuous and bounded function on $J \times \mathbb{R}$ with bound 1 . Thus we have

$$
\bar{u}(t)=1+\frac{2}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} l(\tau) d \tau \quad \text { and } \quad \underline{u}(t)=1
$$

where $\gamma:=2\|l\| / \Gamma(\alpha+1)<1$. In view of Theorem 4.6, the problem has a nonconvex solution $u \in[\underline{u}, \bar{u}]$.

5. Extremal solutions

In this section, we establish the existence of extremal solutions to (1.1) on ordered Banach spaces. The cone $K=\{u \in C(J, \mathbb{R}): u(t) \geq 0, \forall t \in J\}$ defines an order relation, \leq in $C(J, \mathbb{R})$ by $u \leq v \Leftrightarrow u(t) \leq v(t)$, for all $t \in J$. It is clear that K is normal in $C(J, \mathbb{R})$ (see 15). Let $S_{1}, S_{2} \in \mathcal{P}(X)$. Then by $S_{1} \leq S_{2}$ we mean $s_{1} \leq s_{2}$ for all $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$. Thus if $S_{1} \leq S_{1}$ then it follows that S_{1} is a singleton set.

We need to the following definitions and result due to Dhage.
Definition 5.1. Let X be an ordered Banach space. A mapping $T: X \rightarrow \mathcal{P}(X)$ is called isotone increasing if $x, y \in X$ with $x<y$, then we have that $T(x) \leq T(y)$.

Definition 5.2. A solution $u_{M}(t)$ of 1.1 is said to be maximal solution if for every solution $u(t)$ of (1.1), we have $u(t) \leq u_{M}(t)$ for all $t \in J$. A solution $u_{m}(t)$ of (1.1) is said to be minimal solution if $u_{m}(t) \leq u(t)$ for all $t \in J$ where $u(t)$ is any solution of (1.1).

Lemma 5.3 ([12]). Let $[\underline{u}, \bar{u}]$ be an order interval in a Banach space and let T : $[\underline{u}, \bar{u}] \rightarrow \mathcal{P}([\underline{u}, \bar{u}])$ be a completely continuous and isotone increasing set-valued. Further if the cone K in X is normal, then T has a least u_{*} and a greatest fixed point v^{*} in $[\underline{u}, \bar{u}]$. Moreover, the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ defined by $u_{n+1} \in T u_{n}$, $u_{0}=\underline{u}$ and $v_{n+1} \in T v_{n}, v_{0}=\bar{u}$, converge to u_{*} and v^{*} respectively.

Let us consider the following assumptions:
(H7) The set-valued function $F: J \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is Carathéodory.
(H8) $F(t, u(t))$ is nondecreasing in u a.e. $t \in J$; i.e., if $u<v$ then $F(t, u) \leq$ $F(t, v)$ a.e. $t \in J$.

Theorem 5.4. Assume (H4), (H7), (H8) hold. Then (1.1) has a minimal and a maximal solution on J.

Proof. Define an operator $H: C(J, \mathbb{R}) \rightarrow \mathcal{P}(C(J, \mathbb{R}))$ as follows
$H u=\left\{u \in C(J, \mathbb{R}): u(t)=\sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f(\tau) d \tau, f \in S_{F}(u)\right\}$.
We show that H satisfies the conditions of Lemma 5.3. Firstly, proceeding as in Theorem 4.3, is proved that H is completely continuous set-valued operator on $[\underline{u}, \bar{u}]$. Finally, we show that H is isotone increasing on $C(J, \mathbb{R})$. Let $u, v \in C(J, \mathbb{R})$ be such that $u<v$. Let $\underline{u} \in H u$ be arbitrary. Then there is a function $f_{1} \in S_{F}(u)$ such that

$$
\underline{u}(t)=\sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f_{1}(\tau) d \tau
$$

Since F is nondecreasing in u we obtain that $S_{F}(u) \leq S_{F}(v)$. As a result for any $f_{2} \in S_{F}(v)$ we have

$$
\underline{u}(t) \leq \sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f_{2}(\tau) d \tau=\bar{u}
$$

for all $t \in J$ and $\bar{u} \in H v$. This shows that the set-valued operator H is isotone increasing on $C(J, \mathbb{R})$. And in particular in $[\underline{u}, \bar{u}]$. Since \underline{u} and \bar{u} are lower and upper solutions of the problem 1.1 on J we have

$$
\underline{u}(t) \leq \sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\tau)^{\alpha-1} f(\tau) d \tau
$$

for all $f \in S_{F}(\underline{u})$ and so $\underline{u} \leq H \underline{u}$. Similarly $\bar{u} \geq H \bar{u}$. Hence we have

$$
\underline{u} \leq H \underline{u} \leq H \bar{u} \leq \bar{u} .
$$

Since H satisfies all the conditions of Lemma 5.3, yields that H has a least and greatest fixed point $[\underline{u}, \bar{u}]$. This implies that problem (1.1) has a minimal and maximal solution on J.

Conclusion. We remark that when $\alpha=n$ in problem (1.1), we obtain the existence of solution of the n-th order differential inclusions studied in [12]. Again problem (1.1) has special cases that have been discussed in [1]. Further, this work holds for any kind of fractional operators: Caputo's, Erdelyi-Kober, Weyl-Riesz, etc.

Acknowledgment. The author thankful to the anonymous referee for his/her helpful suggestions for the improvement of this article.

References

[1] R. Agarwal, B. Dhage, D. O'Regan; The upper and lower solution method for differential inclusions via a lattice fixed point theorem, Dynamic System Appl. 12(2003), 1-7.
[2] N. U. Ahmed, K. L. Teo; Optimal Control of Distributed Parameters Systems, North Holland, New York, 1981.
[3] N. U. Ahmed, X. Xing; Existence of solutions for a class of nonlinear evolution equation with non-monotone perturbation, Nonlinear Anl. 22(1994), 81-89.
[4] J. P. Aubin, A. Cellina; Differential Inclusions. Springer, Berlin, 1984.
[5] C. Avramescu; A fixed point theorem for multivalued mappings, Electronic J. Qualitative Theory of Differential Equations, Vol. 17 (2004), 1-10.
[6] K. Balachandar and J. P. Dauer; Elements of Control Theory, Narosa Publishing House,1999.
[7] V. Barbu; Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff international Pupl. Leyden, 1976.
[8] C. Castaing, M. Valadier; Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics Vol. 580, Springer-Verlag, Berline-Heidelberg-New York. 1977.
[9] K. Demling; Multivalued Differential Equations, Walter de Gruyter, New York 1992.
[10] K. Diethelm, N. Ford; Analysis of fractional differential equations, J.Math.Anal.Appl.,265(2002)229-248.
[11] B. C. Dhage; Multi-valued operators and fixed point theorem in Banach algebras, Taiwanese J. of. Math. Vol. 10(2006), 1025-1045.
[12] B. Dhage, T. Holambe, S. Ntouyas; The method upper and lower solutions for Caratheodory n-th order differential inclusions. Electron. J. Diff. Eqns. Vol. 2004(2004) No. 08, 1-9.
[13] A. M. A. El-Sayed, A. G. Ibrahim; Multi-valued fractional differential equations, Appl. Math. Comput. 68(1995), 15-25.
[14] A. M. A. El-Sayed, A. G. Ibrahim; Set valued integral equations of fractional-orders, Appl. Math. and Comp. 118(2001), 113-121.
[15] S. Heikkila, V. Lakshmikantham; Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations, Marcel Dekker Inc. New York, 1994.
[16] S. Hu, N. S. Papageeorgion; Handbook of Multivalued Analysis, Vol. I: Theory. Kluwer, Dordrecht, 1997.
[17] S. Hu, N. S. Papageeorgion; Handbook of Multivalued Analysis, Vol. II: Applications. Kluwer, Dordrecht, 2000.
[18] A. G. Ibrahim, A. M. A. El-Sayed; Define integral of fractional order for set valued function,J. Frac. Calculus 11 (1997).
[19] A. G. Kartsatos, K. Y. Shin; Solvability of functional evolutions via compactness methods in general Banach spaces. Nonlinear Anal., 21(1993), 517-535.
[20] M. A. Khamsi, D. Misane; Disjuntive Signal Logic Programing, Preprint.
[21] V. Kiryakova; Generalized Fractional Calculus and Applications, Pitman Res. Notes Math. Ser., Vol. 301, Longman/Wiley, New York, 1994.
[22] M. Kisielewicz; Differential Inclusions and Optimal Control. Dordrecht, The Netherlands, 1991.
[23] M. Martelli; Rothe's type theorem for non compact acyclic-valued maps, Boll. Math. Ital. 4(Suppl. Fasc.)(1975)70-76.
[24] K. S. Miller and B. Ross; An Introduction to The Fractional Calculus and Fractional Differential Equations, John-Wily and Sons, Inc., 1993.
[25] K. B. Oldham and J. Spanier; The Fractional Calculus, Math. in Science and Engineering, Acad. Press, New York/London, 1974.
[26] N. H. Pavel; Nonlinear Evolution Operators and Semigroups, Lecture Notes in Mathematics, Vol. 1260. Springer, Berlin, 1987.
[27] I. Podlubny; Fractional Differential Equations, Acad. Press, London,1999.
[28] S. G. Samko, A. A. Kilbas, O. I. Marichev; Fractional Integrals and Derivatives (Theory and Applications), Gorden and Breach, New York, 1993.
[29] D. R. Smart; Fixed Point Theorems, Cambridge University Press, 1980.
[30] I. I. Vrabie; Compactness Methods for Nonlinear Evolutions, Longman, Harlow, 1987.
Rabha W. Ibrahim
School of Mathematical Sciences, Faculty of Sciences and Technology, UKM, Malaysia
E-mail address: rabhaibrahim@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 34G10, 26A33, 34A12, 42B05.
 Key words and phrases. Fractional calculus; set-valued function; extremal solution; maximal solution; minimal solution; differential inclusions.
 (C) 2009 Texas State University - San Marcos.

 Submitted February 20, 2008. Published January 20, 2009.

