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AN INCORRECTLY POSED PROBLEM FOR NONLINEAR
ELLIPTIC EQUATIONS

SVETLIN G. GEORGIEV

Abstract. We study properties of solutions to non-linear elliptic problems

involving the Laplace operator on the unit sphere. In particular, we show that
solutions do not depend continuously on the initial data.

1. Introduction

In this paper we study properties of solutions to the initial-value problem

urr +
n− 1

r
ur +

1
r2

∆Su = f(r, u), r ≥ r0, (1.1)

u|r=r0 = u0 ∈ X, ur|r=r0 = u1 ∈ Y, (1.2)

where n ≥ 2, r0 ≥ 1 is suitable chosen and fixed number, X and Y are Banach
spaces, f ∈ C([r0,∞))× C1(R1), f(r, 0) = 0 for every r ≥ r0, a|u| ≤ f ′u(r, u) ≤ b|u|
for every r ≥ r0, u ∈ R1, a and b are positive constants, ∆S is the Laplace operator
on the unit sphere Sn−1. More precisely we prove that the initial-value problem
(1.1)-(1.2) is incorrectly posed in the following sense.

When we say that (1.1)-(1.2) is incorrectly posed when the following happens:
(1.1)-(1.2) has exactly one solution u(r) ∈ X for each u0 ∈ X, u1 ∈ Y ; there exists
ε > 0 such that for every δ > 0, we have: ‖u0 − u′0‖X < δ, ‖u1 − u′1‖Y < δ and
‖u − u′‖X ≥ ε, where u is a solution with initial data u0, u1, and u′ is a solution
with initial data u′0, u

′
1.

In this article, we obtain the following results using the same approach as in
[3, 4, 5, 6],

Theorem 1.1. Let n ≥ 2, r0 ≥ 1, f ∈ C([r0,∞)) × C1(R1) f(r, 0) = 0 for every
r ≥ r0, and X = Y = L2(Sn−1). Assume that there are positive constants, a ≤ b,
such that a|u| ≤ f ′u(r, u) ≤ b|u| for every r ≥ r0 and every u ∈ R. Then (1.1)-(1.2)
is incorrectly posed.

Theorem 1.2. Let n ≥ 2, r0 ≥ 1, f ∈ C([r0,∞)) × C1(R1), f(r, 0) = 0 for
every r ≥ r0, X = C2(Sn−1) and Y = C1(Sn−1). Assume that there are positive
constants, a ≤ b, such that a|u| ≤ f ′u(r, u) ≤ b|u| for every r ≥ r0 and every u ∈ R.
Then (1.1)-(1.2) is incorrectly posed.
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This paper is organized as follows. In section 2 we prove our main results. In
the appendix we prove results needed for the proof of Theorems 1.1 and 1.2.

2. Proof of Main Results

Here and bellow we will assume that r0 ≥ 1 and n ≥ 2. First we will consider
the initial-value problem

urr +
n− 1

r
ur +

1
r2

∆Su = f(u), r ≥ r0, (2.1)

u(r)|r=r0 = u0 ∈ L2(Sn−1), ur(r)|r=r0 = u1 ∈ L2(Sn−1), (2.2)

where ∆S is the Laplace operator on the unit sphere Sn−1, f ∈ C1(R1), f(0) = 0,
a|u| ≤ f ′(u) ≤ b|u| for every u ∈ R1, a ≤ b are fixed positive constants.

For fixed positive constants n ≥ 2, r0 ≥ 1, a, b, a ≤ b, we suppose that the
constants A, B, c1, d1 satisfy the following conditions

r0 ≤ c1 ≤ d1,

A ≥ B > 0,

a

2A

dn
1

(d1 + 1)n
≥ 1.

(2.3)

Example. Let n ≥ 1, r0 � 1, A = 2, B = 1, a = r10n
0 ,b = 2r10n

0 , c1 = r0 + 1,
d1 = r0 + 2.

Let N be the set

N =
{

u(r) : u(r) ∈ C2([r0,∞)), u(∞) = ur(∞) = 0,

rα|∂β
r u(r)| ≤ 1 ∀r ≥ r0, ∀α ∈ N ∪ {0}, β = 0, 1,

u(r) ≥ 0 ∀r ≥ r0, u(r) ≤ 1
B
∀r ≥ r0,

u(r) ≥ 1
A
∀r ∈ [c1, d1], u(r) ∈ L2([r0,∞))

}
.

For n ≥ 1, f(u) ∈ C1(R1), a|u| ≤ f ′(u) ≤ b|u|, where a ≥ b are positive constants,
and u ∈ N we define the operator and the initial values

P (u) =
∫ ∞

r

1
sn

∫ ∞

s

τnf(u)dτds,

u0 =
∫ ∞

r0

1
sn

∫ ∞

s

τnf(u)dτds, u1 = − 1
rn
0

∫ ∞

r0

τnf(u)dτ.

Theorem 2.1. Let n ≥ 2, r0 ≥ 1, f ∈ C1(R1), and f(0) = 0. Assume that there
exist positive constants a ≤ b such that a|u| ≤ f ′(u) ≤ b|u|. Then (2.1)-(2.2) has
exactly one solution u ∈ N .

Proof. First we prove that P : N → N . Let u ∈ N be fixed. Then
(1) Since f ∈ C1([r0,∞)), u ∈ C2([r0,∞)) we have that P (u) ∈ C2([r0,∞)). Also
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we have

P (u)|r=∞ = 0,

∂P (u)
∂r

= − 1
rn

∫ ∞

r

τnf(u)dτ,

∂P (u)
∂r |r=∞

= 0.

(2) Let α ∈ N∪ {0}. We choose k ∈ N such that k ≥ α + 3 and b
2B(k−1) < 1. Then

rαP (u) = rα

∫ ∞

r

1
sn

∫ ∞

s

τnf(u)dτds .

Now we use that for u ∈ N , we have u ≥ 0 for every r ≥ r0, f(0) = 0, f ′(u) ≤ bu,
from here f(u) ≤ b

2u2, since u ≤ 1
B for every r ≥ r0 we get f(u) ≤ b

2B u. Then

rαP (u) ≤ b

2B
rα

∫ ∞

r

1
sn

∫ ∞

s

τnudτds

= rα b

2B

∫ ∞

r

1
sn

∫ ∞

s

τn+k 1
τk

udτds (use that τn+ku ≤ 1)

≤ b

2B
rα

∫ ∞

r

1
sn

∫ ∞

s

1
τk

dτds

≤ b

2B

1
(k − 1)(n + k − 2)

1
rn+k−α−2
0

≤ 1.

In the above inequality we use our choice of the constant k. Also,

∣∣rα ∂P (u)
∂r

∣∣ ≤ b

2B
rα 1

rn

∫ ∞

r

τnudτ

= rα b

2B

1
rn

∫ ∞

r

τn+k 1
τk

udτ (use τn+ku ≤ 1)

≤ rα b

2B

∫ ∞

r

1
sn

∫ ∞

s

1
τk

dτds

≤ b

2B

1
(k − 1)

1
rn+k−α−1
0

≤ 1.

In the above inequality we use our choice of the constant k.
(3) First we note that for u ∈ N we have f(u) ≥ au2/2. Therefore for every r ≥ r0

we have

P (u) ≥ a

2

∫ ∞

r

1
sn

∫ ∞

s

τnu2dτds ≥ 0.

(4) Let r ∈ [c1, d1]. Then

P ′(u) =
∫ ∞

r

1
sn

∫ ∞

s

τnf ′(u)dτds ≥ a

∫ ∞

r

1
sn

∫ ∞

s

τnudτds ≥ 0.
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Therefore, for u ∈ N the function P (u) is increase function of u. Since for every
r ∈ [c1, d1] we have that u ≥ 1/A we get

P (u) ≥ P (
1
A

) =
∫ ∞

r

1
sn

∫ ∞

s

τnf
( 1
A

)
dτds

≥ a

2A2

∫ d1+1

d1

1
sn

∫ d1+1

d1

τndτds

≥ a

2A2

dn
1

(d1 + 1)n
≥ 1

A
,

in the above inequality we use (2.3).
(5) Choose k ∈ N such that

k > 3,
b

2(k − 1)(n + k − 2)
< 1.

Then

P (u) ≤ b

2B

∫ ∞

r

1
sn

∫ ∞

s

τnudτds

≤ b

2B

∫ ∞

r

1
sn

∫ ∞

s

τk+n 1
τk

udτds

≤ b

2B

∫ ∞

r

1
sn

∫ ∞

s

1
τk

dτds

=
b

2B(k − 1)(n + k − 2)rn+k−2
0

≤ 1
B

.

(6) Now we prove that P (u) ∈ L2([r0,∞)). Indeed,

‖P (u)‖2L2([r0,∞)) =
∫ ∞

r0

(∫ ∞

r

1
sn

∫ ∞

s

τnf(u)dτds
)2

dr

≤ b2

4

∫ ∞

r0

(∫ ∞

r

1
sn

∫ ∞

s

τnu2dτds
)2

dr

≤ b2

4

∫ ∞

r0

(∫ ∞

r

1
sn

∫ ∞

s

τk+nu
u

τk
dτds

)2

dr (use that τk+nu ≤ 1)

≤ b2

4

∫ ∞

r0

(∫ ∞

r

1
sn

∫ ∞

s

u

τk
dτds

)2

dr ≤ (use Hölder’s inequality)

≤ b2

4

∫ ∞

r0

(∫ ∞

r

1
sn

(∫ ∞

s

1
τ2k

dτ
)1/2(∫ ∞

s

u2dτ
)1/2

ds
)2

dr

≤ b2

4(2k − 1)(n + k − 3
2 )2(2n + 2k − 4)r2n+2k−4

0

‖u‖2L2([r0,∞)) < ∞,

because u ∈ L2([r0,∞)). From (1)–(6) we conclude that P : N → N .
Now we prove that the operator P has exactly one fixed point in N . Let u1, u2 ∈

N are fixed and α = ‖u1 − u2‖L2([r0,∞)). We choose the constant k ∈ N large so
that Q1/α < 1, where

Q1 =
2b2

B2( 4
3k − 1)

3
2 (n + k − 7

4 )2(2n + 2k − 9
2 )r2n+2k− 9

2
0

.
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Then

‖P (u1)− P (u2)‖2L2([r0,∞))

=
∫ ∞

r0

(∫ ∞

r

1
sn

∫ ∞

s

τn(f(u1)− f(u2))dτds
)2

dr (mean value theorem)

=
∫ ∞

r0

(∫ ∞

r

1
sn

∫ ∞

s

τnf ′(ξ)(u1 − u2)dτds
)2

dr

≤
∫ ∞

r0

(∫ ∞

r

1
sn

∫ ∞

s

τn|f ′(ξ)‖u1 − u2|dτds
)2

dr

(use that |f ′(ξ)| ≤ b|ξ| ≤ b

B
, |ξ| ≤ max{|u1|, |u2|})

≤ b2

B2

∫ ∞

r0

(∫ ∞

r

1
sn

∫ ∞

s

τn|u1 − u2|dτds
)2

dr

=
b2

B2

∫ ∞

r0

(∫ ∞

r

1
sn

∫ ∞

s

√
τ2k+2n|u1 − u2|

1
τk

√
|u1 − u2|dτds

)2

dr

(use that
√

τ2k+2n|u1 − u2| ≤
√

2)

≤ 2b2

B2

∫ ∞

r0

(∫ ∞

r

1
sn

∫ ∞

s

√
|u1 − u2|

1
τk

dτds
)2

dr (Hölder’s inequality)

≤ 2b2

B2

∫ ∞

r0

(∫ ∞

r

1
sn

(∫ ∞

s

1

τ
4k
3

dτ
)3/4(

|u1 − u2|2dτ
)1/4

ds
)2

dr

≤ Q1‖u1 − u2‖L2([r0,∞));

i.e.,

‖P (u1)− P (u2)‖2L2([r0,∞)) ≤ Q1‖u1 − u2‖L2([r0,∞)).

From this,

‖P (u1)− P (u2)‖2L2([r0,∞)) ≤
Q1

α
α‖u1 − u2‖L2([r0,∞)) ≤

Q1

α
‖u1 − u2‖2L2([r0,∞)).

For our next step we need the theorem in [8, page 294]:

Let B be the complete metric space for which AB ⊂ B and for the
operator A satisfies the condition

ρ(Ax, Ay) ≤ L(α, β)ρ(x, y), x, y ∈ B,α ≤ ρ(x, y) ≤ β,

where L(α, β) < 1 for 0 < α ≤ β < ∞. Then the operator A has
exactly one fixed point in B.

From the above result and our choice of k we conclude that the operator P has
exactly one fixed point u ∈ N . Consequently u is a solution to the problem (2.1)-
(2.2). In the appendix we will prove that the set N is closed subset of the space
L2([r0,∞)). We have that u0 ∈ L2(Sn−1), u1 ∈ L2(Sn−1). �

Theorem 2.2. Let n ≥ 2, r0 ≥ 1, f ∈ C1(R1), and f(0) = 0. Assume that there
exists positive constants, a ≤ b, such that a|u| ≤ f ′(u) ≤ b|u|. Then (2.1)-(2.2) is
incorrectly posed.
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Proof. On the contrary, suppose that (2.1)-(2.2) is correctly posed. Let u is the
solution from Theorem 2.1. We choose ε such that 0 < ε < 1/Q2, where

Q2 =
b2

4(4k − 1)1/2(n + k − 5
4 )2(2n + 2k − 7

2 )r2n+2k− 7
2

0

.

Then there exists δ = δ(ε) > 0 such that

‖u0‖L2(Sn−1) < δ, ‖u1‖L2(Sn−1) < δ

imply
‖u‖L2([r0,∞)) < ε.

From the definition of u, we have

‖u‖2L2([r0,∞)) =
∫ ∞

r0

(∫ ∞

r

1
sn

∫ ∞

s

τnf(u)dτds
)2

dr

≤ b2

4

∫ ∞

r0

(∫ ∞

r

1
sn

∫ ∞

s

τnu2dτds
)2

dr

=
b2

4

∫ ∞

r0

(∫ ∞

r

1
sn

∫ ∞

s

√
τ2k+2nuu

3
2

1
τk

dτds
)2

dr

(use that
√

τ2k+2nu ≤ 1)

≤ b2

4

∫ ∞

r0

(∫ ∞

r

1
sn

∫ ∞

s

u
3
2

1
τk

dτds
)2

dr (Hölder’s inequality)

≤ b2

4

∫ ∞

r0

(∫ ∞

r

1
sn

(∫ ∞

s

u2dτ
)3/4( 1

τ4k
dτ

)1/4

ds
)2

dr

≤ Q2‖u‖3L2([r0,∞));

i.e.,
‖u‖2L2([r0,∞)) ≤ Q2‖u‖3L2([r0,∞)).

From this,,

‖u‖L2([r0,∞)) ≥
1

Q2
> ε

which is a contradiction. Consequently the problem (2.1)-(2.2) is incorrectly posed.
�

Theorem 2.3. Let n ≥ 2, r0 ≥ 1, f ∈ C1(R1), and f(0) = 0. Assume that there
are positive constants a ≤ b such that a|u| ≤ f ′(u) ≤ b|u|. Then the problem

urr +
n− 1

r
ur +

1
r2

∆Su = f(u), r ≥ r0, (2.4)

u(r)|r=r0
= u0 ∈ C2(Sn−1), ur(r)|r=r0

= u1 ∈ C1(Sn−1), (2.5)

is incorrectly posed.

Proof. Let us suppose that (2.4)-(2.5) is correctly posed, and let

Q3 =
b

2(k − 1)(n + k − 2)rn+k−2
0

.

Then for 0 < ε < 1/Q2
3, there exists δ = δ(ε) > 0 such that

‖u0‖C2(Sn−1) < δ, ‖u1‖C1(Sn−1) < δ,
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imply
max

r∈[r0,∞)
|u| < ε, max

r∈[r0,∞)
|ur| < ε, max

r∈[r0,∞)
|urr| < ε,

where u is the solution from the Theorem 2.1. From the definition of u, and k ∈ N,
we have

u(r) ≤ b

2

∫ ∞

r

1
sn

∫ ∞

s

τnu2dτds

=
b

2

∫ ∞

r

1
sn

∫ ∞

s

√
τ2k+2nuu

3
2

1
τk

dτds

≤ b

2

∫ ∞

r

1
sn

∫ ∞

s

u
3
2

1
τk

dτds

≤ b

2
( max
r∈[r0,∞)

u)
3
2

∫ ∞

r

1
sn

∫ ∞

s

1
τk

dτds

≤ Q3( max
r∈[r0,∞)

u)
3
2 .

From this it follows that

Q3( max
r∈[r0,∞)

u)1/2 ≥ 1, or max
r∈[r0,∞)

u >
1

Q2
3

> ε,

which is a contradiction with our assumption. Consequently (2.4)-(2.5) is incor-
rectly posed. �

The proofs of Theorems 1.1 and 1.2 follow from the method used in the proof of
Theorems 2.2 and 2.3.

3. Appendix

Lemma 3.1. The set N is a closed subset of L2([r0,∞)).

Proof. Let {un} is a sequence of elements in N for which

lim
n→∞

‖un − ũ‖L2([r0,∞)) = 0,

where ũ ∈ L2([r0,∞)). Since P (u) is a continuous differentiable function of u, for
r ∈ [r0, c1] and u ∈ N we have

P ′(u) =
∫ ∞

r

1
sn

∫ ∞

s

τnf ′(u)dτds

≥ a

∫ d1

c1

1
sn

∫ d1

c1

τnudτds

≥ a

A

cn
1

dn
1

(d1 − c1)2.

From this, it follows that for every u ∈ N there exists

L = min
r∈[r0,c1]

|P ′(u)(r)| > 0.

Let
M1 = max

r∈[r0,c1]

∣∣∣ ∂

∂r
P ′(u)(r)

∣∣∣.
Now we prove that for every ε > 0 there exists δ = δ(ε) > 0 such that from
|x− y| < δ we have

|um(x)− um(y)| < ε ∀m ∈ N.
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We suppose that there exists ε̃ > 0 such that for every δ > 0 there exist natural
number m and x, y ∈ [r0,∞), |x − y| < δ for which |um(x) − um(y)| ≥ ε̃. We
choose ˜̃ε such that 0 < ˜̃ε < Lε̃. We note that P (um)(x) is uniformly continuous for
x ∈ [r0,∞). For u ∈ N P (u)(r) is uniformly continuous function for r ∈ [r0,∞)
because P (u)(r) ∈ C([r0,∞)) and as in the proof of the Theorem 2.1 we have that
there exists positive constant C such that

∣∣ ∂
∂r P (u)(r)

∣∣ ≤ C. Then there exists
δ1 = δ1(˜̃ε) > 0 such that for every natural m we have

|P (um)(x)− P (um)(y)| < ˜̃ε, ∀x, y ∈ [r0,∞) : |x− y| < δ1.

Consequently we can choose

0 < δ < min
{
c1 − r0, δ1,

(Lε̃− ˜̃ε)B
M1

}
such that there exist natural number m and x1, x2 ∈ [r0,∞) for which

|x1 − x2| < δ, |um(x1 − x2 + r0)− um(r0)| ≥ ε̃.

In particular,
|P (um)(x1 − x2 + r0)− P (um)(r0)| < ˜̃ε. (3.1)

Let us suppose for convenience that x1 − x2 > 0. Then x1 − x2 < c1 − r0 and for
every u ∈ N we have P ′(u)(x1−x2 +r0) ≥ L. Then from the middle point theorem
we have P (0) = 0, P (um)(x1 − x2 + r0) = P ′(ξ)(x1 − x2 + r0)um(x1 − x2 + r0),
P (um)(r0) = P ′(ξ)(r0)um(r0),

|P (um)(x1 − x2 + r0)− P (um)(r0)|
= |P ′(ξ)(x1 − x2 + r0)um(x1 − x2 + r0)− P ′(ξ)(r0)um(r0)|
= |P ′(ξ)(x1 − x2 + r0)um(x1 − x2 + r0)− P ′(ξ)(x1 − x2 + r0)um(r0)

+ P ′(ξ)(x1 − x2 + r0)um(r0)− P ′(ξ)(r0)um(r0)|
≥ |P ′(ξ)(x1 − x2 + r0)um(x1 − x2 + r0)− P ′(ξ)(x1 − x2 + r0)um(r0)|
− |P ′(ξ)(x1 − x2 + r0)um(r0)− P ′(ξ)(r0)um(r0)|

= |P ′(ξ)(x1 − x2 + r0)um(x1 − x2 + r0)− P ′(ξ)(x1 − x2 + r0)um(r0)|

−
∣∣∣ ∂

∂r
P ′(ξ)

∥∥∥x1 − x2‖um(r0)|

≥ Lε̃−M1δ
1
B
≥ ˜̃ε,

which is a contradiction with (3.1). Therefore, for every ε > 0 there exists δ =
δ(ε) > 0 such that from |x− y| < δ follows

|um(x)− um(y)| < ε ∀m ∈ N. (3.2)

On the other hand from the definition of the set N we have that for every natural
number m

um(r) ≤ 1
B

∀r ≥ r0. (3.3)

From this inequality and (3.2) it follows that the set {um} is a compact subset
of the space C([r0,∞)). Therefore there is a subsequence {unk

} and function u ∈
C([r0,∞)) for which

|unk
(x)− u(x)| < ε ∀x ∈ [r0,∞).
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Now we suppose that that u 6= ũ a.e. in [r0,∞). Then there exist ε1 > 0 and
subinterval ∆ ⊂ [r0,∞) such that µ(∆) > 0 and

|u− ũ| > ε1 for r ∈ ∆.

Let ε > 0 is chosen such that

ε <
ε1(µ(∆))1/2

µ(∆)1/2 + 1
. (3.4)

Then, for every nk ∈ N sufficiently large, we have ‖unk
− ũ‖L2([r0,∞)) < ε,

εµ(∆) = ε

∫
∆

dx

>

∫
∆

|unk
− u|dx =

∫
∆

|unk
− ũ + ũ− u|dx

≥
∫

∆

|ũ− u|dx−
∫

∆

|unk
− ũ|dx

≥ ε1µ(∆)−
(∫

∆

|unk
− ũ|2dx

)1/2(
µ(∆)

)1/2

≥ ε1µ(∆)− ‖unk
− ũ‖L2([r0,∞))

(
µ(∆)

)1/2

> ε1µ(∆)− ε
(
µ(∆)

)1/2
,

which is a contradiction with (3.4). From this, u = ũ a.e. in [r0,∞), |un − u|2 =
|ũ− un|2 a.e. in [r0,∞), ‖un− u‖L2([r0,∞)) = ‖un− ũ‖L2([r0,∞)). Consequently, for
every sequence {un} from elements of the set N , which is convergent in L2([r0,∞)),
there exists a function u ∈ C([r0,∞)), u ∈ L2([r0,∞)) for which

lim
n→∞

‖un − u‖L2([r0,∞)) = 0.

Bellow we will suppose that {un} is a sequence from elements of the set N ,
which is convergent in L2([r0,∞)). Then there exists a function u ∈ C([r0,∞)),
u ∈ L2([r0,∞)) for which

lim
n→∞

‖un − u‖L2([r0,∞)) = 0.

Now we suppose that u(∞) 6= 0. Then there exist sufficiently large Q > 0, a
large natural number m and ε2 > 0 for which

um(r) = 0, u(r) > ε2, ∀r ≥ Q.

We choose
0 < ε3 < ε2. (3.5)

Then, for every n ∈ N sufficiently large, we have |un(r)− u(r)| < ε3 and

ε3 >

∫ Q+1

Q

|un(r)− u(r)|dr

≥
∫ Q+1

Q

(|u(r)| − |un(r)|)dr

=
∫ Q+1

Q

|u(r)|dr > ε2,

which is a contradiction with (3.5). Therefore, u(∞) = 0.
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Now we prove that ∂
∂r u(r) exists for every r ≥ r0. Let us suppose that there

exists r1 ∈ [r0,∞) such that ∂
∂ru(r1) does not exists. Then for every h > 0, which

is enough small, exists ε4 > 0 such that∣∣∣u(r1 + h)− u(r1)
h

∣∣∣ > ε4,

and

0 < ε5 <
h

2
ε4, (3.6)

such that |un(r1 + h)− u(r1)| < ε5. From this,

ε5 > |un(r1 + h)− u(r1 + h)|
= |un(r1 + h)− u(r1) + u(r1)− u(r1 + h)|

≥ |u(r1)− u(r1 + h)| 1
h

h− |un(r1 + h)− u(r1)|

≥ ε4h− ε5,

which is a contradiction of our choice of ε5. Therefore ∂
∂r u(r) exists for every

r ∈ [r0,∞). As in above we can see that u(r) ∈ C2([r0,∞)) ur(∞) = 0.
Now we suppose that there exists interval ∆2 ⊂ [r0,∞) such that

u(r) ≥ 1
B

+ ε7 for r ∈ ∆2.

Let n ∈ N be large and ε8 > 0 chosen such that

|un(r)− u(r)| < ε8 for r ∈ ∆2, 0 < ε8 < ε7. (3.7)

From this, for r ∈ ∆2, we have

ε8 > |un(r)− u(r)| ≥ |u(r)| − |un(r)| ≥ 1
B

+ ε7 −
1
B

= ε7,

which is a contradiction with (3.7). Therefore, u(r) ≤ 1
B for every r ≥ r0.

Now we suppose that there exists interval ∆3 ⊂ [c1, d1] for which u(r) < 1
A for

every r ∈ ∆3. From this, there exists ε9 > 0 such that u(r) ≤ 1
A − ε9 for r ∈ ∆3.

Also, let
0 < ε10 < ε9 (3.8)

and n ∈ N is enough large such that ε10 > |un(r) − u(r)| for r ∈ ∆3. Then for
r ∈ ∆3 we have

ε10 > |un(r)− u(r)| ≥ |un(r)| − |u(r)| ≥ 1
A
− 1

A
+ ε9,

which is a contradiction with (3.8). Consequently, for every r ∈ [c1, d1] we have
u(r) ≥ 1

A .
Now we suppose that there exist α ∈ N∪ {0}, interval ∆4 ⊂ [r0,∞) and ε11 > 0

such that
|rαu(r)| > 1 + ε11 for r ∈ ∆4.

Let ε12 > 0 and n ∈ N be chosen such that

|rα(un(r)− u(r))| < ε12 for r ∈ ∆4, 0 < ε12 < ε11. (3.9)

From this,

ε12 > |rα(un(r)− u(r))| ≥ |rαu(r)| − rα|un(r)| ≥ ε11,
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which is a contradiction with (3.9). Therefore for every α ∈ N ∪ {0} and for every
r ∈ [r0,∞) we have rαu(r) ≤ 1. After we use the same arguments we can see that
for every α ∈ N ∪ {0} and for every r ∈ [r0,∞) we have rα|ur(r)| ≤ 1.

Now we suppose that there exist interval ∆5 ⊂ [r0,∞) and ε13 > 0 such that for
r ∈ ∆5 we have u(r) < −ε13. Let n ∈ N is enough large and ε14 > 0 are fixed for
which

|un(r)− u(r)| < ε14 for r ∈ ∆5, 0 < ε14 < ε13. (3.10)
Then for r ∈ ∆5 we have

ε14 > un(r)− u(r) > ε13

which is a contradiction with (3.10). �
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