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AN INCORRECTLY POSED PROBLEM FOR NONLINEAR
ELLIPTIC EQUATIONS

SVETLIN G. GEORGIEV

ABSTRACT. We study properties of solutions to non-linear elliptic problems
involving the Laplace operator on the unit sphere. In particular, we show that
solutions do not depend continuously on the initial data.

1. INTRODUCTION

In this paper we study properties of solutions to the initial-value problem

n—1
urr"'

1
ur—l—T—QASu:f(r,u), r > 19, (1.1)
Upmrg = U0 € X,  Up|pep, = u1 €Y, (1.2)

where n > 2, rg > 1 is suitable chosen and fixed number, X and Y are Banach
spaces, f € C([rg,00)) x C1(RY), f(r,0) = 0 for every r > ro, alu| < f/(r,u) < blul
for every r > 7o, u € R', a and b are positive constants, Ag is the Laplace operator
on the unit sphere S™~!. More precisely we prove that the initial-value problem
— is incorrectly posed in the following sense.

When we say that — is incorrectly posed when the following happens:
- has exactly one solution u(r) € X for each ug € X, u; € Y; there exists
e > 0 such that for every § > 0, we have: |Jug — up|lx < 9, |Jur — ujlly < d and
lu — || x > €, where u is a solution with initial data ug,u1, and ' is a solution
with initial data wug, uf.

In this article, we obtain the following results using the same approach as in
13, 4L 5L [6],

Theorem 1.1. Letn > 2, 79 > 1, f € C([rg,0)) x CH(R) f(r,0) = 0 for every
r>r1o, and X =Y = L2(S"1). Assume that there are positive constants, a < b,
such that alu| < fl(r,u) < blu| for every r > ro and every u € R. Then (L.I))-(1.2)
is incorrectly posed.

Theorem 1.2. Let n > 2, g > 1, f € C([ro,)) x CY(RY), f(r,0) = 0 for
every r > rog, X = C?>(S"1) and Y = C1(S"~1). Assume that there are positive
constants, a < b, such that alu| < f!(r,u) < blu| for every r > ry and every u € R.

Then (1.1)-(1.2)) is incorrectly posed.

2000 Mathematics Subject Classification. 35J60, 35J65, 35B05.

Key words and phrases. Nonlinear elliptic equation; incorrectly posed problems.
(©2009 Texas State University - San Marcos.

Submitted January 6, 2008. Published January 23, 2009.

1



2 S. G. GEORGIEV EJDE-2009/20

This paper is organized as follows. In section 2 we prove our main results. In
the appendix we prove results needed for the proof of Theorems and

2. PROOF OF MAIN RESULTS

Here and bellow we will assume that rg > 1 and n > 2. First we will consider
the initial-value problem

Upp +

U(r) |r=r, = uo € LQ(Snfl),ur(rﬂr:rO =u; € L2(S”*1), (2.2)

Uy + %Asu = f(u), r>ro, (2.1)
T

where Ag is the Laplace operator on the unit sphere S*~1, f € C1(R!), f(0) = 0,
alu| < f'(u) < blul for every u € R, a < b are fixed positive constants.

For fixed positive constants n > 2, 1o > 1, a, b, a < b, we suppose that the
constants A, B, ¢y, dy satisfy the following conditions

T0§C1§d1»
A>B>0,

a dy
—_ = >1.
2A (dy +1)» —

(2.3)

Example. Let n > 1,70 > 1, A=2 B=1,a=7r"b=2rl" ¢, =ry+1,
di =719+ 2.
Let N be the set

N = {u(r) : u(r) € C([ro, %)), u(o0) = up(o0) =0,
r|0Pu(r)| < 1Vr > 1y, Ya € NU{0},3=0,1,
u(r) 2 09r 2 ro,ulr) < 5 Vr 2 1,

u(r) > % Vr € [er, du], u(r) € L2([ro, 00)) }

For n > 1, f(u) € CL(RY), alu| < f'(u) < blu|, where a > b are positive constants,
and u € N we define the operator and the initial values

P(u) = /TOO si" /:o 7" f(u)drds,

Ug :/ 7/ " f(u)drds, u; =—— 7" f(u)dr.
ro S5 Js To Jro
Theorem 2.1. Letn > 2, rg > 1, f € CY(RY), and f(0) = 0. Assume that there
exist positive constants a < b such that a|u| < f'(u) < blul. Then (2.1)-(2.2) has
ezactly one solution u € N.

Proof. First we prove that P: N — N. Let u € N be fixed. Then
(1) Since f € CY([rg,00)), u € C%([ro,00)) we have that P(u) € C?([rp,c)). Also
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we have
Pu),_.. =0,
e
a];(TU) lrcoo 0.

(2) Let @« € NU{0}. We choose k € N such that k¥ > a+ 3 and ﬁ < 1. Then

=r / / u)drds .
Sn

Now we use that for u € N, we have u > 0 for every r > rg, f(0) =
from here f(u) < 2u?, since u < & for every r > ro we get f(u) <

b ~ 1
r*P(u) < —B / / T"udrds

—n/ T”Jrk—kudes (use that 7"+ ky < 1)

*1
< —
< 2B / / des
< 1.

<
= 23(1% )(n+k—2) nih-a—2 =

0, f'(u) < bu,

iBu Then

In the above inequality we use our choice of the constant k. Also,

‘TaaP(u)‘ < b ro‘i/ T udT

or 2B
b 1 e 1
_ n+k — n+k <
re 2Br" T kudT (use 7" U < 1)
& 1
< ZB / / des
< <1.

B(k_ ),rg+k a—1 —

In the above inequality we use our choice of the constant k.
(3) First we note that for u € N we have f(u) > au?/2. Therefore for every r > rq

we have
o0 1 o0
> g/ —/ ™u2drds > 0.
2/, s" /5
(4) Let r € [c1,d1]. Then

o0 1 o0
= / / uw)drds > a/ —n/ T"udrds > 0.
T T S S
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Therefore, for u € N the function P(u) is increase function of uw. Since for every
r € [c1,d1] we have that u > 1/A we get

P(u) /00 ! / des

a di+1 1 di+1
> —2/ —n/ T"drds
2A d1 S d1

a dy 1

>_—_ 1 >
“2A2(d, +1)" — A

in the above inequality we use (2.3)).
(5) Choose k € N such that

b
1.
F>3 kT Dmrho) ©

b 1 [

Pu) < — | = n

(u) < 2B/r s”/s T udrds

b1 [ ]
@/ 7/ T Tfkudes

<1
QB/ / —drds
1

k—2 < =
2B(k—1)(n+k—2)rg™* 2~ B
(6) Now we prove that P(u) € L?([rg,c0)). Indeed,

1P() 22 g 00 / / / (wirds) dr
To

Then

IA

| /\

g — (/ —/ erds) dr
4 T0 r sm s
b2 [e'e} [ee] 1 [e'e} 2
< (/ 7/ Tk"’"uideds) dr  (use that 7°""y < 1)
4 ) N\ 8" s T
b2 oo > 1 < u 2
< = ( / — / —d ds) dr < (use Holder’s inequality)
4 o s S ) T
b2 o) o 1 Sl | 1/2 o 1/2 2
< Bl —d 2d ds) d
TR ) ([ ) )
b2

2
U < 00
42k — 1) (n+ k — 3)2(2n + 2k — 4)r2n2h—4 el oo

because u € L*([rg,o0)). From (1)—(6) we conclude that P: N — N.

Now we prove that the operator P has exactly one fixed point in N. Let w1, us €
N are fixed and o = [|ug — uz|[12(fr,00)). We choose the constant & € N large so
that Q1/a < 1, where

202
2n+2k— 2

Qi = :
B2(3k—1)z(n+k—1)2(2n+ 2k — ),
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Then

||P(ui* P(u2)1Z2 rg 00))

:/r (/r Sn/s

:/TOO /min/oofnf’(g)(ul_uQ)drdsfdr
RV

2
- f(ug))des) dr (mean value theorem)
0
0
(use that |f'(§)] < bl¢| < *, &) < max{|ual, lual})
< 32 s / "/s T”|u17uQ|d7’ds) dr
—BQ/TO /r S—n/s \/72k+2"\u1—uQ|ﬁ\/|u1—u2|d7'ds) dr
(use that \/T2k+2”|u1 — ug| < V2)
252 > 1 2 i1 :
§ o Viug — u2|ﬁd7ds) dr (Holder’s inequality)
T0 S

< QBLQQ /TO (/TOO ;(/:O T—%dr)sﬂoul - uz|2d7') 1/4ds)2dr

< Qullur — ua|l L2 ([rg,00));

7w — U2|deS) dr

i.e.,
1P (ur) = P(u2) |72 ((rg 00)) < Qullur = uall£2((rg 000 -
From this,

Q1 Q1
[1P(ur) = P(u2) |72 (1 ,00)) < = llur = uallzaro,00p < = llur = 2|22 (g 00

For our next step we need the theorem in [8, page 294]:

Let B be the complete metric space for which AB C B and for the
operator A satisfies the condition

p(Az, Ay) < L(a, B)p(x,y), =,y € B,a < p(z,y) < B,

where L(a,3) < 1 for 0 < a < 8 < 0o. Then the operator A has
exactly one fixed point in B.

From the above result and our choice of & we conclude that the operator P has
exactly one fixed point u € N. Consequently u is a solution to the problem —
. In the appendix we will prove that the set N is closed subset of the space
L?([rg,00)). We have that ug € L*(S™71), uy € L2(S™1). O

Theorem 2.2. Letn > 2,19 > 1, f € CH(RY), and f(0) = 0. Assume that there
exists positive constants, a < b, such that alu| < f'(u) < blu|. Then (2.1)-(2.2) is
incorrectly posed.
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Proof. On the contrary, suppose that (2.1)-(2.2]) is correctly posed. Let u is the
solution from Theorem We choose € such that 0 < € < 1/Q2, where

b2
A4k — 1)Y2(n + k — 3)2(2n + 2k — %)rgnJer:f%

Then there exists 6 = d(e) > 0 such that

l[uollL2(sn-1) <6, uallL2(sn-r) <0
imply
1wl 22 ([rg,00)) < €
From the definition of u, we have

||UH%2([7'0700)) :/ (/ s"/ des) dr
T0 T

b2 [e%s) 9
< — ( / — 2cl7'ds) dr
4 To T s" s
b2 o0 o0 1 1 9
S [ L)
4 ro s S" Tk
(use that \/72’”72% <1)
b 3 1 2
= 4 o ( /T / u? 7 dr  (Holder’s inequality)

b2 [/ [ 1 3/4 , 1 1/4 N2
<Z ( / 7( / quT) (WdT) ds) dr
4 /. 0 T

< QallullFa((rg 0003
ie.,
172 ((r0,000) < Q2172 (11,00
From this,,

1
wll 22 ([ro,00)) = Oy >

which is a contradiction. Consequently the problem (2.1))-(2.2) is incorrectly posed.
O

Theorem 2.3. Letn > 2, rg > 1, f € CY(RY), and f(0) = 0. Assume that there
are positive constants a < b such that a|u| < f'(u) < blu]. Then the problem

-1
Uy + —Uyp + ASU - f(u)7 T Z 7o, (24)
u(r)),_,, = uo € 02(5” 1), up(r)),_,, = w1 € CH(S" ), (2.5)
is incorrectly posed.

Proof. Let us suppose that (2.4)-(2.5)) is correctly posed, and let

b
R

Then for 0 < € < 1/Q3, there exists § = d(e) > 0 such that

l[uollez(sn-1) <0, ualler(sn-1) <6,
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imply
max |u| <€,  max |uy| <€ = max |up| <e,
r€lrg,00) r€[rg,00) r&(rg,00

where u is the solution from the Theorem [2.I] From the definition of u, and k € N,

we have
b [ 1 [ 9
u(r) < = — T"u drds
2/, s" /5

b [ 1 > 1
= - — V2t~ drds
2 /. s/, Tk

b >~ 1 e 1
* 1
—( max wu %/ / —des
2 ré[rooo

< Qs( max u%
T€[ro,00)

I /\

From this it follows that

Qs( max w)'/?2>1, or max u> —
3(7"6[7"0,00) ) r€lrg,00) Q3

which is a contradiction with our assumption. Consequently -— is incor-
rectly posed. [

The proofs of Theorems [I.1] and [I.2] follow from the method used in the proof of
Theorems 2.2 and 2.3

3. APPENDIX
Lemma 3.1. The set N is a closed subset of L*([rg,0)).
Proof. Let {uy} is a sequence of elements in N for which
Jim {lup =@l L2([rg,00)) = 0,

where @ € L?([rg,00)). Since P(u) is a continuous differentiable function of u, for
r € [rog,c1] and u € N we have

:/ / u)drds
dl 1 dl

> a/ / T"udrds
01

= Ad?(d —Cl) .

From this, it follows that for every u € N there exists
L= min |P'(u)(r)] > 0.

ré&lre,c1]
Let

M, = max

9
re(rg,c] 87“P( )( )

Now we prove that for every € > 0 there exists 6 = d(¢) > 0 such that from
|z — y| < 6 we have

[t () — um(y)| <€ Vm e N.
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We suppose that there exists € > 0 such that for every § > 0 there exist natural
number m and z,y € [rg,00), |v —y| < ¢ for which |um(z) — un(y)| > & We
choose € such that 0 < é < Lé&. We note that P(u,,)(z) is uniformly continuous for
x € [rg,00). For u € N P(u)(r) is uniformly continuous function for r € [rg, 00)
because P(u)(r) € C([ro,o0)) and as in the proof of the Theorem [2.1| we have that
there exists positive constant C' such that |6 (u)(r)] < C. Then there exists

81 = 61(€) > 0 such that for every natural m we have
|P(um)(2) = Plum)(y)| <& Va,y € [ro,00) : [z —y| < é1.
Consequently we can choose

(Lé — &)B
)

such that there exist natural number m and z1, 25 € [rg, 00) for which

0<d< min{cl — 19,01,

|1 — 2] <6, |um(x1 — 22+ 70) — um(ro)| > €.
In particular,
| P () (21 — 2 +70) — P(um)(ro)| < €. (3.1)
Let us suppose for convenience that xy — 29 > 0. Then x1 — 5 < ¢ — 79 and for
every u € N we have P'(u)(x1 —x2+79) > L. Then from the middle point theorem
we have P(0) = 0, P(unm)(x1 — 22 + 19) = P (&)(x1 — 2 + 10)um (21 — 22 + 10),
P(um)(ro) = P'(§)(ro)um(ro),
| P(tm)(x1 — 22 + 70) — P(tm)(r0)]
= [P'(&)( ) = P'(€)(ro)um (ro)]
= [P'(&)( ) = P'(&)(x1 — @2 + ro)um (o)
+ P'(§) (21 — 22 + 10)um(ro) — P'(§)(r0)um(r0)|
) —
)
) —

T — To + 70)Um (1 — 22 + 10

T — To + 70)Um (21 — 22 + 70

> [P (&) (1 — w2+ 10)Um (1 — T2 +10) — P (&) (21 — T2 + 70) U (T0)|
— [P (€)(x1 — x2 + 10)um(ro) — P'(§)(ro)um(ro)]
= |P'(&) (@1 — z2 + ro)um(x1 — z2 +19) — P'(&) (21 — 22 + 70) U (10) |

P'(&) a1 = waljun (o))

I3
- 1z
2 Lé— MI(SE Z €,
which is a contradiction with (3.1). Therefore, for every € > 0 there exists 6 =
d(e) > 0 such that from |z — y| < § follows
[t () — um(y)| <€ Vm eN. (3.2)
On the other hand from the definition of the set N we have that for every natural

number m
1
um(r) < 5 ¥r=ro. (3.3)
From this inequality and (3.2) it follows that the set {u,,} is a compact subset

of the space C([rg, o0)). Therefore there is a subsequence {u,, } and function u €
C([ro,00)) for which

[thn,, () —u(z)| < € Vz € [rg,00).
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Now we suppose that that u # @ a.e. in [rg,00). Then there exist ¢; > 0 and
subinterval A C [rg, 00) such that p(A) > 0 and

|lu—1a| >e forreA.

Let € > 0 is chosen such that

1 (u(A))1/2
MUSEEESE

Then, for every ny € N sufficiently large, we have |[un, — @l/12(jr,00)) < €

(D) = ¢ /A do

>/ \unk—u|dz=/ |tun, — 0+ U — uldr
A A

2/ \ﬂ7u|da¢7/ [th,,, — t|dx
A A

> ) = ([ funy i) " (u(2)

1/2

(3.4)

1/2

> e 1(A) = [t = l| 22 ([ 00)) (1(A))

> ep(A) — e(u(A)?,

which is a contradiction with (3.4). From this, u = @ a.e. in [rg,00), |u, — ul* =
|G — un|* ae. in [ro, 00), [[tn —ullL2([ro,00)) = |[tn — @l|£2([re,00))- Consequently, for
every sequence {u,, } from elements of the set N, which is convergent in L?([rg, 00)),
there exists a function u € C([rg, 00)), u € L?([rg, o0)) for which

nh—{go l[tn = ullL2(fr9,00)) = 0

Bellow we will suppose that {u,} is a sequence from elements of the set N,
which is convergent in L?([rg,o0)). Then there exists a function u € C([rg, 00)),
u € L*([rg,00)) for which

Jin = w22 (e 00)) = 0-

Now we suppose that u(co) # 0. Then there exist sufficiently large @ > 0, a
large natural number m and e > 0 for which
U (r) =0, u(r)>e, VYr>Q.

‘We choose
0 < e3 < e (35)

Then, for every n € N sufficiently large, we have |u,(r) — u(r)| < e3 and

Q+1
€3 > / |t (1) — u(r)|dr

Q

Q+1
> /Q (Ju(r)] = [un(r)[)dr

Q41
= / lu(r)|dr > €2,

Q
which is a contradiction with (3.5). Therefore, u(co) = 0.
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Now we prove that -Zu(r) exists for every r > ro. Let us suppose that there
exists r1 € [rg,00) such that %u(rl) does not exists. Then for every h > 0, which
is enough small, exists ¢4 > 0 such that

u(ry + h) —u(ry)
h

> €4,

and
h
0<es < 5 (3.6)
such that |u,(r1 + k) — u(r1)| < €5. From this,
€5 > |un(r1 + h) — u(rl + h)|

= |un(ry + h) —u(r1) + u(ry) — u(ry + h)|
1
> [u(r1) —u(ry + )l h = |un(ry + ) — u(ry)]
> 64h — €5,
which is a contradiction of our choice of e€5. Therefore %u(r) exists for every

7 € [rp,o0). As in above we can see that u(r) € C?([rg, 00)) u,(c0) = 0.
Now we suppose that there exists interval Ay C [rg, 00) such that

1
u(r) > §+67 for r € A,.

Let n € N be large and eg > 0 chosen such that

lun(r) —u(r)] < es forr e Ag,0 < eg < er. (3.7)
From this, for r € Ay, we have
1
es > [un(r) —u(r)] 2 [u(r)] = |un(r)] =2 5 +er = 5 =7,

IN &~

which is a contradiction with (3.7). Therefore, u(r)
Now we suppose that there exists interval Az C

every r € As. From this, there exists eg > 0 such t
Also, let

% for every r > rg.
c1,dq] for which u(r) < % for
at u(r) < & —eg for r € Ag.

==

0 < €19 <e€g (38)

and n € N is enough large such that €19 > |u,(r) — u(r)| for r € Az. Then for
r € Az we have

1 1
_ > _ >
€10 > [t (r) ~ u(r)] 2 fun ()]~ Ju(r)] = &~ % 4 e,
which is a contradiction with (3.8). Consequently, for every r € [¢1,d;] we have
u(r) > %.
Now we suppose that there exist « € NU {0}, interval Ay C [rg,00) and €11 > 0
such that
[ru(r)] > 1+ €1 forr e Ay
Let €12 > 0 and n € N be chosen such that
[P (un(r) —u(r))] < €12 forr e Ay, 0< e < e€11. (3.9)
From this,

€12 > [r(un(r) —u(r))| = |ru(r)| = r*lun(r)| > en,
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which is a contradiction with (3.9). Therefore for every a € NU {0} and for every
T € [rg,00) we have r®u(r) < 1. After we use the same arguments we can see that
for every « € NU {0} and for every r € [rg, 00) we have r%|u,(r)] < 1.

Now we suppose that there exist interval As C [rg,00) and €13 > 0 such that for
r € As we have u(r) < —ej3. Let n € N is enough large and €14 > 0 are fixed for
which

[un(r) —u(r)| < eq forr e As, 0<eq<ers. (3.10)
Then for r € Ay we have
€14 > Up (1) — u(r) > €13

which is a contradiction with (3.10)). O
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