Electronic Journal of Differential Equations, Vol. 2009(2009), No. 22, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF SOLUTIONS FOR DIFFERENTIAL INCLUSIONS ON CLOSED MOVING CONSTRAINTS IN BANACH SPACES

ADEL MAHMOUD GOMAA

Abstract

In this paper, we prove the existence of solutions to a multivalued differential equation with moving constraints. We use a weak compactness type condition expressed in terms of a strong measure of noncompactness.

1. Introduction

In this paper we study the existence of solutions to the multivalued differential equation with moving constraints

$$
\begin{gather*}
\dot{x}(t) \in F(t, x(t)) \quad \text { a.e. on } I, \\
x(t) \in \Gamma(t) \quad \forall t \in[0, T], \tag{1.1}\\
x(0)=x_{0} \in \Gamma(0) .
\end{gather*}
$$

Where $F:[0, T] \times E \rightarrow P_{c k}(E)\left(P_{c k}\right.$ is the family of nonempty convex compact subsets of E) and $\Gamma:[0, T] \rightarrow P_{f}(E),\left(P_{f}(E)\right.$ is the family of closed subsets of $\left.E\right)$. Problem (1.1) has been studied by many authors; see for example [6, 2, 25, 8, 26] when F is lower semicontinuous, and [14, 6] when F is upper semicontinuous with Γ is independent of t. For Γ depending on t, we refer to [2, 20, [5]. In [16] we consider the differential inclusions $\dot{x}(t) \in A(t) x(t)+F(t, x(t)), x(0)=x_{0}$ where $\{A(t): 0 \leq t \leq T\}$ is a family of densely defined closed linear operators generating a continuous evolution operator $S(t, s)$ and F is a multivalued function with closed convex values in Banach spaces. there, we show how that this results can be used in abstract control problems. Also in [17] we consider the Cauchy problem

$$
\begin{gathered}
\dot{x}(t)=f(t, x(t)), \quad t \in[0, T] \\
x(0)=x_{0},
\end{gathered}
$$

where $f:[0, T] \times E \rightarrow E$ and E is a Banach space. In [11, 12, we study nonlinear differential equations. In [10] we study some differential inclusions with delay and their topological properties. Much work has been done in the study of topological properties of solution for differential inclusions; see [1, 3, 7, 21, 19, 15, 18].

In this paper we to prove the existence of solutions to 1.1) by using a measure of strong noncompactness, γ, (see the next section). Since the Kuratowksi measure

[^0]of noncompactness and the ball measure of noncomactness are measures of strong noncomactness and we can construct many measures such γ as in [9], in this paper Theorem 3.1 is a generalization of results for example Szufla 26] and IbrahimGomaa [20]. In Theorem 3.2, the assumption on noncompactness is weaker than that of Benabdellah-Castaing and Ibrahim [5].

2. Preliminaries

Let E be a Banach space, E^{*} its topological dual space, E_{w} the Banach space E endowed with the weak topology, $B(0,1)$ unit ball of $E, I=[0, T],(T>0)$, and λ be the Lebesgue measure on I. Consider B is the family of all bounded subsets of E and $C(I, E)$ is the space of all weakly continuous functions from I to E endowed with the topology of weak uniform convergence.

Definition 2.1. By a measure of strong noncompactness, γ, we will understand a function $\gamma: B \rightarrow \mathbb{R}^{+}$such that, for all $U, V \in B$,
(M1) $U \subset V \Longrightarrow \gamma(U) \leq \gamma(V)$,
(M2) $\gamma(U \cup V) \leq \max (\gamma(U), \gamma(V))$,
(M3) $\gamma(\overline{\mathrm{conv}} U)=\gamma(U)$,
(M4) $\gamma(U+V) \leq \gamma(U)+\gamma(V)$,
(M5) $\gamma(c U)=|c| \gamma(U), \quad c \in \mathbb{R}$,
(M6) $\gamma(U)=0 \Longleftrightarrow U$ is relatively compact in E,
(M7) $\gamma(U \cup\{x\})=\gamma(U), x \in E$.
Definition 2.2. For any nonempty bounded subset U of E the weak measure of noncompactness, β, and the Kuratowski's measure of noncompactness, α, is defined as:
$\alpha(U)=\inf \{\varepsilon>0: U$ admits a finite number of sets with diameter less than ε.
For the properties of β and α we refer the reader to [4, 13].
Definition 2.3. By a Kamke function we mean a function $w: I \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that:
(i) w satisfies the Caratheodry conditions,
(ii) for all $t \in I ; w(t, 0)=0$,
(iii) for any $c \in(0, b], u \equiv 0$ is the only absolutely continuous function on $[0, c]$ which satisfies $\dot{u}(t) \leq w(t, u(t))$ a.e. on $[0, c]$ and such that $u(0)=0$.

Lemma $2.4([22,4])$. If $\gamma: B \rightarrow \mathbb{R}^{+}$satisfies conditions (M2), (M4), (M6), then, for any nonempty $U \in B$,

$$
\gamma(U) \leq \gamma(B(0,1)) \alpha(U)
$$

Lemma 2.5 ([24, 23]). If γ is a measure of weak (strong) noncompactness and $A \subset C(I, E)$ be a family of strongly equicontinuous functions, then $\gamma(A(I))=$ $\sup \{\gamma(A(t)): t \in I\}$.

3. Main Results

Theorem 3.1. Let $\Gamma: I \rightarrow P_{f}(E)$ be a set-valued function such that its graph, G, is left closed and $F: I \times E \rightarrow P_{c k}(E)$ be a scalarly measurable set-valued function such that for any $t \in I, F(t,$.$) is upper semicontinuous on E$. Suppose that F satisfies the following conditions:
(A1) For each $\varepsilon>0$, there exists a closed subset I_{ε} of I with $\lambda\left(I-I_{\varepsilon}\right)<\varepsilon$ such that for any nonempty bounded subset Z of E, one has

$$
\gamma(F(J \times Z)) \leq \sup _{t \in J} w(t, \gamma(Z))
$$

for any compact subset J of I_{ε};
(A2) there is $\mu \in L^{1}\left(I, \mathbb{R}^{+}\right)$, such that $\|F(t, x)\|<\mu(t)(1+\|x\|)$, for all $(t, x) \in$ G;
(A3) for each $(t, x) \in\left(\left[0, T[\times E) \cap G\right.\right.$ and $\varepsilon>0$ there is $\left(t_{\varepsilon}, x_{\varepsilon}\right) \in G$ such that $0<t_{\varepsilon}-t<\varepsilon$ and that

$$
x_{\varepsilon}-x \in \int_{t}^{t_{\varepsilon}} F(s, x) d s+\left(t_{\varepsilon}-t\right) \varepsilon B(0,1)
$$

Then, for any $x_{0} \in \Gamma(0)$, there is a solution for 1.1).
Proof. Let $\left(\varepsilon_{n}\right)_{n \in \mathbb{N}}$ be a decreasing sequence in $\left.] 0,1\right]$ with $\varepsilon_{n}=0$. By [5, Proposition 6.1], there exist $m>1$, a sequence $\left(\theta_{n}\right)_{n \in \mathbb{N}}$ of right continuous functions $\theta_{n}: I \rightarrow I$ such that $\theta_{n}(0)=0, \theta_{n}(T)=T$ and $\theta_{n}(t) \in\left[t-\varepsilon_{n}, t\right]$, and a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ from I to E with
(i) for all $t \in I, x_{n}(t)=x_{0}+\int_{0}^{t} \dot{x}_{n}(s) d s$, where $\dot{x}_{n} \in L^{1}(I, E)$;
(ii) for all $t \in I, x_{n}\left(\theta_{n}(t)\right) \in \Gamma\left(\theta_{n}(t)\right)$;
(iii) $\dot{x}_{n}(t) \in F\left(t, x_{n}\left(\theta_{n}(t)\right)+\varepsilon_{n} B(0,1)\right.$ a.e on I;
(iv) $\left\|\dot{x}_{n}(t)\right\| \leq m \mu(t)+1$, a.e on I.

From (iv) the sequence $\left(x_{n}\right)$ is equicontinuous in $C(I, E)$. For each $t \in I$, set

$$
A(t)=\left\{x_{n}(t): n \in \mathbb{N}\right\} \quad \text { and } \quad \rho(t)=\gamma(A(t))
$$

We claim that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is relatively compact in the space $C(I, E)$. So we will show that $\rho \equiv 0$. Since for each $(t, \tau) \in I \times I$, we have

$$
\gamma\left\{\left(x_{n}\right)(\tau): n \in \mathbb{N}\right\} \leq \gamma\left\{\left(x_{n}\right)(t): n \in \mathbb{N}\right\}+\gamma\left\{\left(x_{n}\right)(\tau)-\left(x_{n}\right)(t): n \in \mathbb{N}\right\}
$$

and

$$
\gamma\left\{\left(x_{n}\right)(t): n \in \mathbb{N}\right\} \leq \gamma\left\{\left(x_{n}\right)(\tau): n \in \mathbb{N}\right\}+\gamma\left\{\left(x_{n}\right)(t)-\left(x_{n}\right)(\tau): n \in \mathbb{N}\right\}
$$

then, from Lemma 2.4 .

$$
|\rho(\tau)-\rho(t)| \leq \gamma(B(0,1)) \alpha\left(\left\{x_{n}(t)-x_{n}(\tau): n \in \mathbb{N}\right\}\right)
$$

which implies

$$
|\rho(\tau)-\rho(t)| \leq 2 \gamma(B(0,1))\left|\int_{t}^{\tau}(m \mu(s)+1) d s\right|
$$

It follows that ρ is an absolutely continuous and hence differentiable a.e. on I. Let $\varepsilon>0$. Since $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$, then we can find $n_{0} \in \mathbb{N}$ such that $T \varepsilon_{n}<\frac{\varepsilon}{\gamma(B(0,1))}$, for all $n \geq n_{0}$. Now let $(t, \tau) \in I \times I$ with $t \leq \tau$. In view of Condition (iii) and
properties of $\gamma((\mathrm{M} 4),(\mathrm{M} 7))$, we have

$$
\begin{aligned}
\rho(\tau)-\rho(t) & \leq \gamma\left(\int_{t}^{\tau} \dot{x}_{n}(s) d s: n \in N\right) \\
& \leq \gamma\left(\cup_{n \in \mathbb{N}} \int_{t}^{\tau} F\left(s, \theta_{n}(s)\right) d s\right)+\gamma\left(\left\{\varepsilon_{n} B(0,1)(\tau-t): n \in \mathbb{N}\right\}\right) \\
& =\gamma\left(\cup_{n \in \mathbb{N}} \int_{t}^{\tau} F\left(s, \theta_{n}(s)\right) d s\right)+\gamma\left(\left\{\varepsilon_{n} B(0,1)(\tau-t): n \geq n_{0}\right\}\right) \\
& \leq \gamma\left(\cup_{n \in \mathbb{N}} \int_{t}^{\tau} F\left(s, \theta_{n}(s)\right) d s\right)+\frac{\varepsilon}{\gamma(B(0,1))} \gamma(B(0,1)) \\
& \leq \gamma\left(\cup_{n \in \mathbb{N}} \int_{t}^{\tau} F\left(s, \theta_{n}(s)\right) d s\right)+\varepsilon
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\rho(\tau)-\rho(t) \leq \gamma\left(\cup_{n \in \mathbb{N}} \int_{t}^{\tau} F\left(s, \theta_{n}(s)\right) d s\right) \tag{3.1}
\end{equation*}
$$

Since ρ is continuous and w is Caratheodory we can find a closed subset I_{ε} of I, $\delta>0, \eta>0(\eta<\delta)$ and for $s_{1}, s_{2} \in I_{\varepsilon} ; r_{1}, r_{2} \in[0,2 T]$ such that if $\left|s_{1}-s_{2}\right|<\delta$, $\left|r_{1}-r_{2}\right|<\delta$, then $\left|w\left(s_{1}, r_{1}\right)-w\left(s_{2}, r_{2}\right)\right|<\varepsilon$ and if $\left|s_{1}-s_{2}\right|<\eta$, then $\left|\rho\left(s_{1}\right)-\rho\left(s_{2}\right)\right|<$ $\frac{\delta}{2}$. Consider the following partition, of $[t, \tau], t=t_{0}<t_{1}<\cdots<t_{m}=\tau$ such that $t_{i}-t_{i-1}<\eta$ for $i=1, \ldots, n$. From Condition (A1) we can find a closed subset J_{ε} of I such that $\lambda\left(I-J_{\varepsilon}\right)<\varepsilon$ and that for any compact subset K of J_{ε} and any bounded subset Z of $E, \gamma(f(K \times Z)) \leq \sup _{s \in K} w(s, \gamma(Z))$. Let $T_{i}=J_{\varepsilon} \cap\left[t_{i-1}, t_{i}\right] \cap I_{\varepsilon}$, $P=\cup_{i=1}^{m} T_{i}=[t, \tau] \cap J_{\varepsilon} \cap I_{\varepsilon}, Q=[t, \tau]-P$ and $A_{i}=\left\{x_{n}\left(\theta_{n}(t)\right): n \in \mathbb{N}, t \in T_{i}\right\}$, $i=1, \ldots, m$. In view of the mean value theorem, properties of $\gamma((\mathrm{M} 3),(\mathrm{M} 5))$ and Condition (A1), this implies

$$
\begin{aligned}
\gamma\left(\cup_{n \in \mathbb{N}} \int_{P} F\left(s, x_{n}\left(\theta_{n}(s)\right)\right) d s\right) & \leq \gamma\left(\sum_{i=1}^{m} \cup_{n \in \mathbb{N}} \int_{T_{i}} F\left(s, x_{n}\left(\theta_{n}(s)\right)\right) d s\right) \\
& \leq \gamma\left(\sum_{i=1}^{m} \lambda\left(T_{i}\right)\left(\overline{\operatorname{conv}} F\left(T_{i} \times A_{i}\right)\right)\right) \\
& \leq \sum_{i=1}^{m} \lambda\left(T_{i}\right) \gamma\left(\overline{\operatorname{conv}} F\left(T_{i} \times A_{i}\right)\right) \\
& \leq \sum_{i=1}^{m} \lambda\left(T_{i}\right) \sup _{s_{i} \in T_{i}} w\left(s_{i}, \gamma\left(A_{i}\right)\right)
\end{aligned}
$$

Now we have

$$
\begin{aligned}
\gamma\left(A_{i}\right) & =\gamma\left(\left\{x_{n}\left(\theta_{n}(s)\right): n \in \mathbb{N}, s \in T_{i}\right\}\right) \\
& \leq \gamma\left(\left\{x_{n}(s): n \in \mathbb{N}, s \in T_{i}\right\}\right)+\gamma\left(\left\{x_{n}\left(\theta_{n}(s)\right)-x_{n}(s): n \in \mathbb{N}, s \in T_{i}\right\}\right) \\
& \leq \gamma\left(\left\{x_{n}(s): n \in \mathbb{N}, s \in T_{i}\right\}\right)+\gamma\left(\left\{\int_{s}^{\theta_{n}(s)} \dot{x}_{n}(r) d r: n \in \mathbb{N}, s \in T_{i}\right\}\right)
\end{aligned}
$$

From Lemma 2.4 we know that

$$
\begin{aligned}
& \gamma\left(\left\{\int_{s}^{\theta_{n}(s)} \dot{x}_{n}(r) d r: n \in \mathbb{N}, s \in T_{i}\right\}\right) \\
& \leq \gamma(B(0,1)) \alpha\left(\left\{\int_{s}^{\theta_{n}(s)} \dot{x}_{n}(r) d r: n \in \mathbb{N}, s \in T_{i}\right\}\right)
\end{aligned}
$$

Also $\lim _{n \rightarrow \infty}\left|\theta_{n}(s)-s\right|=0$. So, $\gamma\left(A_{i}\right)=\gamma\left(\left\{x_{n}(s): n \in \mathbb{N}, s \in T_{i}\right\}\right)+\frac{\delta}{2}$. Applying Lemma 2.5. we get $\gamma\left(A_{i}\right)=\sup _{\xi_{i} \in T_{i}} \rho\left(\xi_{i}\right)+\frac{\delta}{2}$. Since w and ρ are continuous on the closed subsets of T_{i}, then

$$
\begin{aligned}
\gamma\left(\cup_{n \in \mathbb{N}} \int_{P} F\left(s, x_{n}\left(\theta_{n}(s)\right)\right) d s\right) & \leq \sum_{i=1}^{m} \lambda\left(T_{i}\right) \sup _{s_{i} \in T_{i}} w\left(\left(s_{i}, \sup _{\xi_{i} \in T_{i}} \rho\left(\xi_{i}\right)+\frac{\delta}{2}\right)\right. \\
& \leq \sum_{i=1}^{m} \lambda\left(T_{i}\right) w\left(q_{i}, \rho\left(\xi_{i}\right)+\frac{\delta}{2}\right)
\end{aligned}
$$

where q_{i} and ξ_{i} are elements of T_{i}. Moreover, for all $s \in T_{i}$, we have

$$
\left|\rho(s)-\rho\left(\xi_{i}\right)+\frac{\delta}{2}\right| \leq\left|\rho(s)-\rho\left(\xi_{i}\right)\right|+\frac{\delta}{2}<\frac{\delta}{2}+\frac{\delta}{2}=\delta .
$$

This implies $\left|w(s, \rho(s))-w\left(q_{i}, \rho\left(\xi_{i}\right)+\frac{\delta}{2}\right)\right|<\varepsilon$ for all $s \in T_{i}$. Consequently, $\lambda\left(T_{i}\right) w\left(q_{i}, \rho\left(\xi_{i}\right)+\frac{\delta}{2}\right) \leq \int_{T_{i}} w(s, \rho(s)) d s+\varepsilon \lambda\left(T_{i}\right)$. So,

$$
\begin{aligned}
\gamma\left(\cup_{n \in \mathbb{N}} \int_{P} F\left(s, x_{n}\left(\theta_{n}(s)\right)\right) d s\right) & \leq \sum_{i=1}^{m}\left(\int_{T_{i}} w(s, \rho(s)) d s+\varepsilon \lambda\left(T_{i}\right)\right) \\
& =\int_{P} w(s, \rho(s)) d s+\varepsilon \lambda(P) \\
& \leq \int_{t}^{\tau} w(s, \rho(s)) d s+\varepsilon(\tau-t)
\end{aligned}
$$

On the other hand,

$$
\gamma\left(\cup_{n \in \mathbb{N}} \int_{Q} F\left(s, x_{n}\left(\theta_{n}(s)\right)\right) d s\right) \leq 2 m \gamma(B(0,1)) \int_{Q} \mu(s)\left(1+\left\|x_{n}\left(\theta_{n}(s)\right)\right\|\right) d s
$$

As $\lambda(Q)<2 \varepsilon$ and since ε is arbitrary, then

$$
\begin{equation*}
\gamma\left(\cup_{n \in \mathbb{N}} \int_{t}^{\tau} F\left(s, x_{n}\left(\theta_{n}(s)\right)\right) d s\right) \leq \int_{t}^{\tau} w(s, \rho(s)) d s \tag{3.2}
\end{equation*}
$$

Thus, from two relations (3.1, 3.2 ,

$$
\dot{\rho}(t) \leq w(s, \rho(s)) \quad \text { a.e. on } I
$$

$\rho(0)=0$ and w is a Kamke function, then ρ is identically equal to zero. It follows that $\left(x_{n}\right)$ is relatively compact in $C(I, E)$. Since, for all $t \in I$,

$$
\gamma\left(\left\{x_{n}\left(\theta_{n}(t)\right): n \in \mathbb{N}\right\}\right) \leq \gamma\left(\left\{x_{n}(t): n \in \mathbb{N}\right\}\right)+\gamma\left(\int_{\theta_{n}(t)}^{t}(m \mu(s)+1) d s\right) B(0,1)
$$

and since $\lim _{n \rightarrow \infty}\left|\theta_{n}(t)-t\right|=0$, the set $\tilde{A}(t):=\left\{x_{n}\left(\theta_{n}(t)\right): n \in \mathbb{N}\right\}$ is relatively compact in E. By our assumption $F(t,$.$) is upper semicontinuous, it follows that$ $F(t, \bar{A}(t))$ is compact for all $t \in I$, Furthermore, we have

$$
\dot{x}_{n}(t) \in F(t, \overline{A(t)})+\varepsilon_{n} B(0,1), \quad \forall n \in \mathbb{N}, \forall t \in I
$$

Since \dot{x}_{n} is uniformly integrable, by [5. Theorem 5.4], the sequence \dot{x}_{n} is relatively $\sigma\left(L^{1}(I, E), L^{\infty}(I, E)\right)$ compact. Therefore there are $x_{n k} \in C(I, E), g \in L^{1}(I, E)$ and a subsequence $\left(x_{n k}\right)$ of $\left(x_{n}\right)$ such that $\left(x_{n k}\right)$ converges to x in $C(I, E)$ and $\left(x_{\dot{n k}}\right)$ converges to g in $L^{1}(I, E)$ for $\sigma\left(L^{1}(I, E), L^{\infty}(I, E)\right)$, with

$$
x(t)=x_{0}+\int_{0}^{t} g(s) d s, \forall t \in I
$$

Thus $g=\dot{x}$. Clearly for all $t \in I$, $\lim _{n \rightarrow \infty} x_{n k}\left(\theta_{n}(t)\right)=x(t)$, and $x(t) \in \Gamma(t)$, for all $t \in I$. Finally, in virtue [5, Theorem 5.6, Remark 6.3] and the property (iii) we obtain

$$
\dot{x}(t) \in F(t, x(t)) \quad \text { a.e. on } I
$$

Theorem 3.2. Let $\Gamma: I \rightarrow P_{f}(E)$ be a set-valued function with closed graph, G, and $F: G \rightarrow P_{c k}(E)$ be a set-valued function such that for any $t \in I, F(t,$.$) is$ upper semicontinuous on E. Assume that F satisfies the following conditions:
(A1') For each $\varepsilon>0$, there exists a closed subset I_{ε} of I with $\lambda\left(I-I_{\varepsilon}\right)<\varepsilon$ such that for any nonempty bounded subset Z of E, one has

$$
\gamma(F(G \cap(I \times Z))) \leq \sup _{t \in I} w(t, \gamma(Z))
$$

for any compact subset J of I_{ε};
(A2') there is a positive number c such that

$$
\|F(t, x)\|<c(1+\|x\|), \forall(t, x) \in G ;
$$

(A3') for each $(t, x) \in\left(\left[0, T[\times E) \cap G\right.\right.$ and for any $\varepsilon>0$ there is $\left(t_{\varepsilon}, x_{\varepsilon}\right) \in G$ such that $0<t_{\varepsilon}-t<\varepsilon$ and

$$
\frac{x_{\varepsilon}-x}{t_{\varepsilon}-t} \in F(t, x)+\varepsilon \overline{B(0,1)} .
$$

Then, for each $x_{0} \in \Gamma(0)$, there is a solution of 1.1.
Proof. Let $A_{\varepsilon}([0, \tau])(\varepsilon>0, \tau \in I)$ be the set of all points (x, θ) where $\theta:[0, \tau] \rightarrow$ $[0, \tau]$ is an increasing right continuous function with $\theta(0)=0, \theta(\tau)=\tau$ and for all $t \in] 0, \tau[, \theta(t) \in[t-\varepsilon, t]$ and $x:[0, \tau] \rightarrow E$ is such that:
(i) for all $t \in[0, \tau], x(t)=x_{0}+\int_{0}^{t} \dot{x}(s) d s$, where $\dot{x} \in L^{1}(I, E)$;
(ii) for all $t \in[0, \tau], x(\theta(t)) \in \Gamma(\theta(t))$;
(iii) for all $t \in[0, \tau], \dot{x}(t) \in F(t, x(\theta(t))+\varepsilon \overline{B(0,1)}$, a.e.

Let $\varepsilon \in] 0,1]$ and $(\theta, x) \in A_{\varepsilon}([0, \tau])$. Then by (A2') and the fact that, for all $t \in[0, \tau], \theta(t) \in[t-\varepsilon, t]$, we have

$$
\begin{aligned}
\|x(\theta(t))\| & \leq\left\|x_{0}\right\|+\int_{0}^{\theta(t)}\|\dot{x}(s)\| d s \leq\left\|x_{0}\right\|+\int_{0}^{t}\|\dot{x}(s)\| d s \\
& \leq\left\|x_{0}\right\|+\varepsilon T+\int_{0}^{t} c(1+\| x(\theta((s)) \|) d s
\end{aligned}
$$

By Gronwall's lemma, we obtain $\|x(\theta(t))\| \leq\left(\left\|x_{0}\right\|+T\right) e^{c T}$ which gives us

$$
\|x(\theta(t))\|+1 \leq\left(1+\left\|x_{0}\right\|+T\right) e^{c T}
$$

Consequently we get for all $t \in[0, \tau]$,

$$
\begin{equation*}
F(t, x(\theta(t))) \subseteq p c \overline{B(0,1)} \tag{3.3}
\end{equation*}
$$

where $p=\left(1+\left\|x_{0}\right\|+T\right) e^{c T}$. Let $A_{\varepsilon}=\bigcup_{\tau \in I} A_{\varepsilon}([0, \tau])$. Obviously $A_{\varepsilon} \neq \emptyset$. Partially order A_{ε} such that for any $\left(\theta_{i}, x_{i}\right) \in A_{\varepsilon}\left(\left[0, \tau_{i}\right]\right) \subseteq A_{\varepsilon}(i=1,2) \quad\left(\theta_{1}, x_{1}\right) \leq$ $\left(\theta_{2}, x_{2}\right) \Longleftrightarrow \tau_{1} \leq \tau_{2}, \theta_{1}=\left.\theta_{2}\right|_{\left[0, \tau_{1}\right]}$ and $x_{1}=\left.x_{2}\right|_{\left[0, \tau_{2}\right]}$. Let C be a subset of A_{ε} such that each two elements of it are comparable that is there exists a subset $\mathbb{N}^{\prime} \subseteq \mathbb{N}$ such that $C=\left\{\left(\theta_{j}, x_{j}\right): j \in \mathbb{N}^{\prime}\right\} \subseteq A_{\varepsilon}$ and each $\left(\theta_{n}, x_{n}\right),\left(\theta_{m}, x_{n}\right) \in C$ we have $\left(\theta_{n}, x_{n}\right) \leq\left(\theta_{m}, x_{m}\right)$ or $\left(\theta_{m}, x_{m}\right) \leq\left(\theta_{n}, x_{n}\right)$. Now we prove that C has an upper bound. Let $\tau=\sup _{j \in \mathbb{N}^{\prime}} \tau_{j}$. Also let $\theta:[0, \tau] \rightarrow[0, \tau]$ is such that, for each $j \in \mathbb{N}^{\prime},\left.\theta\right|_{\left[0, \tau_{j}\right]}=\theta_{j}$ and $x:\left[0, \tau\left[\rightarrow E\right.\right.$ with $\left.x\right|_{\left[0, \tau_{j}\right]}=x_{j}$, for each $j \in \mathbb{N}^{\prime}$. Let $\left\{\tau_{k_{n}}\right\}$ be increasing sequence in \mathbb{N}^{\prime} such that $\tau=\sup _{n \in \mathbb{N}} \tau_{k_{n}}$ and for any $n, m \in$ $\mathbb{N}, m<n$ we have $\dot{x}_{k_{n}}=\dot{x}_{k_{m}}$ a.e. on $\left[0, \tau_{k_{n}}\right]$. Now we can define $\dot{x}:[0, \tau[\rightarrow E$ by, for any $n \in \mathbb{N}, \dot{x}(t)=\dot{x}_{k_{n}}(t)$ a.e. on $\left[0, \tau_{k_{n}}\right]$. From (3.3) \dot{x} is measurable and $\|\dot{x}(t)\| \leq p c+\varepsilon \leq p c+1$. We claim that x, \dot{x} can be extend to $[0, \tau]$. Now for all $t \in\left[0, \tau\left[, x(t)=x_{0}+\int_{] 0, t]} \dot{x}(s) d s\right.\right.$, for all $t \in[0, \tau[, \dot{x}(\theta(t)) \in \Gamma(\theta(t))$ and $\dot{x}(t) \in F(t, \dot{x}(\theta(t)))+\varepsilon \overline{B(0,1)}$ a.e. on $\left[0, \tau\left[\right.\right.$. If $x^{\prime}(t)=x_{0}+\int_{] 0, t[} \dot{x}(s) d s$ for all $t \in[0, \tau]$ then, for $\left(t, t^{\prime}\right) \in\left[0, \tau\left[\times\left[0, \tau\left[\right.\right.\right.\right.$, we have $\left\|x^{\prime}(t)-x^{\prime}\left(t^{\prime}\right)\right\| \leq \int_{\left[t, t^{\prime}[\right.}(p s+1) d s$. Then $x^{*}:=\lim _{t \rightarrow \tau^{-0}}\left(x_{0}+\int_{j 0, t[} \dot{x}(s) d s\right)=\lim _{n \rightarrow \infty}\left(x_{0}+\int_{] 0, \tau_{k_{n}}} \dot{x}(s) d s\right)$ exists. Since $x^{\prime}\left(\tau_{k_{n}}\right) \in \Gamma\left(\tau_{k_{n}}\right)$ and G is left closed, then $\left(\tau, x^{*}\right) \in G$ and hence the result. Let $x^{*}=x(\tau)$ and $\dot{x}(\tau)=0$. Then $x(\tau)=x_{0}+\int_{j 0, \tau]} \dot{x}(s) d s, x^{*}=x(\tau) \in \Gamma(\tau)$ and $\dot{x}(t) \in F(t, x(\theta(t)))+\varepsilon \overline{B(0,1)}$ a.e. on $[0, \tau]$. Consequently we can extend (θ, x) to $[0, \tau]$ such that (θ, x) belongs to $A_{\varepsilon}([0, \tau])$ and it is an upper bound for C. By Zorn's lemma $\left(A_{\varepsilon}, \leq\right)$ has a maximal element $\left(\theta_{\varepsilon}, x_{\varepsilon}\right) \in A_{\varepsilon}\left(\left[0, \tau_{\varepsilon}\right]\right)$. We shall prove that $\tau_{\varepsilon}=T$. Let $\tau_{\varepsilon}<T$. If $\delta_{\varepsilon}>0$ such that $\delta_{\varepsilon}<\inf \left(\varepsilon, T-\tau_{\varepsilon}\right)$. Then by (A3') there exists $(\hat{t}, \hat{x}) \in G$ such that $0<\hat{t}-\tau_{\varepsilon} \leq \delta_{\varepsilon}$ and

$$
\frac{\hat{x}-x_{\varepsilon}}{\hat{t}-\tau_{\varepsilon}} \in F\left(\tau_{\varepsilon}, x_{\varepsilon}\left(\tau_{\varepsilon}\right)\right)+\varepsilon \overline{B(0,1)} .
$$

Let $\hat{y} \in F\left(\tau_{\varepsilon}, x_{\varepsilon}\left(\tau_{\varepsilon}\right)\right)+\varepsilon \overline{B(0,1)}$ such that $\hat{x}-x_{\varepsilon}\left(\tau_{\varepsilon}\right)=\left(\hat{t}-\tau_{\varepsilon}\right) \hat{y}$. If $\hat{\theta}:[0, \hat{t}] \rightarrow[0, \hat{t}]$ and $\tilde{x}:[0, \hat{t}] \rightarrow E$ are defined as:

$$
\hat{\theta}(t)=\left\{\begin{array}{ll}
\theta_{\varepsilon} & \text { if } t \in\left[0, \tau_{\varepsilon}\right] \\
\tau_{\varepsilon} & \text { if } \left.t \in] \tau_{\varepsilon}, \hat{t}\right] \\
\hat{t} & \text { if } t=\hat{t},
\end{array} \quad \tilde{x}(t)= \begin{cases}x_{\varepsilon} & \text { if } t \in\left[0, \tau_{\varepsilon}\right] \\
\hat{x} & \text { if } t \in\left[\tau_{\varepsilon}, \hat{t}\right]\end{cases}\right.
$$

Then it is easy to check that [5, p. 10.25] $(\hat{\theta}, \tilde{x}) \in A_{\varepsilon}([0, \hat{t}])$ and $\left(\theta_{\varepsilon}, x_{\varepsilon}\right)<(\hat{\theta}, \tilde{x})$. This contradicts the fact that $\left(\theta_{\varepsilon}, x_{\varepsilon}\right)$ is maximal. Now there exist $p>1$, (from (3.3) a sequence $\left(\theta_{n}\right)_{n \in \mathbb{N}}$ of right continuous functions $(\theta)_{n}: I \rightarrow I$ such that $\theta_{n}(0)=0, \theta_{n}(T)=T$ and $\theta_{n}(t) \in\left[t-\varepsilon_{n}, t\right]$, if we have decreasing sequence $\left(\varepsilon_{n}\right)$ such that $0<\varepsilon_{n} \leq 1 \varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $T \varepsilon_{n}<\frac{\varepsilon}{\gamma(B(0,1))}$, for all $n \geq n_{0}$ we can define a sequence $\left(x_{n}\right)$ of approximated solutions as the follows:
$\forall t \in I, \quad x_{n}(t)=x_{0}+\int_{0}^{t} \dot{x}_{n}(s) d s$, where $\dot{x}_{n} \in L^{1}(I, E) .\left(\theta_{n}(t), x_{n}\left(\theta_{n}(t)\right)\right) \in G$. $\dot{x}_{n}(t) \in F\left(t, x_{n}\left(\theta_{n}(t)\right)+\varepsilon_{n} B(0,1)\right.$, a.e on $I .\left\|\dot{x}_{n}(t)\right\| \leq p c+1$, a.e on I.

By the same arguments used in the proof of Theorem 3.1 we can prove that the sequence $\left(x_{n}\right)$ converges to an absolutely continuous function x which is a solution for problem (1.1).

4. Conclusion

Let us remark that, if we replace γ in (A1') by α, the condition
(A4) For each $\varepsilon>0$, there exists a closed subset I_{ε} of I with $\lambda\left(I-I_{\varepsilon}\right)<\varepsilon$ such that for almost all $t \in I_{\varepsilon}$ and for any nonempty bounded subset Z of E, one has

$$
\inf _{\delta>0} \alpha(F(G \cap(([t-\delta, t] \cap I) \times Z))) \leq w(t, \alpha(Z))
$$

implies Condition (A1') and the converse is not true. Indeed Let $\varepsilon>0$. Since w is Caratheodory function, we can find a closed subset I_{ε} of I with $\lambda\left(I-I_{\varepsilon}\right)<\varepsilon$ such that w is continuous on I_{ε} and Condition (A4) holds on I_{ε}. Let Z be a nonempty bounded subset of E. It follows from (A4) that, for any $\tau>0$ and any $t \in I_{\varepsilon}$, there exists a $\delta_{\tau, t}$ such that $\alpha\left(F\left(G \cap\left(\left(\left[t-\delta_{\tau, t}, t\right] \cap I\right) \times Z\right)\right)\right) \leq w(t, \alpha(Z))+\tau$. Let τ be arbitrary but fixed, J be a compact subset of I_{ε}. The collection $\left\{\left(t-\frac{\delta_{t}}{2}, t+\frac{\delta_{t}}{2}\right): t \in\right.$ $J\}$ is an open cover for J. By compactness of J, there exist $t_{1}^{\prime}, t_{2}^{\prime} \ldots, t_{n}^{\prime}$ such that $J \subseteq \cup_{i=1}^{n}\left(t_{i}^{\prime}-\frac{\delta_{t_{i}^{\prime}}}{2}, t_{i}^{\prime}+\frac{\delta_{t_{i}^{\prime}}}{2}\right) \subseteq \cup_{i=1}^{n}\left[t_{i}^{\prime}-\frac{\delta_{t_{i}^{\prime}}}{2}, t_{i}^{\prime}+\frac{\delta_{t_{i}^{\prime}}}{2}\right]$. Now if $J_{i}=J \cap\left[t_{i}^{\prime}-\frac{\delta_{t_{i}^{\prime}}}{2}, t_{i}^{\prime}+\frac{\delta_{t_{i}^{\prime}}}{2}\right]$ and $t_{i}=\max J_{i}, 1 \leq i \leq n$, then there exist $t_{1}, t_{2} \ldots t_{n} \in J$ such that $J_{i} \subseteq\left[t_{i}-\delta_{t_{i}}, t_{i}\right]$ and $J \subseteq \cup_{i=1}^{n}\left[t_{i}-\delta_{t_{i}}, t_{i}\right]$. This implies that,

$$
\begin{aligned}
\alpha(F(G \cap(J \times Z))) & \leq \alpha\left(\cup_{i=1}^{n} F\left(G \cap\left(\left(\left[t_{i}-\delta_{t_{i}}, t_{i}\right] \cap I\right) \times Z\right)\right)\right) \\
& \leq \max _{1 \leq i \leq n} \alpha\left(F\left(G \cap\left(\left(\left[t_{i}-\delta_{t_{i}}, t_{i}\right] \cap I\right) \times Z\right)\right)\right) \\
& \leq \max _{1 \leq i \leq n} w\left(t_{i}, \alpha(Z)\right)+\tau \leq \max _{t \in J} w(t, \alpha(Z))+\tau
\end{aligned}
$$

Since τ is arbitrary, Condition (A1') holds. To show that the converse is not true we give an example. Let $f:[0,1] \times B(0,1) \rightarrow E$ be the single valued function defined by $f(t, x)=k(t) x$, where $k:[0,1] \rightarrow \mathbb{R}$,

$$
k(t)= \begin{cases}1 & \text { if } t \text { is irrational } \\ 1 / t^{2} & \text { if } t \text { is rational }\end{cases}
$$

Let also $w(t, s)=k(t) s$, for all $(t, s) \in I \times \mathbb{R}^{+}$. Clearly, w is a Kamke function. Let $\varepsilon>0$ and choose a closed subset I_{ε} of I such that $\lambda\left(I-I_{\varepsilon}\right)<\varepsilon$ and k is continuous on I_{ε}. Then for any compact subset J of I_{ε} and any bounded subset Z of E,

$$
\begin{aligned}
\alpha(f(G \cap(J \times Z))) \leq \alpha(f(J \times Z)) & =\alpha\left(\cup_{t \in J, x \in Z} f\{(t, x)\}\right) \\
& =\alpha\left(\cup_{t \in J} k(t) Z\right)=\sup _{t \in J} k(t) \alpha(Z) \\
& =\sup _{t \in J} w(t, \alpha(Z))
\end{aligned}
$$

Then Condition (A1') holds as the measure γ replaced by the measure α. But for each $t \in(0,1)$ and each nonempty subset Z of E we have $\alpha(f([t-\delta, t] \times Z))=$ $\alpha\left(\cup_{s \in[t-\delta, t]} k(s) Z\right)=\alpha(Z) \cdot\left(\sup _{s \in[t-\delta, t]} k(s)\right)=\frac{\alpha(Z)}{(t-\delta)^{2}}$. Thus, $\inf _{\delta>0} \alpha(F(([t-$ $\delta, t] \cap I) \times Z))=\frac{\alpha(Z)}{t^{2}}$. So if t is irrational then $\inf _{\delta>0} \alpha(F(([t-\delta, t] \cap I) \times Z))=$ $\frac{\alpha(Z)}{t^{2}}>\alpha(Z)=k(t) \alpha(Z)=w(t, \alpha(Z))$. Then (A4) does not hold and consequently Theorem 3.2 is a generalization of the following theorem.

Theorem 4.1 (Benabdellah-Castaing and Ibrahim [5]). Let F and Γ be as in Theorem 3.2 except F satisfies Condition (A4) instead of (A1'). Then, for any $x_{0} \in \Gamma(0)$, there is a solution for (1.1).

References

[1] Anguraj, A.,; Balachandran K.; On the solution sets of differential inclusion in Banach spaces. Tam., 23(1):59-65, 1992.
[2] Aubin, J. P.; Cellina, A.; Differential inclusions set-valued maps and viability theory. Springer-Verlage, Berlin, 1984.
[3] Avgerinos, E. P.; Papageorgiou, N. S.; On the solution set of maximal monotone differential inclusions in \mathbb{R}^{m}. Math. Japonica, 38(1):91-110,1993.
[4] Banasm, J; Goebel, K.; Measure of noncompactness in Banach spaces, Lecture notes in pure and applied mathematics. Marcel Dekker Inc v 60, New York; 1980.
[5] Benabdellah, H.; Castaing, C.; Ibrahim, A.-G.; Bv solution of multivalued differential equations on closed moving sets in Banach spaces. Geometry in nonlinear control and differential inclusions, Banach Center Publications, Polish Acadamy of Science, Warswzaws, 32:53-81, 1995.
[6] Castaing, C.; Valadier, M.; Convex analysis and measurable multifunctions, Lecture notes in mathematics v 580. Springer Verlage; 1977.
[7] Cellina, A.; Ornelas, A.; Convexity and the closure of the solution set to differential inclusions. Bollettino U.M.I., (7)4-B:255-263, 1993.
[8] Cichon, M.; Multivalued differential equations with noncontinuous righthand side. Fasciculi Mathematici, 23:43-50, 1991.
[9] Cichon, M.; On measure of weak noncompactness. Publications, Math. Debrecen, 45:93-102, 1994.
[10] Gomaa, A. M.; Existence and topological properties of solution sets for differential inclusions with delay, Annales Societatis Mathematicae Polonae, Comm. Math., 48(1): 45-57, 2008.
[11] Gomaa, A. M.; Existence of weak and strong solutions of nonlinear differential equations with delay in Banach space, to appear in Journal of Physics: Conference Series Second Intenational Symposium on Nonlinear Dynamics, 27-30 Oct, 2007, Shanghai, China.
[12] Gomaa, A. M.; On theorems for weak solutions of nonlinear equations with and without delay in Banach spaces, Annales Societatis Mathematicae Polonae, Comm. Math., XLVII(2): 179-191, 2007.
[13] Deimling, K.; Ordinary Differential Equations in Banach Spaces. LNM 596, BerlinHeidelberg, New- York; 1992.
[14] Deimling, K.; Multivalued differential equations. Walter de Gruyter, Berlin, New York; 1992.
[15] Gomaa, A. M.; On the solution sets of three-point boundary value problems for nonconvex differential inclusions. J. Egypt. Math. Soc. 12(2):97-107, 2004.
[16] Gomaa, A. M.; On the topological properties of the solution set of differential inclusions and abstract control problems. J. Frac. Calcu., 24:87-99, 2003.
[17] Gomaa, A. M.; Weak and strong solutions for differential equations in Banach spaces. Chaos, Solitons \& Fractals, 18(4):687-692, 2003.
[18] Ibrahim, A. G., Gomaa, A. M.; Existence theorems for a functional multivalued three-point boundary value problem of second order. J. Egypt. Math. Soc., 8(2):155-168, 2000.
[19] Ibrahim, A. G., Gomaa, A. M.; Extremal solutions of classes of multivalued differential equations. Appl. Math. Comput.,136 no. 2-3:297-314, 2003.
[20] Ibrahim, A.G.; Gomaa, A. M.; Strong and weak solutions for differential inclusions with moving constraints in Banach spaces. PU. M. A., 8(1):53-65, 1997.
[21] Ibrahim, A.G.; Gomaa, A. M.; Topological properties of the solution sets of some differential inclusions. PU. M. A., 10(2):197-223, 1999.
[22] Janicka, R.; Zastosowanie miar niezwartosciw teorii rownan rozniczkowych i calkowych. Ph. D thesis, Lublin, 1978.
[23] Kubiaczyk, I.; On the existence of solutions of differential equations in Banach spaces. Bull. Polish Acad. Sci. Math., 33: 607-614, 1985.
[24] Mitchell, A. R.; Smith, C. H.; An existence theorem for weak solutions of differential equations in Banach spaces. Nonlinear Equations in Abstract Spaces, 387-404, 1978.
[25] Papageorgiou, N.S.; Weak solutions of differential equation in Banach spaces. Bull Austral Math Soc. 33:407-418, 1986.
[26] Szufla, S.; On existence of solutions of differential equations in Banach spaces. Bull Acad Polon Sci Math 1982;30:507-514.

Adel Mahmoud Gomaa
Mathematics Department, Faculty of Science, Helwan University, Cairo, Egypt
E-mail address: gomaa5@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 32F27, 32C35, 35N15.
 Key words and phrases. Differential inclusions; moving constraints; existence solutions. © 2009 Texas State University - San Marcos.
 Submitted December 1, 2008. Published January 27, 2009.

