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EXISTENCE OF SOLUTIONS FOR DIFFERENTIAL
INCLUSIONS ON CLOSED MOVING CONSTRAINTS IN
BANACH SPACES

ADEL MAHMOUD GOMAA

ABSTRACT. In this paper, we prove the existence of solutions to a multivalued
differential equation with moving constraints. We use a weak compactness
type condition expressed in terms of a strong measure of noncompactness.

1. INTRODUCTION

In this paper we study the existence of solutions to the multivalued differential
equation with moving constraints

i(t) € F(t,z(t)) ae. onl,
z(t) eT(¢) Vtel0,T], (1.1)
z(0) = zo € I'(0).

Where F : [0,T] x E — P (E)(Pe is the family of nonempty convex compact
subsets of E) and I': [0,T] — P;(E), (Pr(E) is the family of closed subsets of E).
Problem has been studied by many authors; see for example [6, 2], 25| [ 26]
when F' is lower semicontinuous, and [14} [6] when F' is upper semicontinuous with
T is independent of ¢. For T' depending on ¢, we refer to [2, 20, 5]. In [I6] we
consider the differential inclusions #(t) € A(t)z(t) + F(t,x(¢)), ©(0) = zp where
{A(t) : 0 <t < T} is a family of densely defined closed linear operators generating
a continuous evolution operator S(t,s) and F' is a multivalued function with closed
convex values in Banach spaces. there, we show how that this results can be used
in abstract control problems. Also in [I7] we consider the Cauchy problem

i(t) = f(t,z(t)), tel0,T]
z(0) = zo,

where f:[0,7] x E — F and E is a Banach space. In [I1], 12], we study nonlinear
differential equations. In [I0] we study some differential inclusions with delay and
their topological properties. Much work has been done in the study of topological
properties of solution for differential inclusions; see [11 [3] [7], 211 [T9] 15} [18].

In this paper we to prove the existence of solutions to by using a measure
of strong noncompactness, v, (see the next section). Since the Kuratowksi measure
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of noncompactness and the ball measure of noncomactness are measures of strong
noncomactness and we can construct many measures such v as in [9], in this paper
Theorem [3.1] is a generalization of results for example Szufla [26] and Ibrahim-
Gomaa [20]. In Theorem the assumption on noncompactness is weaker than
that of Benabdellah-Castaing and Ibrahim [5].

2. PRELIMINARIES

Let E be a Banach space, E* its topological dual space, F,, the Banach space F
endowed with the weak topology, B(0,1) unit ball of E, I = [0,T], (T" > 0), and A
be the Lebesgue measure on I . Consider B is the family of all bounded subsets of
E and C(I, E) is the space of all weakly continuous functions from I to E endowed
with the topology of weak uniform convergence.

Definition 2.1. By a measure of strong noncompactness, v, we will understand a
function « : B — R such that, for all U,V € B,

M ) UcV=~(U)<~V),
YU UV) <max(y(U),v(V)),
(convlU) = ~(U),

(U +V) <AU) +~(V),

(cU) = leh(U), ceR,

(U) =0 <= U is relatively compact in E,
(M7) v(UU{z})=~(U), z € E.

(M
(
(M
(M
(M

Definition 2.2. For any nonempty bounded subset U of E the weak measure of
noncompactness, 3, and the Kuratowski’s measure of noncompactness, «, is defined
as:

a(U) = inf{e > 0: U admits a finite number of sets with diameter less than e.}
For the properties of § and « we refer the reader to [4 [13].

Definition 2.3. By a Kamke function we mean a function w : I x Rt — R* such
that:
(i) w satisfies the Caratheodry conditions,
(ii) for all ¢ € I; w(¢t,0) =0,
(iii) for any c € (0,b], w = 0 is the only absolutely continuous function on [0, c|
which satisfies 4(t) < w(t,u(t)) a.e. on [0,c] and such that u(0) = 0.

Lemma 2.4 (22, 4]). If v: B — R*" satisfies conditions (M2), (M4), (M6), then,
for any nonempty U € B,

Y(U) <~(B(0,1))a(U)
Lemma 2.5 ([24, 23]). If v is a measure of weak (strong) noncompactness and

A C C(I,E) be a family of strongly equicontinuous functions, then v(A(I)) =
sup{v(A(t)) : t € I}.

3. MAIN RESULTS

Theorem 3.1. Let I' : I — P¢(E) be a set-valued function such that its graph, G,
is left closed and F : I x E — P (E) be a scalarly measurable set-valued function
such that for any t € I, F(t,.) is upper semicontinuous on E. Suppose that F
satisfies the following conditions:
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(A1) For each e > 0, there exists a closed subset I. of I with \(I — I.) < & such
that for any nonempty bounded subset Z of E, one has

V(I x Z)) < itelgw(t,v(Z))

for any compact subset J of I.;

(A2) there is p € L*(I,RT), such that |[F(t,z)|| < u()(1+ ||z|), for all (t,x) €
G;

(A3) for each (t,z) € ([0,T[XE) NG and & > 0 there is (t.,x.) € G such that
0<t.—t<e and that

te
Te—x € / F(s,z)ds + (t. —t)eB(0,1).
¢

Then, for any xo € T'(0), there is a solution for (L.1)).

Proof. Let (en)nen be a decreasing sequence in |0, 1] with €,, = 0. By [5], Proposition
6.1], there exist m > 1, a sequence (6, )nen of right continuous functions 6,, : I — I
such that 6,,(0) =0, 0,(T) =T and 0,,(t) € [t—en, t], and a sequence (x,,)nen from
I to FE with

(i) for all t € I, xn()_x0+f En

(i) for all t € I, 2, (0,(t)) € T(0,(¢));

(iii) @, (t) € F(t,2n(0n(t)) +£,B(0,1) a.e on I;

(iv) [[&n (@) < mpu(t) +1, a.e on I.
(i

() ds, where i, € L'(I, E);

From (iv) the sequence (z,,) is equicontinuous in C(I, E). For each t € I, set

A(t) ={xn(t):n e N} and p(t) = v(A(t)).

We claim that (z,,)nen is relatively compact in the space C(I, E). So we will show
that p = 0. Since for each (¢,7) € I x I, we have

Y (@n)(7) :n € N} < y{(2n)(t) : n € N} +5{(2n)(7) = (2n)(t) : n € N}
and
H(@n) (@) :n € N} < y{(zn)(7) : n € N} +{(2n)(t) = (xn)(7) : n € N},
then, from Lemma [2.4]
(1) = p(t)] < (B0, 1))a({zn(t) — za(7) : n € N}),

which implies

() = pl0) < 22(B0.V) “(mpa(s) + 1) ds.

It follows that p is an absolutely continuous and hence differentiable a.e. on I. Let
¢ > 0. Since €, — 0 as n — 00, then we can find ng € N such that Ts, < m,

for all n > ng. Now let (t,7) € I x I with t < 7. In view of Condition (iii) and
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properties of v ((M4), (MT7)), we have

Thus,
pl) = p(8) <2 (Unen [ " F(s.60(5))ds). (3.1)

Since p is continuous and w is Caratheodory we can find a closed subset I. of I,
d>0,n7>0(n<9d) and for s1,s9 € I; r1,72 € [0,27T] such that if |s; — s9| < 0,
|r1—ra| < 0, then |w(sy,r1)—w(se,r2)| < € and if |s1—s2| < n, then |p(s1)—p(s2)| <
g. Consider the following partition, of [t,7], t = tg < t; < -+ < t,, = 7 such that
ti—t;—1 <nfori=1,...,n. From Condition (A1) we can find a closed subset J; of I
such that A({ — J.) < € and that for any compact subset K of J. and any bounded
subset Z of E, v(f(K x Z)) < sup,cr w(s,v(Z)). Let T; = J. N [ti—1,t] N I,
P=urT, =t71INnJ.NI, Q=1[t,7] — P and A; = {z,(0,(t)) : n € N,t € T;},
i=1,...,m. In view of the mean value theorem, properties of v ((M3), (M5)) and
Condition (A1), this implies

(Unen /P F (5,00 (0a(3)))ds) <73 Unen / F(s,20(00(5)))ds)

i=1 T

<73 AT)(onvF(T; x Ay))

i=1

<D NI (v F(T; x Ay))

.
Il
-

< Z)\(Ti) sup w(s;i,v(4i))-

1 s; €T}

.
I

Now we have

V(Ai) = v({zn(0n(s)) : n €N, s € Ti})
<A{zn(s) :neN,s € T;}) + v{xn(0n(s)) — zn(s) : n €N, s € T;})

071(5)
< v{zn(s) :nGN,sGﬂ})+”y({/ En(r)dr:n eN,s € T;}).
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From Lemma [2.4] we know that

’y({ /5917,(5) Zn(r)dr:n eN,s € Ti}>

0. (s) .

§v(B((),1))a<{/ En(r)dr:n eN;s GTZ}).

Also limy, 00 [0n(s) — s| = 0. So, v(A;) = y({zn(s) :neN,s € T;}) + g. Applying
s
§.

Lemma we get v(A;) = supg,er, p(&) +
the closed subsets of T3, then

’Y(UneN/PF(S,SEn(@n(S)))ds) <

Since w and p are continuous on

1)
A(T;) sup w((ss, sup p(&) + 5)
1 s;€T; &eT;

NE

<.
I

MT)w(gi, p(&) + g),

L.

Il
-

where ¢; and &; are elements of T;. Moreover, for all s € T;, we have
1) 6 6 0
— (&) + =] < — o)+ =< =+ ==04.
[p(s) = p(&) + Sl < lp(s) = (&) + 5 <5+ 5 =9
This implies |w(s, p(s)) — w(gi, p(&) + §)| < e for all s € T;. Consequently,
MT)w(gi, p(&) + §) < [, ws, p(s)) ds +eA(T). So,

m

(tnes [ Flosatoaonas) <3 ( [

i=1 “Ti

:/w@mm@+aw)
P

w(s, p(s))ds + eN(Ty))

< / w(s, p(s))ds + e(t —t).
t
On the other hand,

V(UneN/QF(S,zn(f)n(S)))dS) < 2m7(3(0,1))/Qu(8)(1+ [ (0 (s)) ) ds-

As A(Q) < 2e and since € is arbitrary, then

T

Y(Unen / " (5,20 (0u(5)))ds) < / w(s, p(s))ds, (3.2)

¢ t
Thus, from two relations (3.1)), (3.2),
p(t) <w(s,p(s)) a.e. onl.

p(0) = 0 and w is a Kamke function, then p is identically equal to zero. It follows
that (x,,) is relatively compact in C(I, E). Since, for all ¢ € I,
t
Y{@n(0n(t)) : n € N}) < y({zn(t) :n € N}) + 7(/9 ( )(mM(S) +1)ds)B(0,1)
n(t
and since lim,, oo |0, (t) — t| = 0, the set A(t) := {x,,(0,(t)) : n € N} is relatively
compact in E. By our assumption F(t,.) is upper semicontinuous, it follows that
F(t, A(t)) is compact for all ¢ € I, Furthermore, we have

n(t) € F(t, A(t)) +€,B(0,1), VneN,Vtel.
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Since &, is uniformly integrable, by [5l Theorem 5.4], the sequence #,, is relatively
o(LY(I,E),L>®(I,E)) compact. Therefore there are z,, € C(I,E),g € L'(I,E)
and a subsequence (znx) of (z,) such that (z,x) converges to z in C(I,E) and
(xy%) converges to g in L'(I, E) for o(L(I, E), L>°(I, E)), with

t
z(t) = o +/ g(s)ds,Vt € I.
0

Thus g = 4. Clearly for all ¢ € I, lim,, oo Tnk(0,(t)) = x(t), and z(t) € T'(¢), for
all t € I. Finally, in virtue [5] Theorem 5.6, Remark 6.3] and the property (iii) we
obtain
x(t) € F(t,z(t)) a.e.onl.
O

Theorem 3.2. Let I' : I — Py(E) be a set-valued function with closed graph, G,
and F : G — P (E) be a set-valued function such that for any t € I, F(t,.) is
upper semicontinuous on E. Assume that F satisfies the following conditions:
(A1) For each € > 0, there exists a closed subset I. of I with \(I — I.) < & such
that for any nonempty bounded subset Z of E, one has

VF(GEN (I x Z))) < stlgw(t,y(Z)),

for any compact subset J of I.;
ere is a positive number ¢ such tha
A2’ th ' it b h that

1E(E 2)| < c(1+ [|l2l),v(t,2) € G;

(A3’) for each (t,z) € ([0, T[xE)NG and for any e > 0 there is (t,x.) € G such
that 0 <t. —t < e and

Te f € F(t,x) +¢B(0,1).

g

Then, for each xo € T'(0), there is a solution of (1.1)).

Proof. Let A.([0,7]) (¢ > 0,7 € I) be the set of all points (x,6) where 0 : [0,7] —
[0,7] is an increasing right continuous function with 6(0) = 0,6(7) = 7 and for all
t €]0,7[, 6(¢t) € [t —e,t] and z : [0,7] — E is such that:
(i) for all t € [0,7], z(t) = o + [ @(s) ds, where & € L*(I, E);

(ii) for all ¢ € [0, 7], z(0(t)) € T(6(t));

(i) for all t € [0,7], &(t) € F(t,z(6(t)) +€B(0,1), a.e.
Let € €]0,1] and (,2) € A-([0,7]). Then by (A2’) and the fact that, for all
t€0,7], 6(t) € [t —e,t], we have

0(t) ¢
le @) < Jlzoll + / lé(s)ll ds < lleoll + / i (s)]] ds

< ||| +5T+/0 c(1 + [2(0((s))]) ds.

By Gronwall’s lemma, we obtain ||z(6(t))| < (||lzo|l + T)eT which gives us
2@ +1 < (1 + [lwol| + T)e
Consequently we get for all ¢ € [0, 7],

F(t,z(0(t))) € peB(0,1) (3-3)
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where p = (1 + [Jwol| + T)e". Let A. = U, c; A:([0,7]). Obviously A. # 0.
Partially order A, such that for any (0;,z;) € A:([0,7;]) C A: (i =1,2) (61,21) <
(02, 22) <= 71 < 72,01 = O2]j0,,) and x1 = 22|[0,r,). Let C be a subset of A. such
that each two elements of it are comparable that is there exists a subset N C N
such that C = {(6;,z;) : j € N'} C A, and each (0,,zy), (0m,2,) € C we have
(On, 20) < (OmyTm) O (O, T) < (On,2,). Now we prove that C' has an upper
bound. Let 7 = sup,cy 7;. Also let 6 : [0,7] — [0,7] is such that, for each
Jj € N, 0lp-) = 0; and x : [0,7[— E with x|, = z;, for each j € N'. Let
{7, } be increasing sequence in N’ such that 7 = sup,,cy 7, and for any n,m €
N, m < n we have iy, = &y, a.e. on [0,7x,]. Now we can define & : [0,7[— E
by, for any n € N, @(t) = &y, (t) a.e. on [0,7,]. From & is measurable
and ||z(¢t)|| < pc+¢e < pc+ 1. We claim that x,% can be extend to [0,7]. Now
for all t € [0,7[, z(t) = xo + f]O,t] #(s)ds, for all t € [0,7], £(6(t)) € T'(8(t)) and
#(t) € F(t,2(0(t))) + eB(0,1) a.e. on [0,7[. If 2/(t) = mo + jio,t[d?(s) ds for all
t € [0,7] then, for (¢,t") € [0,7[x][0,7[, we have ||2’(t) — 2'(¢')|| < f[t’t,[(ps +1)ds.
Then z* := lim;_,, o (x0+f]07t[ x(s)ds) = limnﬂoo(xo—i—f]oﬁkn[dc(s) ds) exists. Since
' (1i,) € T'(7,) and G is left closed, then (7,2*) € G and hence the result. Let
z* = z(7) and z(7) = 0. Then z(7) = 29 + f]oﬂjj(s) ds, v* = z(7) € I'(r) and
(t) € F(t,x(0(t))) +B(0,1) a.e. on [0,7]. Consequently we can extend (6,x)
to [0, 7] such that (6, z) belongs to A.([0,7]) and it is an upper bound for C. By
Zorn’s lemma (A., <) has a maximal element (6.,z.) € A-([0,7:]). We shall prove
that 7. = T. Let 7. < T. If §. > 0 such that §. < inf(e,T — 7.). Then by (A3’)
there exists (£,#) € G such that 0 < £ — 7. < §. and

Let §j € F(e, 2o(72)) +B(0, 1) such that & — z.(7.) = (f — 7). If 6 : [0,1] — [0, 7]
and 7 : [0,f] — E are defined as:

0. iftel0,r] .
N € fi 07 €
0(t)=_ 7. iftelr,d] t)y=4"° " € [0,7]
S . & ift e [r, i
i ift=*%,

Then it is easy to check that [5, p. 10.25] (6,Z) € A-([0,7]) and (6., z.) < (§,%).
This contradicts the fact that (6., z.) is maximal. Now there exist p > 1, (from
(3.3)) a sequence (0,)nen of right continuous functions (), : I — I such that
0,(0) =0, 0,(T) =T and 0,,(t) € [t — en, 1], if we have decreasing sequence (&)
such that 0 < e, <1l¢g, - 0asn — oo and Te, < m,foraﬂnzno we can
define a sequence (z,,) of approximated solutions as the follows:

Vt eI, x,(t) =z + [y in(s)ds, where i, € LY(I, E). (0,(t), 2,(0,(t))) € G.
in(t) € F(t,2,(0n(t)) +€,B(0,1), a.e on I. ||&,(t)|| <pc+1, ae on 1.

By the same arguments used in the proof of Theorem we can prove that the
sequence (x,) converges to an absolutely continuous function x which is a solution

for problem (1.1)). O

4. CONCLUSION

Let us remark that, if we replace 7 in (A1’) by «, the condition
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(A4) For each € > 0, there exists a closed subset I. of I with A(I —I.) < € such
that for almost all ¢ € I, and for any nonempty bounded subset Z of E,
one has

ggga(F(G N(t=0,t)NnT) x 2))) <w(t,a(Z))
implies Condition (A1’) and the converse is not true. Indeed Let £ > 0. Since w is
Caratheodory function, we can find a closed subset I, of I with A(I — I.) < & such
that w is continuous on I. and Condition (A4) holds on I.. Let Z be a nonempty
bounded subset of E. It follows from (A4) that, for any 7 > 0 and any ¢ € I, there
exists a 0,4 such that a(F(GN(([t — 074, t]NI) x Z))) < w(t,a(Z)) + 7. Let 7 be
arbitrary but fixed, .J be a compact subset of I.. The collection {(t—%,t+2) :t €

J} is an open cover for J. By compactness of J, there exist ¢],t5...,¢, such that
5/ 5/ 6/ 5/ 6/ 6/
J C UL (6= 5 b+ 50) C Uy [t — -t + 5] Now if J; = J N[t — -, 1)+ 5]

and t; = maxJ;,1 < i < n, then there exist 1,2 ...t, € J such that J; C [t;—0dy,, ;]
and J C U, [t; — d¢,,t;]. This implies that,

a(F(GN (I x 2))) <a(U F(GN(([t; — b, i) N I) x Z)))
< max a(F(G N (([t: — b, ] N 1) x 2)))

< ; A < A
< 1I£z'agxnw(t“a( N+T7< rilea}(w(t,a( N +T

Since 7 is arbitrary, Condition (A1’) holds. To show that the converse is not true

we give an example. Let f : [0,1] x B(0,1) — E be the single valued function
defined by f(t,x) = k(t)z, where k : [0,1] — R,

(1) = 1 if ¢ is irrational
| 1/#% if t is rational

Let also w(t, s) = k(t)s, for all (t,s) € I x RT. Clearly, w is a Kamke function. Let
€ > 0 and choose a closed subset I. of I such that A(I —I.) < ¢ and k is continuous
on I.. Then for any compact subset J of I, and any bounded subset Z of F,

a(f(GN(J x Z))) < a(f(J x Z)) = a(Uresaez [{(t,2)})

=a(Ues k(t)Z) = igyk(t)a(Z)
= itel}:])w(ua(Z)).

Then Condition (A1) holds as the measure « replaced by the measure «. But for

each t € (0,1) and each nonempty subset Z of E we have a(f([t — 6,t] x Z)) =
a( Use[t—s.4 k:(s)Z) = a(Z) - (supse[t_&ﬂ k(s)) = %. Thus, infsso a(F(([t —
51N 1) x Z)) =22 Soif t is irrational then infso a(F(([t — 8,1] N ) x Z)) =
ag;,z) > a(Z) =k(t)a(Z) = w(t,a(Z)). Then (A4) does not hold and consequently
Theorem [3.2] is a generalization of the following theorem.

Theorem 4.1 (Benabdellah-Castaing and Ibrahim [B]). Let F' and T' be as in
Theorem except F satisfies Condition (A4) instead of (A1’). Then, for any
xo € T'(0), there is a solution for (1.1).
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