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EXISTENCE OF SOLUTIONS FOR DIFFERENTIAL
INCLUSIONS ON CLOSED MOVING CONSTRAINTS IN

BANACH SPACES

ADEL MAHMOUD GOMAA

Abstract. In this paper, we prove the existence of solutions to a multivalued

differential equation with moving constraints. We use a weak compactness

type condition expressed in terms of a strong measure of noncompactness.

1. Introduction

In this paper we study the existence of solutions to the multivalued differential
equation with moving constraints

ẋ(t) ∈ F
(
t, x(t)

)
a.e. on I,

x(t) ∈ Γ(t) ∀t ∈ [0, T ],

x(0) = x0 ∈ Γ(0).

(1.1)

Where F : [0, T ] × E → Pck(E)(Pck is the family of nonempty convex compact
subsets of E) and Γ : [0, T ] → Pf (E), (Pf (E) is the family of closed subsets of E).
Problem (1.1) has been studied by many authors; see for example [6, 2, 25, 8, 26]
when F is lower semicontinuous, and [14, 6] when F is upper semicontinuous with
Γ is independent of t. For Γ depending on t, we refer to [2, 20, 5]. In [16] we
consider the differential inclusions ẋ(t) ∈ A(t)x(t) + F (t, x(t)), x(0) = x0 where
{A(t) : 0 ≤ t ≤ T} is a family of densely defined closed linear operators generating
a continuous evolution operator S(t, s) and F is a multivalued function with closed
convex values in Banach spaces. there, we show how that this results can be used
in abstract control problems. Also in [17] we consider the Cauchy problem

ẋ(t) = f
(
t, x(t)

)
, t ∈ [0, T ]

x(0) = x0,

where f : [0, T ]×E → E and E is a Banach space. In [11, 12], we study nonlinear
differential equations. In [10] we study some differential inclusions with delay and
their topological properties. Much work has been done in the study of topological
properties of solution for differential inclusions; see [1, 3, 7, 21, 19, 15, 18].

In this paper we to prove the existence of solutions to (1.1) by using a measure
of strong noncompactness, γ, (see the next section). Since the Kuratowksi measure

2000 Mathematics Subject Classification. 32F27, 32C35, 35N15.

Key words and phrases. Differential inclusions; moving constraints; existence solutions.
c©2009 Texas State University - San Marcos.
Submitted December 1, 2008. Published January 27, 2009.

1



2 A. M. GOMAA EJDE-2009/22

of noncompactness and the ball measure of noncomactness are measures of strong
noncomactness and we can construct many measures such γ as in [9], in this paper
Theorem 3.1 is a generalization of results for example Szufla [26] and Ibrahim-
Gomaa [20]. In Theorem 3.2, the assumption on noncompactness is weaker than
that of Benabdellah-Castaing and Ibrahim [5].

2. Preliminaries

Let E be a Banach space, E∗ its topological dual space, Ew the Banach space E
endowed with the weak topology, B(0, 1) unit ball of E, I = [0, T ], (T > 0), and λ
be the Lebesgue measure on I . Consider B is the family of all bounded subsets of
E and C(I, E) is the space of all weakly continuous functions from I to E endowed
with the topology of weak uniform convergence.

Definition 2.1. By a measure of strong noncompactness, γ, we will understand a
function γ : B → R+ such that, for all U, V ∈ B,

(M1) U ⊂ V =⇒ γ(U) ≤ γ(V ),
(M2) γ(U ∪ V ) ≤ max(γ(U), γ(V )),
(M3) γ(convU) = γ(U),
(M4) γ(U + V ) ≤ γ(U) + γ(V ),
(M5) γ(cU) = |c|γ(U), c ∈ R,
(M6) γ(U) = 0 ⇐⇒ U is relatively compact in E,
(M7) γ(U ∪ {x}) = γ(U), x ∈ E.

Definition 2.2. For any nonempty bounded subset U of E the weak measure of
noncompactness, β, and the Kuratowski’s measure of noncompactness, α, is defined
as:

α(U) = inf{ε > 0 : U admits a finite number of sets with diameter less than ε.}

For the properties of β and α we refer the reader to [4, 13].

Definition 2.3. By a Kamke function we mean a function w : I ×R+ → R+ such
that:

(i) w satisfies the Caratheodry conditions,
(ii) for all t ∈ I; w(t, 0) = 0,
(iii) for any c ∈ (0, b], u ≡ 0 is the only absolutely continuous function on [0, c]

which satisfies u̇(t) ≤ w
(
t, u(t)

)
a.e. on [0, c] and such that u(0) = 0.

Lemma 2.4 ([22, 4]). If γ : B → R+ satisfies conditions (M2), (M4), (M6), then,
for any nonempty U ∈ B,

γ(U) ≤ γ(B(0, 1))α(U)

Lemma 2.5 ([24, 23]). If γ is a measure of weak (strong) noncompactness and
A ⊂ C(I, E) be a family of strongly equicontinuous functions, then γ(A(I)) =
sup{γ(A(t)) : t ∈ I}.

3. Main Results

Theorem 3.1. Let Γ : I → Pf (E) be a set-valued function such that its graph, G,
is left closed and F : I × E → Pck(E) be a scalarly measurable set-valued function
such that for any t ∈ I, F (t, .) is upper semicontinuous on E. Suppose that F
satisfies the following conditions:
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(A1) For each ε > 0, there exists a closed subset Iε of I with λ(I − Iε) < ε such
that for any nonempty bounded subset Z of E, one has

γ(F (J × Z)) ≤ sup
t∈J

w(t, γ(Z))

for any compact subset J of Iε;
(A2) there is µ ∈ L1(I, R+), such that ‖F (t, x)‖ < µ(t)(1 + ‖x‖), for all (t, x) ∈

G;
(A3) for each (t, x) ∈ ([0, T [×E) ∩ G and ε > 0 there is (tε, xε) ∈ G such that

0 < tε − t < ε and that

xε − x ∈
∫ tε

t

F (s, x)ds + (tε − t)εB(0, 1).

Then, for any x0 ∈ Γ(0), there is a solution for (1.1).

Proof. Let (εn)n∈N be a decreasing sequence in ]0, 1] with εn = 0. By [5, Proposition
6.1], there exist m > 1, a sequence (θn)n∈N of right continuous functions θn : I → I
such that θn(0) = 0, θn(T ) = T and θn(t) ∈ [t−εn, t], and a sequence (xn)n∈N from
I to E with

(i) for all t ∈ I, xn(t) = x0 +
∫ t

0
ẋn(s) ds, where ẋn ∈ L1(I, E);

(ii) for all t ∈ I, xn(θn(t)) ∈ Γ(θn(t));
(iii) ẋn(t) ∈ F (t, xn(θn(t)) + εnB(0, 1) a.e on I;
(iv) ‖ẋn(t)‖ ≤ mµ(t) + 1, a.e on I.

From (iv) the sequence (xn) is equicontinuous in C(I, E). For each t ∈ I, set

A(t) = {xn(t) : n ∈ N} and ρ(t) = γ(A(t)).

We claim that (xn)n∈N is relatively compact in the space C(I, E). So we will show
that ρ ≡ 0. Since for each (t, τ) ∈ I × I, we have

γ{(xn)(τ) : n ∈ N} ≤ γ{(xn)(t) : n ∈ N}+ γ{(xn)(τ)− (xn)(t) : n ∈ N}

and

γ{(xn)(t) : n ∈ N} ≤ γ{(xn)(τ) : n ∈ N}+ γ{(xn)(t)− (xn)(τ) : n ∈ N},

then, from Lemma 2.4,

|ρ(τ)− ρ(t)| ≤ γ(B(0, 1))α({xn(t)− xn(τ) : n ∈ N}),

which implies

|ρ(τ)− ρ(t)| ≤ 2γ(B(0, 1))|
∫ τ

t

(mµ(s) + 1) ds|.

It follows that ρ is an absolutely continuous and hence differentiable a.e. on I. Let
ε > 0. Since εn → 0 as n →∞, then we can find n0 ∈ N such that Tεn < ε

γ(B(0,1)) ,
for all n ≥ n0. Now let (t, τ) ∈ I × I with t ≤ τ . In view of Condition (iii) and



4 A. M. GOMAA EJDE-2009/22

properties of γ ((M4), (M7)), we have

ρ(τ)− ρ(t) ≤ γ(
∫ τ

t

ẋn(s) ds : n ∈ N)

≤ γ(∪n∈N

∫ τ

t

F (s, θn(s))ds) + γ({εnB(0, 1)(τ − t) : n ∈ N})

= γ(∪n∈N

∫ τ

t

F (s, θn(s))ds) + γ({εnB(0, 1)(τ − t) : n ≥ n0})

≤ γ(∪n∈N

∫ τ

t

F (s, θn(s))ds) +
ε

γ(B(0, 1))
γ(B(0, 1))

≤ γ(∪n∈N

∫ τ

t

F (s, θn(s))ds) + ε.

Thus,

ρ(τ)− ρ(t) ≤ γ(∪n∈N

∫ τ

t

F (s, θn(s))ds). (3.1)

Since ρ is continuous and w is Caratheodory we can find a closed subset Iε of I,
δ > 0, η > 0 (η < δ) and for s1, s2 ∈ Iε; r1, r2 ∈ [0, 2T ] such that if |s1 − s2| < δ,
|r1−r2| < δ, then |w(s1, r1)−w(s2, r2)| < ε and if |s1−s2| < η, then |ρ(s1)−ρ(s2)| <
δ
2 . Consider the following partition, of [t, τ ], t = t0 < t1 < · · · < tm = τ such that
ti−ti−1 < η for i = 1, . . . , n. From Condition (A1) we can find a closed subset Jε of I
such that λ(I −Jε) < ε and that for any compact subset K of Jε and any bounded
subset Z of E, γ(f(K × Z)) ≤ sups∈K w(s, γ(Z)). Let Ti = Jε ∩ [ti−1, ti] ∩ Iε,
P = ∪m

i=1Ti = [t, τ ] ∩ Jε ∩ Iε, Q = [t, τ ] − P and Ai = {xn(θn(t)) : n ∈ N, t ∈ Ti},
i = 1, . . . ,m. In view of the mean value theorem, properties of γ ((M3), (M5)) and
Condition (A1), this implies

γ(∪n∈N

∫
P

F (s, xn(θn(s)))ds) ≤ γ(
m∑

i=1

∪n∈N

∫
Ti

F (s, xn(θn(s)))ds)

≤ γ(
m∑

i=1

λ(Ti)(convF (Ti ×Ai)))

≤
m∑

i=1

λ(Ti)γ(convF (Ti ×Ai))

≤
m∑

i=1

λ(Ti) sup
si∈Ti

w(si, γ(Ai)).

Now we have

γ(Ai) = γ({xn(θn(s)) : n ∈ N, s ∈ Ti})
≤ γ({xn(s) : n ∈ N, s ∈ Ti}) + γ({xn(θn(s))− xn(s) : n ∈ N, s ∈ Ti})

≤ γ({xn(s) : n ∈ N, s ∈ Ti}) + γ({
∫ θn(s)

s

ẋn(r)dr : n ∈ N, s ∈ Ti}).
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From Lemma 2.4 we know that

γ
({ ∫ θn(s)

s

ẋn(r)dr : n ∈ N, s ∈ Ti

})
≤ γ(B(0, 1))α

({∫ θn(s)

s

ẋn(r)dr : n ∈ N, s ∈ Ti

})
.

Also limn→∞ |θn(s)− s| = 0. So, γ(Ai) = γ({xn(s) : n ∈ N, s ∈ Ti}) + δ
2 . Applying

Lemma 2.5, we get γ(Ai) = supξi∈Ti
ρ(ξi) + δ

2 . Since w and ρ are continuous on
the closed subsets of Ti, then

γ
(
∪n∈N

∫
P

F (s, xn(θn(s)))ds
)
≤

m∑
i=1

λ(Ti) sup
si∈Ti

w(
(
si, sup

ξi∈Ti

ρ(ξi) +
δ

2
)

≤
m∑

i=1

λ(Ti)w
(
qi, ρ(ξi) +

δ

2
)
,

where qi and ξi are elements of Ti. Moreover, for all s ∈ Ti, we have

|ρ(s)− ρ(ξi) +
δ

2
| ≤ |ρ(s)− ρ(ξi)|+

δ

2
<

δ

2
+

δ

2
= δ.

This implies |w(s, ρ(s)) − w(qi, ρ(ξi) + δ
2 )| < ε for all s ∈ Ti. Consequently,

λ(Ti)w(qi, ρ(ξi) + δ
2 ) ≤

∫
Ti

w(s, ρ(s)) ds + ελ(Ti). So,

γ
(
∪n∈N

∫
P

F (s, xn(θn(s)))ds
)
≤

m∑
i=1

( ∫
Ti

w(s, ρ(s))ds + ελ(Ti)
)

=
∫

P

w(s, ρ(s))ds + ελ(P )

≤
∫ τ

t

w(s, ρ(s))ds + ε(τ − t).

On the other hand,

γ(∪n∈N

∫
Q

F (s, xn(θn(s)))ds) ≤ 2mγ(B(0, 1))
∫

Q

µ(s)(1 + ‖xn(θn(s))‖)ds.

As λ(Q) < 2ε and since ε is arbitrary, then

γ(∪n∈N

∫ τ

t

F (s, xn(θn(s)))ds) ≤
∫ τ

t

w(s, ρ(s))ds, (3.2)

Thus, from two relations (3.1), (3.2),

ρ̇(t) ≤ w(s, ρ(s)) a.e. onI.

ρ(0) = 0 and w is a Kamke function, then ρ is identically equal to zero. It follows
that (xn) is relatively compact in C(I, E). Since, for all t ∈ I,

γ({xn(θn(t)) : n ∈ N}) ≤ γ({xn(t) : n ∈ N}) + γ(
∫ t

θn(t)

(mµ(s) + 1)ds)B(0, 1)

and since limn→∞ |θn(t) − t| = 0, the set Ã(t) := {xn(θn(t)) : n ∈ N} is relatively
compact in E. By our assumption F (t, .) is upper semicontinuous, it follows that
F (t, A(t)) is compact for all t ∈ I, Furthermore, we have

ẋn(t) ∈ F (t, A(t)) + εnB(0, 1), ∀n ∈ N,∀t ∈ I.
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Since ẋn is uniformly integrable, by [5, Theorem 5.4], the sequence ẋn is relatively
σ(L1(I, E), L∞(I, E)) compact. Therefore there are xnk ∈ C(I, E), g ∈ L1(I, E)
and a subsequence (xnk) of (xn) such that (xnk) converges to x in C(I, E) and
( ˙xnk) converges to g in L1(I, E) for σ(L1(I, E), L∞(I, E)), with

x(t) = x0 +
∫ t

0

g(s)ds,∀t ∈ I.

Thus g = ẋ. Clearly for all t ∈ I, limn→∞ xnk(θn(t)) = x(t), and x(t) ∈ Γ(t), for
all t ∈ I. Finally, in virtue [5, Theorem 5.6, Remark 6.3] and the property (iii) we
obtain

ẋ(t) ∈ F (t, x(t)) a.e. onI.

�

Theorem 3.2. Let Γ : I → Pf (E) be a set-valued function with closed graph, G,
and F : G → Pck(E) be a set-valued function such that for any t ∈ I, F (t, .) is
upper semicontinuous on E. Assume that F satisfies the following conditions:

(A1’) For each ε > 0, there exists a closed subset Iε of I with λ(I − Iε) < ε such
that for any nonempty bounded subset Z of E, one has

γ(F (G ∩ (I × Z))) ≤ sup
t∈I

w(t, γ(Z)),

for any compact subset J of Iε;
(A2’) there is a positive number c such that

‖F (t, x)‖ < c(1 + ‖x‖),∀(t, x) ∈ G;

(A3’) for each (t, x) ∈ ([0, T [×E)∩G and for any ε > 0 there is (tε, xε) ∈ G such
that 0 < tε − t < ε and

xε − x

tε − t
∈ F (t, x) + εB(0, 1).

Then, for each x0 ∈ Γ(0), there is a solution of (1.1).

Proof. Let Aε([0, τ ]) (ε > 0, τ ∈ I) be the set of all points (x, θ) where θ : [0, τ ] →
[0, τ ] is an increasing right continuous function with θ(0) = 0, θ(τ) = τ and for all
t ∈]0, τ [, θ(t) ∈ [t− ε, t] and x : [0, τ ] → E is such that:

(i) for all t ∈ [0, τ ], x(t) = x0 +
∫ t

0
ẋ(s) ds, where ẋ ∈ L1(I, E);

(ii) for all t ∈ [0, τ ], x
(
θ(t)

)
∈ Γ(θ(t));

(iii) for all t ∈ [0, τ ], ẋ(t) ∈ F
(
t, x(θ(t)

)
+ εB(0, 1), a.e.

Let ε ∈]0, 1] and (θ, x) ∈ Aε([0, τ ]). Then by (A2’) and the fact that, for all
t ∈ [0, τ ], θ(t) ∈ [t− ε, t], we have

‖x(θ(t))‖ ≤ ‖x0‖+
∫ θ(t)

0

‖ẋ(s)‖ ds ≤ ‖x0‖+
∫ t

0

‖ẋ(s)‖ ds

≤ ‖x0‖+ εT +
∫ t

0

c(1 + ‖x(θ((s))‖) ds.

By Gronwall’s lemma, we obtain ‖x(θ(t))‖ ≤ (‖x0‖+ T )ecT which gives us

‖x(θ(t))‖+ 1 ≤ (1 + ‖x0‖+ T )ecT .

Consequently we get for all t ∈ [0, τ ],

F (t, x(θ(t))) ⊆ pcB(0, 1) (3.3)
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where p = (1 + ‖x0‖ + T )ecT . Let Aε =
⋃

τ∈I Aε([0, τ ]). Obviously Aε 6= ∅.
Partially order Aε such that for any (θi, xi) ∈ Aε([0, τi]) ⊆ Aε (i = 1, 2) (θ1, x1) ≤
(θ2, x2) ⇐⇒ τ1 ≤ τ2, θ1 = θ2|[0,τ1] and x1 = x2|[0,τ2]. Let C be a subset of Aε such
that each two elements of it are comparable that is there exists a subset N′ ⊆ N
such that C = {(θj , xj) : j ∈ N′} ⊆ Aε and each (θn, xn), (θm, xn) ∈ C we have
(θn, xn) ≤ (θm, xm) or (θm, xm) ≤ (θn, xn). Now we prove that C has an upper
bound. Let τ = supj∈N′ τj . Also let θ : [0, τ ] → [0, τ ] is such that, for each
j ∈ N′, θ|[0,τj ] = θj and x : [0, τ [→ E with x|[0,τj ] = xj , for each j ∈ N′. Let
{τkn

} be increasing sequence in N′ such that τ = supn∈N τkn
and for any n, m ∈

N, m < n we have ẋkn
= ẋkm

a.e. on [0, τkn
]. Now we can define ẋ : [0, τ [→ E

by, for any n ∈ N, ẋ(t) = ẋkn
(t) a.e. on [0, τkn

]. From (3.3) ẋ is measurable
and ‖ẋ(t)‖ ≤ pc + ε ≤ pc + 1. We claim that x, ẋ can be extend to [0, τ ]. Now
for all t ∈ [0, τ [, x(t) = x0 +

∫
]0,t]

ẋ(s) ds, for all t ∈ [0, τ [, ẋ(θ(t)) ∈ Γ(θ(t)) and

ẋ(t) ∈ F (t, ẋ(θ(t))) + εB(0, 1) a.e. on [0, τ [. If x′(t) = x0 +
∫
]0,t[

ẋ(s) ds for all
t ∈ [0, τ ] then, for (t, t′) ∈ [0, τ [×[0, τ [, we have ‖x′(t) − x′(t′)‖ ≤

∫
[t,t′[

(ps + 1) ds.
Then x∗ := limt→τ−0(x0+

∫
]0,t[

ẋ(s) ds) = limn→∞(x0+
∫
]0,τkn [

ẋ(s) ds) exists. Since
x′(τkn

) ∈ Γ(τkn
) and G is left closed, then (τ, x∗) ∈ G and hence the result. Let

x∗ = x(τ) and ẋ(τ) = 0. Then x(τ) = x0 +
∫
]0,τ ]

ẋ(s) ds, x∗ = x(τ) ∈ Γ(τ) and

ẋ(t) ∈ F (t, x(θ(t))) + εB(0, 1) a.e. on [0, τ ]. Consequently we can extend (θ, x)
to [0, τ ] such that (θ, x) belongs to Aε([0, τ ]) and it is an upper bound for C. By
Zorn’s lemma (Aε,≤) has a maximal element (θε, xε) ∈ Aε([0, τε]). We shall prove
that τε = T . Let τε < T . If δε > 0 such that δε < inf(ε, T − τε). Then by (A3’)
there exists (t̂, x̂) ∈ G such that 0 < t̂− τε ≤ δε and

x̂− xε

t̂− τε

∈ F (τε, xε(τε)) + εB(0, 1).

Let ŷ ∈ F (τε, xε(τε)) + εB(0, 1) such that x̂− xε(τε) = (t̂− τε)ŷ. If θ̂ : [0, t̂] → [0, t̂]
and x̃ : [0, t̂] → E are defined as:

θ̂(t) =


θε if t ∈ [0, τε]
τε if t ∈]τε, t̂]
t̂ if t = t̂,

x̃(t) =

{
xε if t ∈ [0, τε]
x̂ if t ∈ [τε, t̂]

Then it is easy to check that [5, p. 10.25] (θ̂, x̃) ∈ Aε([0, t̂]) and (θε, xε) < (θ̂, x̃).
This contradicts the fact that (θε, xε) is maximal. Now there exist p > 1, (from
(3.3)) a sequence (θn)n∈N of right continuous functions (θ)n : I → I such that
θn(0) = 0, θn(T ) = T and θn(t) ∈ [t − εn, t], if we have decreasing sequence (εn)
such that 0 < εn ≤ 1 εn → 0 as n →∞ and Tεn < ε

γ(B(0,1)) , for all n ≥ n0 we can
define a sequence (xn) of approximated solutions as the follows:
∀t ∈ I, xn(t) = x0 +

∫ t

0
ẋn(s) ds, where ẋn ∈ L1(I, E). (θn(t), xn(θn(t))) ∈ G.

ẋn(t) ∈ F
(
t, xn(θn(t)

)
+ εnB(0, 1), a.e on I. ‖ẋn(t)‖ ≤ pc + 1, a.e on I.

By the same arguments used in the proof of Theorem 3.1 we can prove that the
sequence (xn) converges to an absolutely continuous function x which is a solution
for problem (1.1). �

4. Conclusion

Let us remark that, if we replace γ in (A1’) by α, the condition
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(A4) For each ε > 0, there exists a closed subset Iε of I with λ(I − Iε) < ε such
that for almost all t ∈ Iε and for any nonempty bounded subset Z of E,
one has

inf
δ>0

α(F (G ∩ (([t− δ, t] ∩ I)× Z))) ≤ w(t, α(Z))

implies Condition (A1’) and the converse is not true. Indeed Let ε > 0. Since w is
Caratheodory function, we can find a closed subset Iε of I with λ(I − Iε) < ε such
that w is continuous on Iε and Condition (A4) holds on Iε. Let Z be a nonempty
bounded subset of E. It follows from (A4) that, for any τ > 0 and any t ∈ Iε, there
exists a δτ,t such that α(F (G ∩ (([t− δτ,t, t] ∩ I)×Z))) ≤ w(t, α(Z)) + τ . Let τ be
arbitrary but fixed, J be a compact subset of Iε. The collection {(t− δt

2 , t+ δt

2 ) : t ∈
J} is an open cover for J . By compactness of J , there exist t′1, t

′
2 . . . , t′n such that

J ⊆ ∪n
i=1(t

′
i−

δt′
i

2 , t′i +
δt′

i

2 ) ⊆ ∪n
i=1[t

′
i−

δt′
i

2 , t′i +
δt′

i

2 ]. Now if Ji = J ∩ [t′i−
δt′

i

2 , t′i +
δt′

i

2 ]
and ti = maxJi, 1 ≤ i ≤ n, then there exist t1, t2 . . . tn ∈ J such that Ji ⊆ [ti−δti

, ti]
and J ⊆ ∪n

i=1[ti − δti
, ti]. This implies that,

α(F (G ∩ (J × Z))) ≤ α(∪n
i=1F (G ∩ (([ti − δti

, ti] ∩ I)× Z)))

≤ max
1≤i≤n

α(F (G ∩ (([ti − δti , ti] ∩ I)× Z)))

≤ max
1≤i≤n

w(ti, α(Z)) + τ ≤ max
t∈J

w(t, α(Z)) + τ

Since τ is arbitrary, Condition (A1’) holds. To show that the converse is not true
we give an example. Let f : [0, 1] × B(0, 1) → E be the single valued function
defined by f(t, x) = k(t)x, where k : [0, 1] → R,

k(t) =

{
1 if t is irrational
1/t2 if t is rational

Let also w(t, s) = k(t)s, for all (t, s) ∈ I ×R+. Clearly, w is a Kamke function. Let
ε > 0 and choose a closed subset Iε of I such that λ(I− Iε) < ε and k is continuous
on Iε. Then for any compact subset J of Iε and any bounded subset Z of E,

α(f(G ∩ (J × Z))) ≤ α(f(J × Z)) = α
(
∪t∈J,x∈Z f{(t, x)}

)
= α

(
∪t∈J k(t)Z

)
= sup

t∈J
k(t)α(Z)

= sup
t∈J

w
(
t, α(Z)

)
.

Then Condition (A1’) holds as the measure γ replaced by the measure α. But for
each t ∈ (0, 1) and each nonempty subset Z of E we have α

(
f([t − δ, t] × Z)

)
=

α
(
∪s∈[t−δ,t] k(s)Z

)
= α(Z) ·

(
sups∈[t−δ,t] k(s)

)
= α(Z)

(t−δ)2 . Thus, infδ>0 α(F (([t −
δ, t] ∩ I)× Z)) = α(Z)

t2 . So if t is irrational then infδ>0 α(F (([t− δ, t] ∩ I)× Z)) =
α(Z)

t2 > α(Z) = k(t)α(Z) = w(t, α(Z)). Then (A4) does not hold and consequently
Theorem 3.2 is a generalization of the following theorem.

Theorem 4.1 (Benabdellah-Castaing and Ibrahim [5]). Let F and Γ be as in
Theorem 3.2 except F satisfies Condition (A4) instead of (A1’). Then, for any
x0 ∈ Γ(0), there is a solution for (1.1).
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