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SECOND ORDER TANGENCY CONDITIONS
AND DIFFERENTIAL INCLUSIONS:

A COUNTEREXAMPLE AND A REMEDY

CORNELIU URSESCU

Abstract. In this paper we show that second order tangency conditions are
superfluous not to say useless while discussing the existence condition for cer-

tain second order differential inclusions. In this regard, a counterexample is

provided even in the simpler setting of second order differential equations,
where a substitute condition is propound. In the setting of differential inclu-

sions, the corresponding substitute condition allows for us to prove existence

of sufficiently many approximate solutions without the use of any convexity,
measurability, or upper semicontinuity assumption. Accordingly, some proofs

in the related literature are greatly simplified.

1. A second order differential equation: the theory

Consider the second order differential equation

X ′′(t) = g(t, X(t), X ′(t)) (1.1)

where g : [a, b) × D → Rn is a function, D ⊆ R2n is a nonempty set, and [a, b) ⊆
R is a nonempty, possibly unbounded interval. The existence condition for the
equation (1.1) states that

for every (x, y) ∈ D and for every τ ∈ [a, b) there exist a subinterval
[τ, υ) of [τ, b) and a solution X : [τ, υ) → Rn to the differential
equation (1.1) such that X(τ) = x and X ′(τ) = y.

(1.2)

By a solution to the equation (1.1) we mean a Carathéodory solution, that is, a
locally absolutely continuous function X : [τ, υ) → Rn such that also X ′ : [τ, υ) →
Rn is locally absolutely continuous, such that (X(t), X ′(t)) ∈ D for all t ∈ [τ, υ),
and such that (t, X(t), X ′(t), X ′′(t)) renders true the equality (1.1) for almost all
t ∈ [τ, υ). Throughout this paper, by a solution to a differential equation, inclusion,
and so on we mean a Carathéodory solution.

A characterization of the existence condition (1.1) can be given by using a tan-
gency concept which springs from two papers published, in 1931, in the same issue
of the journal “Annales de la Société Polonaise de Mathématique.” The authors of
these papers are Bouligand (see [6]) and Severi (see [14]).
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For every subset S and for every point p0 of a Hausdorff topological vector space
E, we denote by TS(p0) the set of all points p1 ∈ E with the property that

for every neighborhood Q of the origin in E and for every H > 0
there exist h ∈ (0,H) and q ∈ Q such that p0 + h(p1 + q) ∈ S.

Obviously, TS(p0) 6= ∅ if and only if p0 ∈ closure(S), in which case TS(p0) is a
closed cone.

The existence condition (1.2) can be characterized through the first order tan-
gency condition which involves the first order tangency relation

(y, g(t, x, y)) ∈ TD(x, y) (1.3)

and which states that
there exists a set N ⊆ [a, b) of null Lebesgue measure such that
the tangency relation (1.3) holds for all (x, y) ∈ D and for all
t ∈ [a, b) \ N .

(1.4)

Such a characterization does hold if the set D is locally closed, whereas the function
g is a Carathéodory function, i.e.

(i) the functions (x, y) → g(t, x, y) are continuous on D for almost all t ∈ [a, b);
(ii) the functions t → g(t, x, y) are measurable on [a, b) for all (x, y) ∈ D;
(iii) for every (x, y) ∈ D and for every τ ∈ [a, b) there exist a neighborhood

W of (x, y), a subinterval [τ, υ) of [a, b), and a locally integrable function
m : [τ, υ) → R such that sup(u,v)∈W∩D ‖g(t, u, v)‖ ≤ m(t) for almost all
t ∈ [τ, υ).

Here, ‖ · ‖ stands for a norm, e.g. the Euclidean norm, on Rn.

Theorem 1.1. Let D be locally closed and let the function g be a Carathéodory
function. Then the existence condition (1.2) is equivalent to the tangency condition
(1.4).

The conclusion follows from a result in [16, p. 484, Theorem] (see also [15, pp. 5-
6, Theorem]), for the second order differential equation (1.1) is equivalent to the
first order differential system

X ′(t) = Y (t),

Y ′(t) = g(t, X(t), Y (t)).

Note that condition (1.4) is superfluous if the set D is open because TD(x, y) = R2n

for all (x, y) ∈ D.
Suppose further D = K × L where K ⊆ Rn and L ⊆ Rn are nonempty sets.

In this case, D is locally closed if and only if so are both K and L. No matter
whether L is locally closed and no matter whether g is a Carathéodory function, it
is possible to characterize the tangency condition (1.4) through a couple of simpler
conditions. The first condition of the couple involves a “confluence” of closed cones,

L(K) = ∩x∈KTK(x),

and states that
L ⊆ L(K). (1.5)

The second condition of the couple involves the x-“collection” of first order tangency
relations

g(t, x, y) ∈ TL(y), (1.6)



EJDE-2009/23 SECOND ORDER TANGENCY CONDITIONS 3

and states that
there exists a set N ⊆ [a, b) of null Lebesgue measure such that
the tangency relation (1.6) holds for all x ∈ K, for all y ∈ L, and
for all t ∈ [a, b) \ N .

(1.7)

Note that condition (1.5) is superfluous if the set K is open because L(K) = Rn,
whereas condition (1.7) is superfluous if the set L is open because TL(y) = Rn for
all y ∈ L.

Theorem 1.2. Let D = K × L. Then the existence condition (1.2) implies the
confluence tangency condition (1.5), whereas the tangency condition (1.4) implies
both the confluence tangency conditions (1.5) and the collective tangency condition
(1.7).

Let, in addition, the set K be locally closed. Then the tangency condition (1.4)
is equivalent to the couple of tangency conditions (1.5) and (1.7).

The fact that condition (1.2) implies condition (1.5) follows from lemma below.

Lemma 1.3. Let x : [τ, υ) → Rn be an absolutely continuous function such that also
x′ : [τ, υ) → Rn is absolutely continuous and such that x(t) ∈ K for all t ∈ [τ, υ).
Then x′(τ) ∈ TK(x(τ)).

The conclusion of the lemma follows from the fact that, if h ∈ (0, υ − τ), then

X(τ) + h
(
X ′(τ) +

1
h

∫ τ+h

τ

( ∫ t

τ

X ′′(s)ds
)
dt

)
= X(τ + h) ∈ K.

Further, the fact that condition (1.4) implies the couple of conditions (1.5) and
(1.7) follows from the inclusion TK×L(x, y) ⊆ TK(x)× TL(y).

Finally, note that, if x ∈ K, y ∈ L, and there exists H > 0 such that x+hy ∈ K
for all h ∈ (0,H), then {y} × TL(y) ⊆ TK×L(x, y).

Now, the fact that the couple of conditions (1.5) and (1.7) implies condition
(1.4) follows from the inclusion L(K) × TL(y) ⊆ TK×L(x, y), a consequence of
lemma below.

Lemma 1.4. Let the set K be locally closed. Then y ∈ L(K) if and only if for
every x ∈ K there exists H > 0 such that x + hy ∈ K for all h ∈ (0,H).

Moreover, for every compact subset P of K and for every bounded subset Q of
L(K) there exists H > 0 such that P + hQ ⊂ K for all h ∈ (0,H).

The “if” part of the lemma is obvious. Now, let y ∈ L(K). Since y ∈ TK(x) for
all x ∈ K, it follows from a result of Nagumo (see [12, p. 552]) that for every x ∈ K
there exist T > 0 and a classical solution X : [0, T ) → Rn to the restricted Cauchy
problem

X ′(t) = y, X(t) ∈ K,

X(0) = x,

But X(t) = x + ty for all t ∈ [0, T ), and the “only if” part of the lemma follows.
Further, for every x ∈ K and for every y ∈ L(K), let H(x, y) be the supremum of

all H > 0 such that x+hy ∈ K for all h ∈ (0,H). Obviously, either H(x, y) = +∞
or both H(x, y) < +∞ and x + H(x, y)y 6∈ K.

Finally, let P ⊆ K be compact and let Q ⊆ L(K) be bounded. We have to show
that 0 < infx∈P,y∈Q H(x, y). Suppose, by contradiction, there exists a sequence
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(xj , yj) ∈ P × Q such that H(xj , yj) converges to 0. Since P is compact, we can
suppose, taking a subsequence if necessary, that xj converges to a point x ∈ P .
Since K is locally closed, it follows Ũ ∩ K is closed for some neighborhood Ũ of
x. Since Q is bounded, it follows U + [0,H]Q ⊂ Ũ for some neighborhood U of
x and for some H > 0. Further, xj ∈ U and H(xj , yj) ≤ H for some j. Since
xj + hyj ∈ Ũ ∩ K for all h ∈ (0,H(xj , yj)), it follows xj + H(xj , yj)yj ∈ K, a
contradiction, and the lemma is proved.

In view of lemma above, if the set K is closed, then L(K) equals the asymptotic
cone of K, that is, y ∈ T (K) if and only if x + hy ∈ K for all x ∈ K and for all
h > 0. Accordingly, the confluence tangency condition (1.5) is equivalent to the
condition that K + hL ⊆ K for all h > 0.

To close this section we rephrase Theorem 1.1 with a statement which does not
explicitly involve any tangency condition except (1.5). Consider the x-“collection”
of first order differential equations

Y ′(t) = g(t, x, Y (t)). (1.8)

The collective existence condition for the differential equation (1.8) states that

for every x ∈ K, for every y ∈ L, and for every τ ∈ [a, b) there
exist a subinterval [τ, υ) of [τ, b) and a solution Y : [τ, υ) → Rn to
the differential equation (1.8) such that Y (τ) = y.

(1.9)

In view of the cited result in [16], if the set L is locally closed and if the function
(t, y) ∈ [a, b) × L → g(t, x, y) ∈ Rn is a Carathéodory function for each x ∈ K,
then the collective existence condition (1.9) is equivalent to the collective tangency
condition (1.7).

Theorem 1.5. Let D = K × L, let the sets K and L be locally closed, and let
the function g be a Carathéodory function. Then the existence condition (1.2) is
equivalent to the couple made up of the confluence tangency condition (1.5) and the
collective existence condition (1.9).

2. A second order tangency condition: the counterexample

In this section we try to characterize the couple of tangency conditions (1.5) and
(1.7) by using the second order version of the tangency concept T (see [5]).

For every subset S and for every couple of points p0 and p1 of a Hausdorff
topological vector space E, we denote by T (2)

S (p0, p1) the set of all points p2 ∈ E
with the property that

for every neighborhood Q of the origin in E and for every H > 0
there exist h ∈ (0,H) and q ∈ Q such that p0+hp1+ h2

2 (p2+q) ∈ S.

Clearly, T (2)
S (p0, 0) = TS(p0). Moreover, if T (2)

S (p0, p1) 6= ∅, then p1 ∈ TS(p0), but
the converse may fail. For example, if p0 ∈ E, p1 ∈ E, p2 ∈ E, and

S =
{
p0 + hp1 +

h
√

h

2
p2;h ≥ 0

}
,

then p1 ∈ TS(p0), but T (2)
S (p0, p1) is empty if the vectors p1 and p2 are linearly

independent.
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Now, consider the second order tangency condition which involves the second
order tangency relation

g(t, x, y) ∈ T (2)
K (x, y) (2.1)

and which states that
there exists a set N ⊆ [a, b) of null Lebesgue measure such that
the tangency relation (2.1) holds for all x ∈ K, for all y ∈ L, and
for all t ∈ [a, b) \ N .

(2.2)

Theorem 2.1. Let D = K×L and let the set K be locally closed. Then the couple
of tangency conditions (1.5) and (1.7) implies the second order tangency condition
(2.2). Conversely, condition (2.2) implies the confluence tangency condition (1.5),
but may fail to imply the collective tangency condition (1.7). Let, in addition,
L ⊆ interior(L(K)). Then condition (2.2) is superfluous because T (2)

K (x, y) = Rn

for all x ∈ K and for all y ∈ L, and condition (1.7) still may fail to hold.

The fact that (1.5) and (1.7) taken together imply (2.2) follows from the inclusion
TL(y) ⊆ TL(K)(y) and from lemma below.

Lemma 2.2. Let the set K be locally closed. Then TL(K)(y) ⊆
⋂

x∈K T (2)
K (x, y) for

all y ∈ L(K). Let, in addition, L(K) have a nonempty interior. Then T (2)
K (x, y) =

Rn for all x ∈ K and for all y ∈ interior(L(K)).

To prove the first part of the lemma, let y ∈ L(K), let z ∈ TL(K)(y), and let
x ∈ K. We have to show that z ∈ T (2)

K (x, y). According to the definition of the
tangency concept T , there exist a sequence hi > 0 which converges to 0 and a
sequence qi ∈ Rn which converges to 0 such that y +(hi/2)(z + qi) ∈ L(K) for all i.
According to Lemma 1.4, there exists H > 0 such that x+h(y+(hi/2)(z+qi)) ∈ K
for all h ∈ (0,H) and for all i. We can suppose, taking a subsequence if necessary,
that hi ∈ (0,H) for all i. Since x + hi(y + (hi/2)(z + qi)) ∈ K for all i, it follows
z ∈ T (2)

K (x, y), and the first part of the lemma is proved.
The inclusion we have just obtained can not be improved to the corresponding

equality. Let K = {x ∈ R2;x2 ≥ (x1)2} and y = (0, 1), so that L(K) = {x ∈
R2;x1 = 0, x2 ≥ 0} and y ∈ L(K). On the one hand TL(K)(y) = {z ∈ R2; z1 =
0, z2 ∈ R}. On the other hand, T (2)

K (x, y) = R2 for all x ∈ K.
The additional part of the lemma follows from the fact that TL(K)(y) = Rn for

all y ∈ interior(L(K)).
The fact that (2.2) implies (1.5) follows from lemma below.

Lemma 2.3. Let the set K be locally closed. Then

L(K) = {y ∈ Rn;∀x ∈ K, T (2)
K (x, y) 6= ∅}.

To prove the lemma, denote by S the right hand side of the equality above. Since
T (2)

K (x, y) 6= ∅ implies y ∈ TK(x), it follows from Lemma 1.4 that S ⊆ L(K). To
prove the converse inclusion, let y ∈ L(K) and let x ∈ K. We have to show that
T (2)

K (x, y) 6= ∅. According to the definition of the set L(K), there exists H̃ > 0
such that x + hy ∈ K for all h ∈ (0, H̃). Let H > 0 such that H + H2/2 = H̃, and
let h ∈ (0,H). Then x + hy + (h2/2)y ∈ K, hence y ∈ T (2)

K (x, y), and the lemma is
proved.
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The fact that (2.2) may not imply (1.7) is illustrated through the simplest coun-
terexample given by [a, b) = [0,+∞), K = [0,+∞), L = {1}, and g(t, x, y) = y.
Clearly, condition (2.2) holds because T 2

K(x, y) = R for all x ∈ K and y ∈ L, but
condition (1.2) does not hold, that is, the restricted differential system X ′′(t) =
X ′(t), X(t) ∈ K, X ′(t) ∈ L has no solution. Indeed, if x ∈ K, y ∈ L, and X is
a solution to the system X ′′(t) = X ′(t) such that X(0) = x and X ′(0) = y, then
X(t) = x + (exp(t)− 1)y for all t > 0. Now, X(t) ∈ K for all t > 0, but X ′(t) 6∈ L
for any t > 0. Note also L(K) = K, hence L ⊆ interior(L(K)).

To conclude, if D = K × L, then the second order tangency condition (2.2)
is useless not to say superfluous while discussing the existence condition (1.2).
Nevertheless, condition (2.2) may be useful (cf. [13, p. 38, Theorem 2.4]) while
discussing some adjacent existence conditions, e.g.

there exist x ∈ K, y ∈ L, τ ∈ [a, b), a subinterval [τ, υ) of [τ, b),
and a solution X : [τ, υ) → Rn to the second order differential
equation (1.1) such that X(τ) = x and X ′(τ) = y.

3. A second order differential inclusion: the corresponding results

Consider the second order differential inclusion

X ′′(t) ∈ G(t, X(t), X ′(t)) (3.1)

where G : [a, b) × D → Rn is a multifunction with nonempty values, D ⊆ R2n is
a nonempty set, and [a, b) ⊆ R is a nonempty, possibly unbounded interval. The
existence condition for the inclusion (3.1) states that

for every (x, y) ∈ D and for every τ ∈ [a, b) there exist a subinterval
[τ, υ) of [τ, b) and a solution X : [τ, υ) → Rn to the second order
differential inclusion (3.1) such that X(τ) = x and X ′(τ) = y.

(3.2)

Parallel results to the ones in Section 1 do hold if the set D is locally closed,
whereas the multifunction G has compact, convex values and is a Carathéodory
multifunction, i.e.

(I) the multifunctions (x, y) → G(t, x, y) are continuous on D for almost all
t ∈ [a, b);

(II) the multifunctions t → G(t, x, y) are measurable on [a, b) for all (x, y) ∈ D;
(III) for every (x, y) ∈ D and for every τ ∈ [a, b) there exist a neighborhood

W of (x, y), a subinterval [τ, υ) of [a, b), and a locally integrable function
m : [τ, υ) → R such that sup(u,v)∈W∩D ‖G(t, u, v)‖ ≤ m(t) for almost all
t ∈ [τ, υ).

Here, ‖G(t, u, v)‖ stands for the supremum of all ‖p‖ with p ∈ G(t, u, v).
If continuity is replaced with upper semicontinuity in condition (I) above, we say

that the multifunction G is an upper Carathéodory multifunction.
The existence condition (3.1) can be characterized through the first order tan-

gency condition which involves the first order tangency relation

({y} ×G(t, x, y)) ∩ TD(x, y) 6= ∅ (3.3)

and which states that
there exists a set N ⊆ [a, b) of null Lebesgue measure such that
the tangency relation (3.3) holds for all (x, y) ∈ D and for all
t ∈ [a, b) \ N .

(3.4)
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Theorem 3.1. Let the set D be locally closed, and let the multifunction G have
compact, convex values and be an upper Carathéodory multifunction. Then the
existence condition (3.2) implies the tangency condition (3.4). Let, in addition,
the multifunction G be a Carathéodory multifunction. Then the existence condi-
tion (3.2) is equivalent to the tangency condition (3.4).

The result above is a particular form of a more general result derived in [10,
pp. 279, 280 Theorems 4.2 and 4.3].

Suppose further D = K × L where K ⊆ Rn and L ⊆ Rn are nonempty sets.
In this case, no matter whether L is locally closed and no matter whether G is a
Carathéodory multifunction, it is possible to characterize the tangency condition
(3.4) through a couple of simpler conditions. The first condition of the couple is
just the confluence tangency condition (1.5). The second condition of the couple
involves the x-“collection” of first order tangency relations

G(t, x, y) ∩ TL(y) 6= ∅, (3.5)

and states that

there exists a set N ⊆ [a, b) of null Lebesgue measure such that
the tangency condition (3.5) holds for all x ∈ K, y ∈ L, and
t ∈ [a, b) \ N .

(3.6)

Recall condition (1.5) is superfluous if the set K is open, whereas condition (3.6)
is superfluous if the set L is open.

Theorem 3.2. Let D = K × L. Then the existence condition (3.2) implies the
confluence tangency condition (1.5), whereas the tangency condition (3.4) implies
both the confluence tangency conditions (1.5) and the collective tangency condition
(3.6).

Let, in addition, the set K be locally closed. Then tangency condition (3.4) is
equivalent to the couple of tangency conditions (1.5) and (3.6).

Now, consider the second order tangency condition which involves x-“collection”
of second order tangency relations

G(t, x, y) ∩ T (2)
K (x, y) 6= ∅ (3.7)

and which states that

there exists a set N ⊆ [a, b) of null Lebesgue measure such that
the tangency relation (3.7) holds for all x ∈ K, for all y ∈ L, and
for all t ∈ [a, b) \ N .

(3.8)

Theorem 3.3. Let D = K×L and let the set K be locally closed. Then the couple
of tangency conditions (1.5) and (3.6) implies the second order tangency condition
(3.8). Conversely, condition (3.8) implies the confluence tangency condition (1.5),
but may fail to imply the collective tangency condition (3.6). Let, in addition,
L ⊆ interior(L(K)). Then condition (3.8) is superfluous because T (2)

K (x, y) = Rn

for all x ∈ K and for all y ∈ L, but condition (3.6) still may fail to hold.

To conclude, if D = K × L, then the second order tangency condition (3.8)
is useless not to say superfluous while discussing the existence condition (3.2).
Nevertheless, condition (3.8) may be useful (cf. [4, p. 214, Theorem 4.1]) while
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discussing some adjacent existence conditions, e.g.

there exist x ∈ K, y ∈ L, τ ∈ [a, b), a subinterval [τ, υ) of [τ, b), and
a solution X : [τ, υ) → Rn to the second differential inclusion (3.1)
such that X(τ) = x and X ′(τ) = y.

To close this section we rephrase Theorem 3.1 with a statement which does not
explicitly involve any tangency condition except (1.5). Consider the x-“collection”
of first order differential inclusions

Y ′(t) ∈ G(t, x, Y (t)). (3.9)

The collective existence condition for the differential inclusion (3.9) states that

for every x ∈ K, for every y ∈ L, and for every τ ∈ [a, b) there
exist a subinterval [τ, υ) of [τ, b) and a solution Y : [τ, υ) → Rn to
the differential inclusion (3.9) such that Y (τ) = y.

(3.10)

In view of the cited result in [10], if the set L is locally closed and if the multi-
function (t, y) ∈ [a, b) × L → G(t, x, y) ∈ Rn has compact, convex values and is a
Carathéodory multifunction for each x ∈ K, then the collective existence condition
(3.10) is equivalent to the collective tangency condition (3.6).

Theorem 3.4. Let D = K × L, let the sets K and L be locally closed, and let
the multifunction G have compact, convex values and be a Carathéodory multifunc-
tion. Then the existence condition (3.2) is equivalent to the couple made up of the
confluence tangency condition (1.5) and the collective existence condition (3.10).

4. A second order differential inclusion: the approximate solutions

Consider the second order differential inclusion (3.1) in case D = K × L. In
view of Theorem 3.4, it is strongly expected for the existence condition (3.2) to be
implied by the couple made up of the confluence tangency condition (1.5) and the
collective existence condition (3.10) if the sets K and L are locally closed, and G
is an upper Carathéodory multifunction with compact, but not necessarily convex
values.

We provide such a result in the next section. In the present section, we define a
new type of approximate solutions to the first order differential system

X ′(t) = Y (t),

Y ′(t) ∈ G(t, X(t), Y (t)),
(4.1)

which is equivalent to the second order differential inclusion (3.1), and we prove
that the couple of conditions (1.5) and (3.10) implies existence of sufficiently many
approximate solutions provided that the sets K and L are locally closed, and the
multifunction G enjoys only the third Carathéodory type condition (III) above.

Denote by Φ([τ, υ)) the family of all functions φ : [τ, υ) → R such that there
exists a finite covering of [τ, υ) made up of mutually disjoint intervals [τ̃ , υ̃) such
that φ(t) = τ̃ for all t ∈ [τ̃ , υ̃) (cf. [10, p.280, (iii)], where the covering may be
infinite). Obviously, τ ≤ φ(t) ≤ t for all t ∈ [τ, υ).

Let [τ, υ) be a subinterval of [a, b), let φ ∈ Φ([τ, υ)), and consider the φ-
differential system

X ′(t) = Y (t),

Y ′(t) ∈ G(t, X(φ(t)), Y (t)).
(4.2)
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Definition 4.1. A function (X, Y ) : [τ, υ) → R2n is said to be a φ-approximate
solution to the differential system (4.1) if (X, Y ) is a solution to the φ-differential
system (4.2).

Note that, if Y : [τ, υ) → Rn is a solution to the differential inclusion (3.9),
if φ(t) = τ for all t ∈ [τ, υ), and if X(t) = x +

∫ t

τ
Y (s)ds for all t ∈ [τ, υ), then

φ ∈ Φ([τ, υ)) and (X, Y ) is a φ-approximate solution to the differential system (4.1).
In view of this remark, condition (3.10) can be rephrased as follows:

for every x ∈ K, for every y ∈ L, and for every τ ∈ [a, b) there exist
a subinterval [τ, υ) of [τ, b), a φ ∈ Φ([τ, υ)), and a φ-approximate
solution (X, Y ) : [τ, υ) → R2n to the differential system (4.1) such
that (X, Y )(τ) = (x, y).

The main result of this section shows that, under suitable hypotheses, the collec-
tive existence condition (3.10) implies the approximate existence condition which
states that

for every τ ∈ [a, b), for every x ∈ K, for every y ∈ L, for every
neighborhood U of x, and for every neighborhood V of y there
exists a subinterval [τ, υ) of [τ, b) such that for every φ ∈ Φ([τ, υ))
there exists a φ-approximate solution (X, Y ) : [τ, υ) → R2n to the
differential system (4.1) such that (X, Y )(τ) = (x, y), X([τ, υ)) ⊆
U ∩K, and Y ([τ, υ)) ⊆ V ∩ L.

(4.3)

Theorem 4.2. Let the sets K and L be locally closed, and let the multifunction G
satisfy the Caratéodory type condition (III). Let the confluence tangency condition
(1.5) and the collective existence condition (3.10) be satisfied. Then the approximate
existence condition (4.3) is satisfied too.

To prove the theorem, let τ∗ ∈ [a, b), let x∗ ∈ K, let y∗ ∈ L, let U∗ be a
neighborhood of x∗, and let V ∗ be a neighborhood of y∗.

We can suppose, taking smaller U∗ and V ∗ if necessary, that the sets U∗ ∩ K
and V ∗ ∩ L are closed.

We can suppose, taken even smaller U∗ and V ∗ if necessary, that there exists
a subinterval [τ∗, υ∗) of [τ∗, b) and a locally integrable function m : [τ∗, υ∗) → R
such that

sup
u∈U∗∩K,V ∗∈V ∩L

‖G(t, u, v)‖ ≤ m(t)

for almost all t ∈ [τ∗, υ∗).
We can suppose, taking a smaller υ∗ if necessary, that υ∗ < b and

∫ υ∗

τ∗
m(t)dt <

+∞, that is m is integrable.
Define µ : [τ∗, υ∗]× [τ∗, υ∗]×R → R through

µ(t; τ, r) =
∫ t

τ

(
r +

∫ s

τ

m(σ)dσ
)
ds.

Note parenthetically that the function t → µ(t; τ, r) is the solution to the scalar,
second order differential system

µ′′(t) = m(t),

µ′(τ) = r,

µ(τ) = 0.
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We can suppose, taking an even smaller υ∗ if necessary, that

B(y∗, µ′(υ∗; τ∗, 0)) ⊆ interior(V ∗),

B(x∗, µ(υ∗; τ∗, ‖y∗‖)) ⊆ interior(U∗).

Here, B(c, r) stands for the closed ball with center c and radius r.
We shall show that for every φ ∈ Φ([τ∗, υ∗)) there exists a φ-approximate solution

(X, Y ) : [τ∗, υ∗) → R2n to the differential system (4.1) such that (X, Y )(τ∗) =
(x∗, y∗), X([τ∗, υ∗)) ⊆ U∗ ∩K, and Y ([τ∗, υ∗)) ⊆ V ∗ ∩ L.

To this purpose, we first show that the statement above holds in the particular
case that φ(t) = t for all t ∈ [τ∗, υ∗), namely there exists a solution Y : [τ, υ∗) → Rn

to the differential system

Y ′(t) ∈ G(t, x∗, Y (t)),

Y (τ∗) = y∗,

as well as a solution X : [τ∗, υ∗) → Rn to the restricted system

X ′(t) = Y (t), X(t) ∈ K,

X(τ∗) = x∗.

In fact, we show that there holds a slightly stronger statement which involves the
family of Cauchy problems

Y ′(t) ∈ G(t, x, Y (t)),

Y (τ) = y,
(4.4)

where τ ∈ [a, b), x ∈ K, y ∈ L, as well as the family of restricted Cauchy problems

X ′(t) = Y (t), X(t) ∈ K

X(τ) = x,
(4.5)

where τ ∈ [a, b), x ∈ K, and Y is a solution to a corresponding system (4.4).
To frame the announced slightly stronger statement, we need some additional

items.
For every (τ, x, y) ∈ [τ∗, υ∗) × K × L, we denote by S(τ, x, y) the set of all

points (t, ζ, η) ∈ [τ∗, υ∗) × K × L such that τ ≤ t, ‖ζ − x‖ ≤ µ(t; τ, ‖y‖), and
‖η − y‖ ≤ µ′(t; τ, 0)}, and we note that:

• S(τ∗, x∗, y∗) ⊆ [τ∗, υ∗)× interior(U∗)× interior(V ∗);
• (τ, x, y) ∈ S(τ, x, y);
• S(S(τ, x, y))) ⊆ S(τ, x, y).

The last property above follows from the equalities

µ′(t; τ, 0) = µ′(t; τ̃ , 0) + µ′(τ̃ ; τ, 0),

µ(t; τ, r) = µ(t; τ̃ , r + µ′(τ̃ ; τ, 0)) + µ(τ̃ ; τ, r),

which hold whenever r ∈ R and τ∗ ≤ τ ≤ τ̃ ≤ t < υ∗.
Now, we can frame the announced statement.

Lemma 4.3. Let the sets K and L be locally closed, and let the multifunction G
satisfy the Carathéodory type condition (III). Let the confluence tangency condi-
tion (1.5) and the collective existence condition (3.10) be satisfied. Then for every
(τ, x, y) ∈ S(τ∗, x∗, y∗) there exist a solution Y : [τ, υ∗) → Rn to the Cauchy
problem (4.4) and a solution X : [τ, υ∗) → Rn to the restricted Cauchy problem
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(4.5) such that (X, Y )(τ) = (x, y) and such that (t, X(t), Y (t)) ∈ S(τ, x, y) for all
t ∈ [τ, υ∗).

To prove this lemma we need some auxiliary results. The first three of them do
not involve all of the hypotheses of Theorem 4.2. The fourth one involves all of
those hypotheses through the item [τ∗, υ∗).

The first auxiliary result concerns solutions to (4.4) on subintervals [a, b). Recall
that a solution Y : [τ, υ) → Rn to the Cauchy problem (4.4) is said to be saturated
if there does not exists any solution Ỹ : [τ, υ̃) → Rn to (4.4) such that both υ < υ̃

and Y equals the restriction of Ỹ to [τ, υ). Such a definition can be given in case
of the solutions of any Cauchy problem (see Section 6 below).

Lemma 4.4. Let the existence condition (3.10) be satisfied. Let x ∈ K, let y ∈ L,
let τ ∈ [a, b), let [τ, υ) be a subinterval of [τ, υ), and let Y : [τ, υ) → Rn be a solution
to the Cauchy problem (4.4). If

∫ υ

τ
‖Y ′(t)‖dt < +∞, if the set

B
(
y,

∫ υ

τ

‖Y ′(t)‖dt
)
∩ L

is closed, and if υ < b, then Y is not a saturated solution to (4.4).

Under the hypotheses of the lemma, ŷ = limt→υ Y (t) makes sense and belongs
to L According to the existence condition (3.10), there exist a subinterval [υ, υ̃) of
[υ, b) and a solution Ŷ : [υ, υ̃) → Rn to (3.9) such that Ŷ (υ) = ŷ. Let Ỹ (t) equal
Y (t) if t ∈ [τ, υ) and let it equal Ŷ (t) if t ∈ [υ, υ̃). Since Ỹ is a solution to (4.4), it
follows Y is not saturated.

The second and third auxiliary results concern solutions to the Cauchy problems
(4.4) and (4.5) on subintervals of [a, b).

Lemma 4.5. Let the set K be locally closed and let the confluence tangency condi-
tion (1.5) be satisfied. Let x ∈ K, let y ∈ L, let τ ∈ [a, b), let [τ, υ) be a subinterval
of [τ, υ), and let Y : [τ, υ) → Rn be a solution to the Cauchy problem (4.4). Then
there exist a subinterval [τ, θ) of [τ, υ) and a solution X : [τ, θ) → Rn to the re-
stricted Cauchy problem (4.5).

First of all, note Y (t) ∈ L(K) for all t ∈ [τ, υ). Since K is locally closed and
Y (t) ∈ TK(x) for all x ∈ K and for all t ∈ [τ, υ), it follows from the cited result
in [12] that for every x̃ ∈ K and for every τ̃ ∈ [τ, υ) there exist a subinterval [τ̃ , υ̃)
of [τ, υ) and a classical solution X : [τ̃ , υ̃) → Rn to the restricted Cauchy problem

X ′(t) = Y (t), X(t) ∈ K,

X(τ̃) = x̃.

In case (τ̃ , x̃) = (τ, x) we get the conclusion of the lemma.

Lemma 4.6. Let the set K be locally closed and let the confluence tangency condi-
tion (1.5) be satisfied. Let x ∈ K, let y ∈ L, let τ ∈ [a, b), let [τ, υ) be a subinterval
of [τ, υ), and let Y : [τ, υ) → Rn be a solution to the differential system (4.4). Let
[τ, θ) be a subinterval of [τ, υ) and let X : [τ, θ) → Rn be a solution to the restricted
Cauchy problem (4.5). If

∫ θ

τ
‖Y (t)‖dt < +∞, if the set

B
(
x,

∫ θ

τ

‖Y (t)‖dt
)
∩K

is closed, and if θ < υ, then X is not a saturated solution to (4.5).
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Under the hypotheses of the lemma, x̂ = limt→υ X(t) makes sense and belongs to
K. According to Lemma 4.5, there exist a subinterval [θ, θ̃) of [τ, υ) and a solution
X̂ : [θ, θ̃) → Rn to the restricted Cauchy problem

X̂ ′(t) = Y (t), X̂(t) ∈ K,

X̂(θ) = x̂.

Let X̃(t) equal X(t) if t ∈ [τ, θ) and let it equal X̂(t) if t ∈ [θ, θ̃). Since X̃ is a
solution to (4.5), it follows X is not saturated.

The fourth auxiliary result concerns solutions to the Cauchy problems (4.4) and
(4.5) on subintervals of [τ∗, υ∗).

Lemma 4.7. Let (τ, x, y) ∈ S(τ∗, x∗, y∗), let [τ, υ) be a subinterval of [τ, υ∗), and
let Y : [τ, υ) → Rn be a solution to the Cauchy problem (4.4). Then ‖Y (t)− y‖ ≤
µ′(t; τ, 0) for all t ∈ [τ, υ). Moreover, if υ < υ∗, then Y is not a saturated solution
to (4.4).

Let [τ, θ) be a subinterval of [τ, υ) and let X : [τ, θ) → Rn be a solution to
the restricted Cauchy problem (4.5). Then ‖X(t)‖ ≤ µ(t; τ, ‖y‖) for all t ∈ [τ, θ).
Moreover, if θ < υ, then X is not a saturated solution to (4.5).

To prove the first part of the lemma, note Y (τ) ∈ interior(V ∗), let [τ, λ) be the
greatest subinterval of [τ, υ) such that Y ([τ, λ)) ⊆ V , and note that either λ = υ
or both λ < υ, but Y (λ) 6∈ interior(V ). In addition, ‖Y ′(t)‖ ≤ m(t) for almost all
t ∈ [τ, λ), hence ‖Y (t)− y‖ ≤ µ′(t; τ, 0) for all t ∈ [τ, λ). Since

Y ([τ, λ)) ⊆ B(y, µ′(υ; τ, 0)) ⊆ B(y∗, µ′(υ∗; τ∗, 0)) ⊆ interior(V ∗),

it follows λ = υ. Since the set V ∗ ∩L is closed, so is its subset B(y, µ′(υ; τ, 0))∩L,
and Lemma 4.4 implies Y is not saturated if υ < υ∗.

To prove the second part of the lemma, note X(τ) ∈ interior(U∗), let [τ, λ) be
the greatest subinterval of [τ, θ) such that X([τ, λ)) ⊆ U , and note that either λ = θ
or both λ < θ, but X(λ) 6∈ interior(U). In addition ‖X(t)−x‖ ≤ µ(t; τ, ‖y‖) for all
t ∈ [τ, λ). Since

X([τ, λ)) ⊆ B(x, µ(θ; τ, ‖y‖)) ⊆ B(x∗, µ(υ∗; τ∗, ‖y∗‖)) ⊆ interior(U∗),

it follows λ = θ. Since the set U∗∩K is closed, so is its subset B(x, µ(θ; τ, ‖y‖))∩K,
and Lemma 4.6 implies that X is not saturated if θ < υ.

Now, we are in a position to prove Lemma 4.3.
Let (τ, x, y) ∈ S(τ∗, x∗, y∗). According to the collective existence condition

(3.10), there exists a subinterval [τ, υ) of [τ, b) and a solution Y : [τ, υ) ⊆ [τ, b) → Rn

to the Cauchy problem (4.4). In view of Theorem 6.1 in Section 6 below, we can
suppose Y is saturated. According to Lemma 4.5, there exists a subinterval [τ, θ)
of [τ, υ) and solution X : [τ, θ) ⊆ [τ, υ) → Rn to the restricted Cauchy problem
(4.5). In view of Theorem 6.1, we can suppose X is saturated.

First, we assert that υ∗ ≤ υ. Suppose, by contradiction, that υ < υ∗. According
to Lemma 4.7, Y is not saturated, a contradiction. Second, we assert that υ∗ ≤
θ. Suppose, by contradiction, that θ < υ∗, According to Lemma 4.7, X is not
saturated, a contradiction. Now, the restrictions of X and Y to [τ, υ∗) satisfy the
required conclusion.

Finally, we are in a position to prove Theorem 4.2.
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Let φ ∈ Φ([τ∗, υ∗)). Then [τ∗, υ∗) equals the union of a family of j mutually
disjoint intervals [τi, τi+1) such that τ1 = τ∗, τj+1 = υ∗, and φ(t) = τi whenever
t ∈ [τi, τi+1).

In view of Lemma 4.3, there exists a family of j functions (Xi, Yi) : [τi, υ
∗) → R2n

such that:

• (X1, Y1) is a solution to the restricted Cauchy problem

X ′
1(t) = Y1(t), X1(t) ∈ K,

Y ′
1(t) ∈ G(t, x∗, Y1(t)),

X1(τ∗) = x∗,

Y1(τ∗) = y∗,

and moreover, (t, X1(t), Y1(t)) ∈ S(τ∗, x∗, y∗) for all t ∈ [τ∗, υ∗);
• if i > 1, then (Xi, Yi) is a solution to the restricted Cauchy problem

X ′
i(t) = Yi(t), Xi(t) ∈ K,

Y ′
i (t) ∈ G(t,Xi−1(τi), Yi(t)),

Xi(τi) = Xi−1(τi),

Yi(τi) = Yi−1(τi),

and moreover, (t, Xi(t), Yi(t)) ∈ S(τi, Xi−1(τi), Yi−1(τi)) for all t ∈ [τi, υ
∗).

Now, let X(t) = Xi(t) and Y (t) = Yi(t) if t ∈ [τi, τi+1). Then the function
(X, Y ) : [τ∗, υ∗) → R2n is a φ-approximate solution to (4.1) and (X, Y )(τ∗) =
(x∗, y∗).

Since (t, X(t), Y (t)) ∈ S(τ∗, x∗, Y ∗) for all t ∈ [τ∗, υ∗), it follows X([τ∗, υ∗)) ⊆
U∗ ∩K, and Y ([τ∗, υ∗)) ⊆ V ∗ ∩ L.

5. Relation to earlier work

The fact that the tangency condition (1.5) and the existence condition (3.10)
imply together the existence condition (3.2) is implicitly dealt with in [1, 2, 9, 11].
There, the necessary tangency condition (1.5) must replace the conditions in [1,
assumption (H1), p. 185] and [11, assumption (H2), p. 3] as well as in [2, condi-
tion (A5), p. 2] and [9, Hypothesis 2.3 iv), p. 177]. The use of useless or superfluous
second order tangency conditions renders extremely intricate the construction of the
correponding approximate solutions.

Consider the second order differential inclusion

X ′′(t) ∈ F (X(t), X ′(t)) + f(t, X(t), X ′(t)) (5.1)

where F : K×L → Rn is a multifunction with nonempty values, f : [a, b)×K×L →
Rn is a function, K ⊆ Rn and L ⊆ Rn are nonempty sets, and [a, b) is a nonempty,
possibly unbounded interval.

The existence condition for the differential inclusion (5.1) states that

for every x ∈ K, for every y ∈ L, and for every τ ∈ [a, b) there
exist a subinterval [τ, υ) of [a, b) and a solution X : [τ, υ) → Rn

to the second order differential inclusion (5.1) such that X(τ) = x
and X ′(τ) = y.

(5.2)
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In the literature, there are many results which establish existence of solutions to
the first order differential inclusion

Y ′(t) ∈ Ω(Y (t)) + ω(t, Y (t))

in case ω : [a, b) × L → Rn is a special Carathéodory function and Ω : L → Rn

is a special upper semicontinuous multifunction with compact, but not necessarily
convex values. In this regard, the pioneering result is the one in [3, p. 73, Theorem],
where L = Rn. Each of these results provides a setting in which there is satisfied
the collective existence condition for the x-“collection” of first order differential
inclusions

Y ′(t) ∈ F (x, Y (t)) + f(t, x, Y (t)). (5.3)

This collective existence condition states that
for every x ∈ K, for every y ∈ L, and for every τ ∈ [a, b) there
exist a subinterval [τ, υ) of [a, b) and a solution Y : [τ, υ) → Rn to
the first order differential inclusion (5.3) such that Y (τ) = y.

(5.4)

The result of this section shows that the confluence tangency condition (1.5) and
the collective existence condition (5.4) implies the existence condition (5.2). Such a
result does hold if the Carathéodory function f is a special function in that (cf. [3,
p. 72, iii)])

for every x ∈ K, for every y ∈ L, and for every τ ∈ [a, b) there exist
a neighborhood U of x, a neighborhood V of y, a subinterval [τ, υ)
of [a, b), and a locally integrable function m : [τ, υ) → R such that
supu∈U∩K,v∈V ∩L ‖f(t, u, v)‖ ≤

√
m(t) for almost all t ∈ [τ, υ),

(5.5)

whereas the upper semicontinuous multifunction F with compact, but not neces-
sarily convex values is a special multifunction in that (cf. [3, p. 72, ii)])

for every x ∈ K and for every y ∈ L there exist a neighborhood U
of x, a convex, open neighborhood V of y, and a convex function
V : V → R such that F (x, y) ⊆ ∂V(y) for all for all x ∈ U ∩K and
for all y ∈ V ∩ L.

(5.6)

Here, ∂V(y) stands for the convex subdifferential of V at the point y. Recall

∂V(y) = {z ∈ Rn;∀ỹ ∈ V,V(y) + 〈z, ỹ − y〉 ≤ V(ỹ)}

where 〈·, ·〉 stands for the scalar product on Rn.

Theorem 5.1. Let the sets K and L be locally closed, let the Carathéodory function
f satisfy the condition (5.5), and let the compact valued, upper semicontinuous
multifunction G satisfy the condition (5.6). Let the confluence tangency condition
(1.5) and the collective existence condition (5.4) be satisfied. Then the existence
condition (5.2) is satisfied too.

To prove the theorem, we first note that the multifunction G(t, x, y) = F (x, y)+
f(t, x, y) satisfies the hypotheses of Theorem 4.2.

Now, let x ∈ K, y ∈ L, and τ ∈ [a, b).
Further, let Ũ , Ṽ , and V be the items provided by the condition (5.6). Further,

let U , V , [τ, υ), and m : [τ, υ) be the items provided by the condition (5.5). We
can suppose, taking smaller U and V if necessary, that U ⊆ Ũ and V ⊆ Ṽ . Since
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F is compact valued it follows ‖F (x, y)‖ < +∞. Since F is upper semicontinuous
at (x, y), we can suppose, taking smaller U and V if necessary, that

M = sup
u∈U∩K,v∈V ∩L

‖F (u, v)‖ < +∞.

Since K and L are locally closed, we can suppose, taking smaller U and V if
necessary, that U ∩ K and V ∩ L are compact. In view of Theorem 4.2, we can
suppose, taking a smaller υ if necessary, that there holds the approximate existence
condition (4.3).

Now, let εj > 0 be a sequence which converges to 0 and, for every j ≥ 1, let
φj ∈ Φ such that φj(t)−t ≤ εj for all t ∈ [τ, υ), so that φj(t) converges to t uniformly
on [τ, υ). Further, let (Xj , Yj) : [τ, υ) → R2n be a solution to the φj-differential
system

X ′
j(t) = Yj(t),

Y ′
j (t) ∈ F (Xj(φj(t)), Yj(t)) + f(t, Xj(φj(t)), Yj(t)),

such that (Xj , Yj)(τ) = (x, y), Xj([τ, υ)) ⊆ U ∩K and Yj([τ, υ)) ⊆ V ∩ L.
Since ‖Y ′

j (t)‖ ≤ M +
√

m(t) for almost all t ∈ [τ, υ), it follows there exists a
subsequence still denoted by Yj and an absolutely continuous function Y : [τ, υ) →
Rn such that Yj converges uniformly to Y , whereas Y ′

j converges to Y ′ in the
weak topology of L2([τ, υ)). Let X(t) = x +

∫ t

τ
Y (s)ds for all t ∈ [τ, υ), so that

X ′(t) = Y (t) and X(τ) = x. We shall show that

Y ′(t) ∈ F (X(t), Y (t)) + f(t, X(t), Y (t))

almost everywhere. Let Z(t) = Y ′(t)− f(t, X(t), Y (t)). We have to show that

Z(t) ∈ F (X(t), Y (t))

almost everywhere. Let Zj(t) = Y ′
j (t)− f(t, Xj(φj(t)), Yj(t)) and note

Zj(t) ∈ F (Xj(φj(t)), Yj(t)).

Since Zj(t) ∈ ∂V(Yj(t)) for all j, it follows Z(t) ∈ ∂V(Y (t)). Further,

(V ◦ Yj)′(t) = 〈Zj(t), Y ′
j (t)〉,

(V ◦ Y )′(t) = 〈Z(t), Y ′(t)〉;
therefore,

V(Yj(υ))− V(y) =
∫ υ

τ

‖Y ′
j (t)‖2ds−

∫ υ

τ

〈f(t, Xj(φj(t)), Yj(t)), Y ′
j (t)〉dt,

V(Y (υ))− V(y) =
∫ υ

τ

‖Y ′(t)‖2ds−
∫ υ

τ

〈f(t,X(t), Y (t)), Y ′(t)〉dt.

Since f(·, Xj(φj(·)), Yj(·)) converges to f(·, X(·), Y (·)) strongly in L2([τ, υ)), it fol-
lows

lim
j→+∞

∫ υ

τ

〈f(t, Xj(φj(t)), Yj(t)), Y ′
j (t)〉dt =

∫ υ

τ

〈f(t, X(t), Y (t)), Y ′(t)〉dt.

Further
lim

j→+∞
V(Yj(υ)) = V(Y (υ)),

hence

lim
j→∞

∫ υ

τ

‖Y ′
j (t)‖2ds =

∫ υ

τ

‖Y ′(t)‖2ds,
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and Y ′
j converges to Y ′ strongly in L2([τ, υ)). Then there exists a subsequence still

denoted by Yj such that Y ′
j (t) converges to Y ′(t) almost everywhere, so that Zj(t)

converges to Z(t) almost everywhere. Since the restriction of F to (U∩K)×(V ×K)
is closed and since (Zj(t), Xj(φj(t)), Yj(t)) belongs to graph(F ) for all j, it follows
also (Z(t), X(t), Y (t)) belongs to graph(F ), and the theorem is proved.

6. Dependent choices and saturated solutions

In this final section we show that by using the axiom of dependent choices, a
weaker form of the axiom of choice, it can be proved existence of saturated solutions
in an abstract setting which is free of any topological feature, but is suitable for
any differential equation theory (see [8, p. 382, Lemma 16], [17, p. 288], and [18,
p. 76], where the source result in [7, p. 356, Corollary 1] is adapted).

Let M be an abstract space, let [a, b) ⊆ R be a nonempty, possibly unbounded
interval, and let Ξ be a family of functions ξ : [τ, υ) → M defined on subintervals
[τ, υ) of [a, b).

In the following we restrict the usual notion of function extension. We say that
a function ξ̃ : [τ̃ , υ̃) → M extends a function ξ : [τ, υ) → M if [τ, υ) ⊆ [τ̃ , υ̃), if ξ

equals the restriction of ξ̃ to [τ, υ), and moreover, if τ̃ = τ .
Assume that for every sequence of functions ξj : [τ, υj) → M in Ξ such that each

ξj+1 extends ξj there exists a function ξ : [τ, υ) → M in Ξ such that ξ extends
each ξj . In this case we say that Ξ is a family of solutions and the functions
ξ : [τ, υ) → M in Ξ are solutions. Finally, we say that a solution is saturated if it is
not extended by any other solution.

Theorem 6.1. Every solution is extended by a saturated solution.

To prove the theorem, for every solution ξ : [τ, υ) → M , we consider the family
of its extending solutions ξ̃ : [τ, υ̃) → M , we note ξ belongs to this family, and
we denote by Υ(ξ) the supremum of the corresponding family of υ̃’s. Clearly, υ ≤
Υ(ξ) ≤ b, and moreover, ξ is saturated if and only if υ = Υ(ξ). Note parenthetically
that, if a solution ξ̃ : [τ, υ̃) → M extends a solution ξ : [τ, υ) → M , then υ ≤ υ̃ ≤
Υ(ξ̃) ≤ Υ(ξ).

Now, let ξ : [τ, υ) → M be a solution. We have to show that there exists an
extending solution ξ̃ : [τ, υ̃) → M such that υ̃ = Υ(ξ̃).

Assume first that υ = b. Then υ = Υ(ξ), hence ξ is saturated, and the conclusion
follows.

Assume further that both υ < b and Υ(ξ̃) = b for all solutions ξ̃ extending ξ.
Consider a strictly increasing sequence bj in (υ, b) which converges to b (recall b
may equal +∞). In view of the definition of Υ and using the axiom of dependent
choices, we get a sequence of solutions ξj : [τ, υj) → M such that ξ1 extends ξ and
b1 < υ1, and such that each ξj+1 extends ξj and bj+1 < υj+1. Let ξ̃ : [τ, υ̃) → M

be a solution extending all ξj . Then υ̃ = b and υ̃ = Υ(ξ̃), hence ξ̃ is saturated, and
the conclusion follows.

Assume finally that both υ < b and Υ(ξ̃) < b for some solutions ξ̃ extending ξ.
In view of the definition of Υ and using the axiom of dependent choices, we get
a sequence of solutions ξj : [τ, υj) → M such that ξ1 extends ξ and Υ(ξ1) < b,
and such that each ξj+1 extends ξj and (1/2)(υj + Υ(ξj)) ≤ υj+1 ≤ Υ(ξj). Since
Υ(ξj+1)−υj+1 ≤ Υ(ξj)−υj+1 ≤ (1/2)(Υ(ξj)−υj), it follows the increasing sequence
υj and the decreasing sequence Υ(ξj) have the same limit. Let ξ̃ : [τ, υ̃) → M be a
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solution extending all ξj . Since υj ≤ υ̃ ≤ Υ(ξ̃) ≤ Υ(ξj) for all j, it follows υ̃ = Υ(ξ̃),
hence ξ̃ is saturated, and the proof of the theorem is accomplished.
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