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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR
FOURTH-ORDER BOUNDARY-VALUE PROBLEMS

IN BANACH SPACES

YUJUN CUI, YUMEI ZOU

Abstract. This article concerns the fourth-order boundary-value problem

x(4)(t) = f(t, x(t), x′′(t)), t ∈ (0, 1),

x(0) = x(1) = x′′(0) = x′′(1) = θ,

in a Banach space. We present some spectral conditions, on the nonlinearity
f(t, u, v), to guarantee the existence and uniqueness of solutions. Our method

is different from the one used in the references, even the above problem in a

scalar space.

1. Introduction

In this paper, we consider the existence and uniqueness of solutions for the
fourth-order boundary-value problem in a Banach space E:

x(4)(t) = f(t, x(t), x′′(t)), t ∈ (0, 1),

x(0) = x(1) = x′′(0) = x′′(1) = θ,
(1.1)

where f : J ×E×E → E is continuous, J = [0, 1], θ is the zero element of E. This
problem models deformations of an elastic beam in equilibrium state, whose two
ends are simply supported. Due to its importance in physics, this problem has been
studied by many authors using Schauder’s fixed point theorem and Leray-Schauder
degree theory (see [1, 2, 3, 4] and references therein). In [1], Aftabizadeh showed the
existence of a solution to (1.1) under the restriction that f is a bounded function.
In [2, Theorem 1], Yang extended Aftabizadeh’s result and showed existence under
the growth condition

|f(t, u, v)| ≤ a|u|+ b|v|+ c, (1.2)

where a, b and c are positive constants such that a
π4 + b

π2 < 1.
However, the above-mentioned references consider (1.1) only in scalar space. On

the other hand, the theory of ordinary differential equations in abstract spaces
is becoming an important branch of mathematics in last thirty years because of
its application in partial differential equations and ODEs in appropriately infinite
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dimensional spaces (see, for example [5, 6, 7]). As a result the goal of this paper is
to fill up the gap in this area; that is, to investigate the existence and uniqueness
of solutions of (1.1) in a Banach space E.

The goal of this paper is to introduce a new method to investigate the existence
of solutions for (1.1) when f satisfies the growth condition (1.2). To do this, we
transform (1.1) into a second-order integro-differential equation. Then we construct
a particular nonempty closed convex set and apply the Mönch fixed-point theorem
to obtain existence results for (1.1).

The technique used in this paper includes the well-known Gelfand’s formula, a
bounded closed convex set, and Mönch fixed-point theorem.

This paper is organized as follows. Section 2 gives some preliminaries. Section
3 is devoted to the existence results of (1.1) and their proofs. Section 4 is devoted
to the uniqueness results (1.1) and their proofs.

2. Preliminaries

Let E be a real Banach space with norm ‖ · ‖. Evidently, C[J,E] is a Banach
space with norm ‖x‖C = maxt∈J ‖x(t)‖.

A function x is said to be a solution of (1.1) if x ∈ C2[J,E] ∩ C4[(0, 1), E] and
satisfies (1.1).

For a bounded set V in a Banach space, we denote α(V ) the Kuratowski measure
of noncompactness (see [5, 6, 7], for further understanding). In the paper, we will
denote α(·) and αC(·) the Kuratowski measure of noncompactness of a bounded
subset in E and in C[I, E], respectively.

Next, we list four lemmas which will be used in Section 3.

Lemma 2.1. Let V ⊂ C[J,E] be bounded and equicontinuous on J . Then α(V (t))
is continuous on I and

αC(V ) = max
t∈J

α(V (t)), α
({∫

J

x(t)dt : x ∈ V
})

≤
∫

J

α(V (t))dt.

where V (t) = {x(t) : x ∈ V }.

Lemma 2.2. Let H be a set of countable strongly measurable functions x : J → E.
Assume, in addition, there exists M ∈ L[J,R+], for any x ∈ H, such that ‖x(t)‖ ≤
M(t), a.e. t ∈ J , holds. Then α(H(t)) ∈ L[J,R+], moreover,

α
({∫

J

x(t)dt : x ∈ H
})

≤ 2
∫

J

α(H(t))dt.

Lemma 2.3. Mönch fixed-point theorem. Let Q be a closed convex set of E and
u ∈ Q. Assume that the continuous operator F : Q→ Q has the following property:
V ⊂ Q countable, V ⊂ co({u} ∪ F (V )) =⇒ V is relatively compact. Then F has a
fixed point in Q.

Lemma 2.4 ([8]). Let P be a cone of a real Banach space E and B: P → P a
completely continuous operator. Assume that B is order-preserving and positively
homogeneous of degree 1 and that there exist v ∈ P \{θ}, λ > 0 such that Bv ≥ λv.
Then r(B) ≥ λ, where r(B) denotes the spectral radius of B.
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3. Existence Results

For convenience, let us list some conditions to be used later.

(H1) f ∈ C[J × E × E,E]. Assume that there exist a, b ∈ (0,+∞), L(t) ∈
C[J, [0,+∞)] such that

‖f(t, x, y)‖ ≤ a‖x‖+ b‖y‖+ L(t), ∀ (t, x, y) ∈ J × E × E,
a

π4
+

b

π2
< 1.

(H2) For any bounded sets A,B ⊂ E, f is uniformly continuous on I × A × B.
Assume that there exist c, d ∈ [0,+∞) such that

α(f(t, A,B)) ≤ cα(A) + dα(B), ∀ t ∈ J, c

π4
+

d

π2
< 1.

(H2’) There exist c, d ∈ [0,+∞) such that

α(f(t, A,B)) ≤ cα(A) + dα(B), ∀ t ∈ J, 4c
π4

+
2d
π2

< 1.

Now let G(t, s) be the Green’s function of the linear problem ϕ′′ = 0, t ∈ (0, 1)
together with ϕ(0) = ϕ(1) = 0, which is explicitly given by

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1.

Set

(Tx)(t) =
∫ 1

0

G(t, s)x(s)ds, t ∈ J, x ∈ C[I, E].

Obviously, T : C[J,E] → C[J,E] is continuous. Let u = x′′. Since x(0) = x(1) = θ,
we have

x(t) = (Tu)(t) =
∫ 1

0

G(t, s)u(s)ds. (3.1)

Using the above transformation and (3.1), Problem (1.1) becomes

u′′(t) = f(t, (Tu)(t), u(t)), (3.2)

u(0) = u(1) = θ. (3.3)

From these two equalities, we have

u(t) =
∫ 1

0

G(t, s)f(s, (Tu)(s), u(s))ds.

Now, define an operator A on C[J,E] by

(Au)(t) =
∫ 1

0

G(t, s)f(s,
∫ 1

0

G(s, τ)u(τ)dτ, u(s))ds.

The following Lemma can be easily obtained.

Lemma 3.1. Assume that (H1) holds. Then A : C[J,E] → C2[J,E] and

(i) A : C[J,E] → C2[J,E] is continuous and bounded;
(ii) Problem (1.1) has a solution in C2[J,E] if and only if A has a fixed point

in C[J,E].
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Let

(Kϕ)(t) =
∫ 1

0

G(t, s)ϕ(s)ds, ∀ϕ ∈ C[J,R],

Bϕ = aK2ϕ+ bKϕ, a, b > 0, ∀ϕ ∈ C[J,R].

It is easy to see that K,B : C[J,R] → C[J,R] are two continuous linear positive
operators and r(K) = 1

π2 .

Lemma 3.2. Assume that (H1) holds. Then there exists a norm ‖ · ‖∗C[J] which
is equivalent with norm ‖ · ‖C[J](‖y‖C[J] = maxt∈J |y(t)|, y ∈ C[J,R]) and has the
following properties:

(i) ‖By‖∗C[J] ≤
r(B)+1

2 ‖y‖∗C[J], for all y ∈ C[J,R].
(ii) ‖ϕ‖∗C[J] ≤ ‖ψ‖∗C[J] for any ϕ,ψ ∈ C[J,R] with 0 ≤ ϕ(t) ≤ ψ(t), for all

t ∈ J .

Proof. Since r(K) = 1/π2, we have r(B) = a
π4 + b

π2 < 1. Set

ε =
1
2
(1− r(B)).

Since r(B) < 1, by Gelfand’s formula, we have that there exists a natural number
N such that for n ≥ N ,

‖Bn‖ ≤ [r(B) + ε]n = [
r(B) + 1

2
]n.

For every y ∈ C[J,R], define

‖y‖∗C[J] =
N∑

i=1

[
r(B) + 1

2
]N−i‖Bi−1y‖C[J], (3.4)

where T 0
1 = I is the identity operator. By (3.4), It is easy to see that

[
r(B) + 1

2
]N‖y‖C[J] ≤ ‖y‖∗C[J] ≤

N∑
i=1

[
r(B) + 1

2
]N−i‖Bi−1‖ · ‖y‖C[J],

which implies ‖ · ‖∗C[J] is a norm in C[J,R] and equivalent to the norm ‖ · ‖C[J]. For
any y ∈ C[J,R], we have

‖By‖∗C[J] =
N∑

i=1

[
r(B) + 1

2
]N−i‖Biy‖C[J]

=
r(B) + 1

2

N−1∑
i=1

[
r(B) + 1

2
]N−i−1‖Biy‖C[J] + ‖BNy‖C[J]

≤ r(B) + 1
2

N−1∑
i=1

[
r(B) + 1

2
]N−i−1‖Biy‖C[J] + [

r(B) + 1
2

]N‖y‖C[J]

=
r(B) + 1

2

N∑
i=1

[
r(B) + 1

2
]N−i‖Bi−1y‖C[J] =

r(B) + 1
2

‖y‖∗C[J].

Therefore, (i) holds. The result (ii) is easily obtained by the positivity of the
operator B and the monotonicity of the norm ‖ · ‖C[J]. �

The following theorem is our main result.
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Theorem 3.3. Assume that (H1), (H2) hold. Then (1.1) has at least one solution.

Proof. Set

M =
∫ 1

0

s(1− s)L(s)ds.

It is clear that M < +∞. Select

R1 > max{1, 2π4M∗

π4 − a− bπ2
},

where M∗ = ‖M‖∗C[J]. Let

W = {x ∈ C[J,E] : ‖y(t)‖∗C[J] ≤ R1, y(t) = ‖x(t)‖}.

It is clear that W is a bounded closed convex set in C[J,E].
Now we show that AW ⊂ W . For any x ∈ W , set y(t) = ‖x(t)‖, then it follows

from (H1) that

‖Ax(t)‖

=
∥∥∫ 1

0

G(t, s)f(s,
∫ 1

0

G(s, τ)u(τ)dτ, u(s))ds
∥∥

≤
∫ 1

0

G(t, s)
[
a
∥∥∫ 1

0

G(s, τ)u(τ)dτ
∥∥ + b‖u(s)‖+ L(s)

]
ds

≤ a

∫ 1

0

G(t, s)
∫ 1

0

G(s, τ)‖u(τ)‖dτds+ b

∫ 1

0

G(t, s)‖u(s)‖ds+
∫ 1

0

s(1− s)L(s)ds

≤ (By)(t) +M.

Consequently, by Lemma 3.2, we have

‖‖Ax‖‖∗C[J] ≤ ‖By +M‖∗C[J]

≤ ‖By‖∗C[J] +M∗

≤ r(B) + 1
2

‖y‖∗C[J] +M∗

≤ 1 + r(B)
2

R4 +
1− r(B)

2
R1 = R1.

Hence we obtain Ax ∈W for any x ∈W .
We have by Lemma 3.1 that A is a continuous operator from W into W . It is

easily seen that seeking a solution of (1.1) in C2[J,E] ∩ C4[(0, 1), E] is equivalent
to finding a fixed point of operator A in C[J,E]. Thus, our results are established
if we can prove the existence of a fixed point of A in C[J,E].

Let V ⊂W be a countable set with

V ⊂ co{{u} ∪AV }, u ∈W, (3.5)

in which AV = {Ax : x ∈ V }. Now we show that V is relatively compact in C[J,E].
In fact, we have by (3.5) that αC(V ) ≤ αC(AV ). Also, it is easy to see that AV is
a class of equicontinuous functions on J , hence V is also a class of equicontinuous
functions on J and V (t) ⊂ co({u(t)}∪ (AV )(t)) [9]. This together with Lemma 2.1
yields

αC(V ) = max
t∈J

α(V (t)), αC(AV ) = max
t∈J

α((AV )(t)), α(V (t)) ≤ α((AV )(t)),

(3.6)
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where (AV )(t) = {x(t) : x ∈ AV }. We now estimate α(V (t)). We have by the
definition of A and Lemma 2.1,

α(V (t)) ≤ α((AV )(t))

= α({
∫ 1

0

G(t, s)f(s,
∫ 1

0

G(s, τ)x(τ)dτ, x(s))ds : x ∈ V })

≤
∫ 1

0

G(t, s)α({f(s,
∫ 1

0

G(s, τ)x(τ)dτ, x(s)) : x ∈ V })ds

≤ c

∫ 1

0

G(t, s)α({
∫ 1

0

G(s, τ)x(τ)dτ : x ∈ V }ds) + d

∫ 1

0

G(t, s)α(V (s))ds

≤ c

∫ 1

0

G(t, s)
∫ 1

0

G(s, τ)α(V (τ))dτds+ d

∫ 1

0

G(t, s)α(V (s))ds

= (cK2 + dK)α(V (t)).

If α(V (t)) 6≡ 0 for some t ∈ J , then by Lemma 2.4, we have r(cK2+dK) ≥ 1, which
is a contradiction with r(cK2 + dK) = c

π4 + d
π2 < 1. So α(V (t)) ≡ 0 for ∀ t ∈ J ,

which implies that V is relatively compact in C[J,E]. Consequently, Lemma 2.3
guarantees that A has at least one fixed point in W . The proof of the theorem is
completed. �

Theorem 3.4. Assume that (H1), (H2’) hold, then (1.1) has at least one solution.

Proof. The proof is similar to that of Theorem 3.3. The difference is that we use
Lemma 2.2, instead of Lemma 2.1, to prove α(V (t)) ≡ 0, for all t ∈ I; for example,

α(V (t)) ≤ α((AV )(t)) = α({
∫ 1

0

G(t, s)f(s,
∫ 1

0

G(s, τ)x(τ)dτ, x(s))ds : x ∈ V })

≤ 2
∫ 1

0

G(t, s)α({f(s,
∫ 1

0

G(s, τ)x(τ)dτ, x(s)) : x ∈ V })ds

≤ 2c
∫ 1

0

G(t, s)α({
∫ 1

0

G(s, τ)x(τ)dτ : x ∈ V }ds+ 2d
∫ 1

0

G(t, s)α(V (s))ds

≤ 4c
∫ 1

0

G(t, s)
∫ 1

0

G(s, τ)α(V (τ))dτds+ 2d
∫ 1

0

G(t, s)α(V (s))ds

= (4cK2 + 2dK)α(V (t)).

�

4. Uniqueness Results

Theorem 4.1. f ∈ C[J ×E ×E,E]. Assume that there exist α, β ∈ (0,+∞) such
that

‖f(t, u1, v1)− f(t, u2, v2)‖ ≤ α‖u1 − u2‖+ β‖v1 − v2‖, ∀ t ∈ J, u1, v1, u2, v2 ∈ E,

and
α

π4
+

β

π2
< 1.

Then (1.1) has a unique solution.
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Proof. From Lemma 3.1, to prove (1.1) has a unique solution, we have only to show
that A has a unique fixed point in C[I, E]. For x(t), y(t) ∈ C[I, E], we have

‖(Anx)(t)− (Any)(t)‖

=
∥∥∥∫ 1

0

G(t, s)
[
f(s,

∫ 1

0

G(s, τ)(An−1x)(τ)dτ, (An−1x)(s))

− f(s,
∫ 1

0

G(s, τ)(An−1y)(τ)dτ, (An−1y)(s))
]
ds

∥∥∥
≤

∫ 1

0

G(t, s)
[
α

∫ 1

0

G(s, τ)‖(An−1x)(τ)

− (An−1y)(τ)‖dτ + β‖(An−1x)(τ)− (An−1y)‖
]
ds

= (αK2 + βK)(‖(An−1x)(s)− (An−1y)(s)‖)
:= B1(‖(An−1x)(s)− (An−1y)(s)‖).

By induction, we have

‖(Anx)(t)− (Any)(t)‖ ≤ Bn
1 (‖x(s)− y(s)‖) ≤ ‖Bn

1 ‖‖x− y‖C .

Thus ‖Anx−Any‖C ≤ ‖Bn
1 ‖‖x− y‖C .

Since r(K) = 1/π2, We have r(B1) = α
π4 + β

π2 < 1. Set ε = 1
2 (1 − r(B1)). By

Gelfand’s formula, we have that there exists a natural number N1 such that

‖BN1
1 ‖ ≤ [r(B1) + ε]N1 = [

r(B1) + 1
2

]N1 < 1.

Thus the Banach contraction mapping principle implies AN1 has a unique fixed
point x∗ in C[I, E], and so A has a unique fixed point x∗ in C[I, E]. Therefore,
x(t) =

∫ 1

0
G(t, s)x∗(s)ds is the unique solution of (1.1). �
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