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ASYMPTOTIC BEHAVIOR OF SOLUTIONS ON A THIN
PLASTIC PLATE

ABDELAZIZ AIT MOUSSA, JAMAL MESSAHO

Abstract. In the present work, we study the asymptotic behavior of solutions

to a plasticity problem in a containing structure, a thin plastic plate of thick-
ness that tends to zero. To find the limit problems with interface conditions

we use the epiconvergence method.

1. Introduction

The study of the inclusion between two elastic bodies involves introducing a very
thin third body between them. A very similar situation occurs when taking into
account the effects of a thin layer which has been bonded onto the surface of a
body to prevent wear caused by the contact with another solid. It is, therefore
of interest to study the asymptotic behavior of thin layer between the two bodies,
assuming various contact laws between them. In the case of a thin plate, the thermal
conductivity problems were treated by Brillard et al and Sanchez-Palencia et al in
[8, 15]. The elasticity problems, linear and nonlinear case, were widely studied by
Ait Moussa et al, Ait moussa, Brillard et al, Geymonat et al and Lenci et al in
[2, 3, 12, 13, 14]. In the case of an oscillating layer, we have treated the scalar
case for a thermal conductivity problem in Messaho et al in [5]. In the present
work, we consider a structure containing a thin plastic plate of thickness depending
on a parameter ε intended to tend towards 0. The aim of this work is to study
the asymptotic behavior of the solution of a plasticity problem posed on a such
structure.

This paper is organized in the following way. In section 2, we express the problem
to study, and we give some notation and we define functional spaces for this study
in the section 3. In the section 4, we study the problem (4.1). The section 5 is
reserved to the determination of the limits problems and our main result.

2. Statement of the problem

We consider a structure constituted of two linear elastics bodies, joined together
by a thin plastic plate of thickness ε, the latter obeys to a nonlinear plastic law of
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power type. More precisely the stress field is related to the displacement’s field by

σε = λ|e(uε)|−1e(uε), λ > 0.

The structure occupies the regular domain Ω = Bε ∪ Ωε, where Bε is given by
Bε = {x = (x′, x3)/|x3| < ε

2}, and Ωε = Ω \ Bε represent the regions occupied by
the thin plate and the two elastic bodies (see figure 1). ε being a positive parameter
intended to approach 0.

Figure 1. The domain Ω.

The structure is subjected to a density of forces of volume f , f : Ω → R3, and it is
fixed on the boundary ∂Ω. Equations which relate the stress field σε, σε : Ω → R9

S ,
and the field of displacement uε, uε : Ω → R3 are

div σε + f = 0 in Ω,

σε
ij = aijkhekh(uε) in Ωε,

σε = λ|e(uε)|−1e(uε) in Bε,

uε = 0 on ∂Ω.

(2.1)
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Where aijkh are the elasticity coefficients and R9
S the vector space of the square

symmetrical matrices of order three. eij(u) are the components of the linearized
tensor of deformation e(u). In the sequel, we assume that the elasticity coefficients
aijkh satisfy to the following hypotheses:

aijkh ∈ L∞(Ω), (2.2)

aijkh = ajikh = akhij , (2.3)

aijkhτijτkh ≥ Cτijτij , ∀τ ∈ R9
S . (2.4)

3. Notation and functional setting

Here is the notation that will be used in the sequel:
x = (x′, x3) where x′ = (x1, x2), τ ⊗ ζ = (τiζj)1≤i,j≤3 and τ ⊗S ζ = τ⊗ζ+ζ⊗τ

2 for
all τ, ζ ∈ R3.

In the following C will denote any constant with respect to ε. Also, we use the
convention 0.(+∞) = 0.

Functional setting. First, we introduce the space

V ε =
{
u ∈ L1(Ω, R3) : e(u) ∈ L2(Ωε, R9

S), u ∈ BD(Bε),

[u]ε = 0 in Σ±ε and u = 0 in ∂Ω
}
,

where [u]ε is the jump of u on Σ±ε defined by

[u]ε = ±u|
Ω±ε

∓ u|
B
±
ε

,

BD(Bε) =
{
u ∈ L1(Ω, R3) : e(u) ∈ M1(Bε, R9

S)
}
,

BD0(Ω) =
{
u ∈ BD(Ω, R3) : u = 0 in ∂Ω

}
,

and M1(.) is a bounded measure space, for more information we can refer the reader
to [16]. We show easily that V ε is a Banach space with the norm

u → ‖e(u)‖L2(Ωε,R9
S) + ‖e(u)‖M1(Bε,R9

S).

Where

‖e(u)‖M1(Bε,R9
S) =

∫
Bε

|e(u)| = sup
τ∈C∞0 (Bε), |τ(x)|≤1.

〈
e(u), τ

〉
.

We remark that V ε ⊂ BD0(Ω).
Our goal in this work is to study the problem (2.1), and its limit behavior when

ε tends to zero.

4. Study of problem (2.1)

Problem (2.1) is equivalent to the minimization problem

inf
v∈V ε

{1
2

∫
Ωε

aijhkehk(v)eij(v)dx + λ

∫
Bε

|e(v)| −
∫

Ω

fvdx
}

(4.1)

To study problem (2.1), we will study the minimization problem (4.1). The exis-
tence and uniqueness of solutions to (4.1) is given in the following proposition.

Proposition 4.1. Under the hypotheses (2.2), (2.3), (2.4) and for f ∈ L∞(Ω, R3),
problem (4.1) admits an unique solution uε in V ε.
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Proof. From (2.2) and (2.4), we show easily that the energy functional in (4.1) is
weakly lower semicontinuous, strictly convex and coercive over V ε. Since V ε is not
reflexive, so we may not apply directly result given in Dacorogna [9, theorem 1.1
p.48], but we can follow our proof by using the compact imbedding of Sobolev for
the BD space, for more information we can refer the reader to [9]. Indeed, let un

be a minimizing sequence for (4.1), to simplify the writing let

Fε(u) =
1
2

∫
Ωε

aijhkehk(u)eij(u)dx + λ

∫
Bε

|e(u)| −
∫

Ω

fudx,

so, we have Fε(un) → inf
v∈V ε

Fε(v). Using the coercivity of Fε, we may then deduce

that there exists a constant C > 0, independent of n, such that

‖un‖V ε ≤ C,

according to the reflexivity of H1(Ωε) and using the given result in [16, p.158] for
BD(Bε), then for a subsequence of un, still denoted by un, there exists u0 ∈ V ε

such that un ⇀ u0 in V ε. The weak lower semi-continuity and the strict convexity
of Fε imply then the result. �

Lemma 4.1. Assuming that for any sequence (uε)ε>0 ⊂ V ε, there exists a constant
C > 0 such that Fε(uε) ≤ C, under (2.2), (2.4) and for f ∈ L∞(Ω, R3), (uε)ε>0

satisfies

‖e(uε)‖2L2(Ωε,R9
S) ≤ C, (4.2)

‖e(uε)‖M1(Bε,R9
S) ≤ C, (4.3)

moreover uε is bounded in BD0(Ω, R3).

Proof. Since Fε(uε) ≤ C, we have

1
2

∫
Ωε

aijhkehk(uε)eij(uε)dx + λ

∫
Bε

|e(uε)| −
∫

Ω

fuεdx ≤ C .

Then
1
2

∫
Ωε

aijhkehk(uε)eij(uε)dx + λ

∫
Bε

|e(uε)| ≤ C +
∫

Ω

fuεdx .

According to (2.4), Hölder and Young the inequalities, we have

‖e(uε)‖2L2(Ωε,R9
S) +

∫
Bε

|e(uε)| ≤ C + C

∫
Ω

fuεdx,

≤ C + C‖e(uε)‖L2(Ωε,R9
S) +

∫
Bε

fuεdx,

since BD(Ω) ↪→ Lq(Ω, R3) for all q ∈ [1, 3
2 ], (with a continuous imbedding, see for

example [16]). In particular BD(Ω) ↪→ Lq0(Ω, R3) with 1 < q0 ≤ 3
2 , according to

the Hölder inequality, we then have∫
Bε

fuε ≤ ‖f‖
Lq′0 (Bε,R3)

‖uε‖Lq0 (Bε ,R3),

≤ Cε1/q′0

∫
Ω

|e(uε)|,

≤ Cε1/q′0

(
‖e(uε)‖L2(Ωε,R9

S) +
∫

Bε

|e(uε)|
)
,
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so for ε <
(

1
1+C

)q′0 , let C̃ = C
1+C , we then have

‖e(uε)‖2L2(Ωε,R9
S) +

∫
Bε

|e(uε)| ≤ C + C‖e(uε)‖L2(Ωε,R9
S) + C̃

∫
Bε

|e(uε)|,

≤ C +
1
2
‖e(uε)‖2L2(Ωε,R9

S) + C̃

∫
Bε

|e(uε)|,

so that
1
2
‖e(uε)‖2L2(Ωε,R9

S) + (1− C̃)
∫

Bε

|e(uε)| ≤ C.

Therefore, we will have (4.2) and (4.3). According to (4.2) and (4.3) and for a small
enough ε the sequence (uε) is bounded in BD0(Ω, R3). �

Remark 4.2. The solution uε of the problem (4.1) satisfy to the lemma 4.1.

To apply the epiconvergence method, we need to characterize the topological
spaces containing any cluster point of the solution of the problem (4.1) with respect
to the used topology, therefore the weak topology to use is insured by the lemma
4.1. So the topological spaces characterization is given in the following proposition.

Proposition 4.3. The solution uε of the problem (4.1) possess a cluster point u∗

in BD0(Ω) ∩H1(Ω \ Σ, R3) with respect to the weak topology of BD0(Ω).

Proof. According to the remark 4.2 and lemma 4.1, for a small enough ε, uε is
bounded in BD0(Ω), so for a subsequences of uε, still denoted by uε, there exists
u∗ ∈ BD0(Ω), (see [16, p. 158]), such that

uε ⇀ u∗in BD0(Ω, R3), (4.4)

so that
lim
ε→0

∫
Ω

ve(uε) =
∫

Ω

ve(u∗), ∀v ∈ C∞0 (Ω, R9
S). (4.5)

For ε a small enough, let η > 0 and Ωη =
{
x ∈ Ω : |x3| > η

}
, such that ε < η.

From (4.2), we then have
‖e(uε)‖2L2(Ωη,R9

S) ≤ C,

Therefore, e(uε) is bounded in L2(Ωη, R9
S), so for a subsequence of e(uε), still

denoted by e(uε), there exists w ∈ L2(Ωη, R9
S), such that

e(uε) ⇀ w in L2(Ωη, R9
S),

according (4.4) and (4.5) remains true in C∞0 (Ωη, R9
S), we then deduce e(u∗) = w,

hence e(u∗) ∈ L2(Ωη, R9
S) for all η > 0, so by passing to the limit (η → 0), we then

have e(u∗) ∈ L2(Ω \ Σ, R9
S). According to the classical result [16, proposition 1.2,

p. 16], we have u∗ ∈ H1(Ω \ Σ, R3). �

In the following, let

H1
0 =

{
u ∈ H1(Ω \ Σ, R3) : u = 0 on ∂Ω

}
.

C∞0 =
{
u ∈ C∞(Ω \ Σ, R3) : u = 0 on ∂Ω

}
.

Remark 4.4. Proposition 4.3 remains valid for any weak cluster point u of a
sequence uε in V ε,that satisfies (4.2) and (4.3).

To study the limit behavior of the solution of the problem (4.1), we will use the
epiconvergence method, (see Annex, definition 6.1).



6 A. AIT MOUSSA, J. MESSAHO EJDE-2009/34

5. Limit behavior

Let

F ε(u) =


1
2

∫
Ωε

aijkhekh(u)eij(u)dx + λ

∫
Bε

|e(u)| if u ∈ V ε,

+∞ if u ∈ BD0(Ω) \ V ε.

G(u) = −
∫

Ω

fudx, ∀u ∈ BD0(Ω).

(5.1)

We design by τf the weak topology on the space BD0(Ω). In the sequel, we shall
characterize, the epi-limit of the energy functional given by (5.1) in the following
theorem.

Theorem 5.1. Under (2.2), (2.3), (2.4) and for f ∈ L∞(Ω, R3), there exists a
functional F : BD0(Ω) → R ∪ {+∞} such that

τf − limeF
ε=F in BD0(Ω),

where F is given by

F (u) =


1
2

∫
Ω

aijkhekh(u)eij(u) + λ

∫
Σ

|[u]⊗S e3| if u ∈ H1
0,

+∞ if u ∈ BD0(Ω) \H1
0.

Proof. (a) We are now in position to determine the upper epi-limit.
Let u ∈ H1

0 ⊂ BD0(Ω), so there exists a sequence (un) in C∞0 such that un → u in
H1

0when n → +∞, so un ⇀ u weakly in BD0(Ω). Let us consider the sequence

uε,n =


un(x′, x3) if |x3| > ε

2 ,

1
2

(
un(x′, ε

2 ) + un(x′,− ε
2 )

)
+x3

ε

(
un(x′, ε

2 )− un(x′,− ε
2 )

)
if |x3| < ε

2 .

We have uε,n ∈ V ε and we prove easily that uε,n ⇀ un in H1
0 when ε → 0. As

F ε(uε,n) =
1
2

∫
Ωε

aijkhekh(uε,n)eij(uε,n) + λ

∫
Bε

|e(uε,n)|.

It implies that

F ε(uε,n) =
1
2

∫
Ωε

aijkhekh(un)eij(un) + λ

∫
Bε

|e(uε,n)| =: S1 + S2.

So that
lim
ε→0

S1 =
1
2

∫
Ω

aijkhekh(un)eij(un).

we have
S2 = λ

∫
Bε

|e(uε,n)|, (5.2)

As in [3] we show that

lim
ε→0

∫
Bε

|e(uε,n)− 1
ε
[un]⊗S e3| = 0.

Consequently,

lim sup
ε→0

F ε(uε,n) =
1
2

∫
Ω

aijkhekh(un)eij(un) + λ

∫
Σ

|[un]⊗S e3|.
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Since un → u in H1
0 when n → +∞, therefore according to a classic result, diagonal-

ization’s lemma, (see, [6, Lemma 1.15 p. 32]), there exists a function n(ε) : R+ → N
increasing to +∞ when ε → 0 such that uε,n(ε) ⇀ u in H1

0 when ε → 0. and while
n → +∞, consequently we have

lim sup
ε→0

F ε(uε,n(ε)) ≤ lim sup
n→+∞

lim sup
ε→0

F ε(uε,n),

≤ 1
2

∫
Ω

aijkhekh(u)eij(u) + λ

∫
Σ

|[u]⊗S e3|.

For u ∈ BD0(Ω, R3) \H1
0, so for any sequence uε ⇀ u in BD0(Ω),we obtain

lim sup
ε→0

F ε(uε) ≤ +∞.

(b) We are now in position to determine the lower epi-limit. Let u ∈ H1
0 and

(uε) ⊂ V ε such that uε⇀u in BD0(Ω). If lim infε→0 F ε(uε) = +∞, there is nothing
to prove, because

1
2

∫
Ω

aijkhekh(u)eij(u) + λ

∫
Σ

|[u]⊗S e3| ≤ +∞.

otherwise, lim infε→0 F ε(uε) < +∞, there exists a subsequence of F ε(uε), still
denoted by F ε(uε) and a constant C > 0, such that F ε(uε) ≤ C, which implies
that

‖e(uε‖L2(Ωε,R9
S) ≤ C,∫

Bε

|e(uε)| ≤ C,

then χΩεe(u
ε) is bounded in L2(Ω, R9

S), so for a subsequence of χΩεe(u
ε), still

denoted by χΩε
e(uε), we then show easily, like in the proof of the above proposition,

that
χΩε

e(uε) ⇀ e(u) in L2(Ω, R9
S)) (5.3)

From the subdifferentiability’s inequality of u → 1
2

∫
Ωε

aijkhekh(u)eij(u), and pass-
ing to the lower limit, we obtain

lim inf
ε→0

1
2

∫
Ωε

aijkhekh(uε)eij(uε) ≥ 1
2

∫
Ω

aijkhekh(u)eij(u).

For η < ε/2, let us set
Bη =

{
x ∈ Ω : |x3| < η

}
.

According to the diagonalization’s lemma [6, Lemma 1.15 p. 32], there exists a
function η(ε) : R+ → R+ decreasing to 0 when ε → 0 such that

lim inf
ε→0

∫
Bη(ε)

|e(uε)| ≥ lim inf
η→0

lim inf
ε→0

∫
Bη

|e(uε)|. (5.4)

Since ∫
Bη

|e(uε)| ≥
∫

Bη

φ
(
e(uε)− e(u)

)
+

∫
Bη

φe(u), ∀φ ∈ C∞0 (Bη, R9
S),

it follows that

lim inf
ε→0

∫
Bη

|e(uε)| ≥
∫

Bη

φe(u), ∀φ ∈ C∞0 (Bη, R9
S).
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Therefore,

lim inf
ε→0

∫
Bη

|e(uε)| ≥
∫

Bη

|e(u)|.

According to a classic result [16, Lemma 2.2 p. 145]), we then have

lim inf
ε→0

∫
Bη

|e(uε)| ≥
∫

Bη

φe(u) +
∫

Σ

φ[u]⊗S e3dx′, ∀φ ∈ C∞0 (Ω, R9
S).

By passing to the limit, (η → 0), we have

lim inf
η→0

lim inf
ε→0

∫
Bη

|e(uε)| ≥
∫

Σ

|[u]⊗S e3|dx′.

According to the definition of Bη and (5.4), we deduce that

lim inf
ε→0

∫
Bε

|e(uε)| ≥
∫

Σ

|[u]⊗S e3|dx′.

Hence
lim inf

ε→0
F ε(uε) ≥ 1

2

∫
Ω

aijkhekh(u)eij(u) +
∫

Σ

|[u]⊗S e3|dx′.

For u ∈ BD0(Ω) \H1
0 and uε ∈ V ε, such that uε ⇀ u in BD0(Ω). Assume that

lim inf
ε→0

F ε(uε) < +∞.

So there exists a constant C > 0 and a subsequence of F ε(uε), still denoted by
F ε(uε), such that

F ε(uε) < C. (5.5)
So uε verifies the following evaluations (4.2) and (4.3), as uε ⇀ u in BD0(Ω), thanks
to the remark 4.4, we have u ∈ H1

0, what contradicts the fact that u ∈ BD0(Ω)\H1
0,

consequently we have
lim inf

ε→0
F ε(uε) = +∞.

Hence the proof is complete. �

In the sequel, we determine the limit problem linked to (4.1), when ε approaches
to zero. Thanks to the epi-convergence results, (see Annex, theorem 6.3, proposition
6.2) and the theorem 5.1, according to the τf -continuity of the functional G in
BD0(Ω), we have F ε + G τf -epiconverges to F + G in BD0(Ω).

Proposition 5.2. For any f ∈ L2(Ω, R3), there exists u∗ ∈ BD0(Ω) satisfying:
uε ⇀ u∗ in BD0(Ω) and

F (u∗) + G(u∗) = inf
v∈H1

0

{F (v) + G(v)}.

Proof. Thanks to lemma 4.1, the family (uε) ε is bounded in BD0(Ω), therefore it
possess a τf -cluster point u∗ in BD0(Ω). And thanks to a classical epi-convergence
result, theorem 6.3, it follows that u∗ is a solution of the problem: Find

inf
v∈BD0(Ω)

{
F (v) + G(v)

}
. (5.6)

Since F = +∞ on BD0(Ω) \H1
0, so (5.6) becomes

inf
v∈H1

0

{
F (v) + G(v)

}
.

According to the uniqueness of solutions of problem (5.6), so uε admits an unique
τf -cluster point u∗, and therefore uε ⇀ u∗ in BD0(Ω). �
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Conclusion. Using the epiconvergence method, we showed that the question of
finding the limit problem, composed of a classical linear elasticity problem posed
over Ω\Σ, contains an interface condition which depends on the displacement field
jump. We found the same result of Ait Moussa, with p = 1, in [4].

6. Annex

Definition 6.1 ([6, Definition 1.9]). Let (X, τ) be a metric space and (F ε)ε and F
be functionals defined on X and with value in R∪{+∞}. F ε epi-converges to F in
(X, τ), noted τ − limeF

ε = F , if the following assertions are satisfied

• For all x ∈ X, there exists x0
ε, x0

ε
τ→ x such that lim sup

ε→0
F ε(x0

ε) ≤ F (x).

• For all x ∈ X and all xε with xε
τ→ x, lim inf

ε→0
F ε(xε) ≥ F (x).

We have the following stability result for epi-convergence.

Proposition 6.2 ([6, p. 40]). Suppose that F ε epi-converges to F in (X, τ) and
that G : X → R ∪ {+∞}, is τ − continuous. Then F ε + G epi-converges to F + G
in (X, τ)

This epi-convergence is a special case of the Γ−convergence introduced by De
Giorgi (1979) [11]. It is well suited to the asymptotic analysis of sequences of
minimization problems since one has the following fundamental result.

Theorem 6.3 ([6, theorem 1.10]). Suppose that
(1) F ε admits a minimizer on X,
(2) The sequence (uε) is τ -relatively compact,
(3) The sequence F ε epi-converges to F in this topology τ .

Then every cluster point u of the sequence (uε) minimizes F on X and

lim
ε′→0

F ε′(uε′) = F (u),

where (uε′)ε′ denotes any subsequence of (uε)ε which converges to u.
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