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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO
CAUCHY-DIRICHLET PROBLEMS FOR SECOND-ORDER

HYPERBOLIC EQUATIONS IN CYLINDER WITH
NON-SMOOTH BASE

NGUYEN MANH HUNG, BUI TRONG KIM

Abstract. This paper concerns a Cauchy-Dirichlet problem for second-order

hyperbolic equations in infinite cylinders with the base containing conical
points. Some results on the asymptotical expansions of generalized solutions

of this problem are given.

1. Introduction

Boundary-value problems for partial differential equations and systems in do-
mains with smooth boundary have been nearly completely studied in the works [1,
2]. General boundary-value problems for elliptic equations and systems in domains
with conical points were considered by Kondratiev [6], Nazarov and Plamenevsky
[8]. The initial boundary-value problems for non-stationary equations and systems
on non-smooth domains have been studied by many authors [3, 4, 5, 7, 9]. The Neu-
mann problem for hyperbolic systems in domains with conical point was described
in [7] and the same problem for the classical heat equation in a dihedral angle was
investigated in [9]. The first initial boundary-value problems for strongly hyper-
bolic systems in an cylinder with conical point on the boundary of base have been
investigated in [3], where the problem was only investigated in the finite cylinder.

In this paper we consider a Cauchy-Dirichlet problem for second-order hyperbolic
equations in infinite cylinders with non-smooth base. First, we study the existence,
uniqueness and smoothness with respect to time variable of a generalized solution in
the Sobolev space by Galerkin’s approximate method. After that, we take the term
containing the derivative in time of the unknown function to the right-hand side of
the equation such that the problem can be considered as an elliptic one. We can
apply the results of elliptic boundary-value problems to deal with the asymptotic
of the solutions.

The main goal of this paper is obtaining asymptotical expansions of solutions
of the problem. In section 2 we introduce some notations and the formulation of
the problem. We receive results on the unique existence and the smoothness with
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respect to time variable of solutions in section 3 and the asymptotical expansions
of the solutions in section 4. Finally, in the last section we apply the results of
section 4 to the problems of mathematical physics.

2. Formulation of the problem

Let Ω be a bounded domain in Rn with the boundary ∂Ω. Set Ωt = Ω × (0, t)
for each t ∈ (0,∞), Ω∞ = Ω× (0,∞), St = ∂Ω× (0, t) and S∞ = ∂Ω× (0,∞).

We use the following notation: For each multi-index α = (α1, . . . .αn) ∈ Nn,
|α| = α1 + · · ·+ αn and Dαu = ∂|α|u

∂
α1
x1 ...∂αn

xn

= ux
α1
1 ...xαn

n
is the generalized derivative

up to order α with respect to x = (x1, . . . , xn) ; utk = ∂ku
∂tk is the generalized

derivative up to order k with respect to t.
We begin by recalling some functional spaces which will be used frequently in

this paper. W l(Ω) is the space consisting of all functions u(x), x ∈ Ω, with the
norm

‖u‖W l(Ω) =
( l∑
|α|=0

∫
Ω

|Dαu|2dx
)1/2

.

W̊ l(Ω) is the completion of C̊C∞(Ω) in the norm of the space W l(Ω).
W l

β(Ω) is the space consisting of all functions u(x) = (u1(x), . . . , us(x)) which have
generalized derivatives Dαui, |α| ≤ l, 1 ≤ i ≤ s, satisfying

‖u‖2W l
β(Ω) =

l∑
|α|=0

∫
Ω

r2(β+|α|−l)|Dαu|2dx < +∞.

W l,k(e−γt,Ω∞) is the space consisting of functions u(x, t), (x, t) ∈ Ω∞, with the
norm

‖u‖W l,k(e−γt,Ω∞) =
( ∫

Ω∞

( l∑
|α|=0

|Dαu|2 +
k∑

j=1

|utj |2
)
e−2γt dx dt

)1/2

, k ≥ 1.

W l,0(e−γt,Ω∞) is the space consisting of functions u(x, t), (x, t) ∈ Ω∞, with the
norm

‖u‖W l,0(e−γt,Ω∞) =
( ∫

Ω∞

( l∑
|α|=0

|Dαu|2 dx dt
)1/2

.

W̊ l,k(e−γt,Ω∞) is the closure in W l,k(e−γt,Ω∞) of the set consisting of infinite
differentiable in Ω∞ functions which belong to W l,k(e−γt,Ω∞) and vanish near
S∞.
W l,k

β (e−γt,Ω∞) is the space consisting of functions u(x, t) satisfying

‖u‖2
W l,k

β (e−γt,Ω∞)
=

∫
Ω∞

( l∑
|α|=0

r2(β+|α|−l)|Dαu|2 +
k∑

j=1

|utj |2
)
e−2γt dx dt <∞.

Denote by L∞(0,∞;X) the space consisting of measurable functions u : (0,∞) →
X, t 7→ u(x, t) satisfying

‖u‖L∞(0,∞;X) = ess sup
t>0

∥∥u(x, t)∥∥
X
< +∞.
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Let L(x, t,D) be a differential operator

L(x, t,D) ≡
n∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)
+ a, (2.1)

where aij ≡ aij(x, t), i, j = 1, . . . , n are infinitely differentiable bounded complex-
valued functions on Ω∞, aij = aji, a ≡ a(x, t) are infinitely differentiable bounded
real-valued functions on Ω∞. Suppose that aij , i, j = 1, . . . , n, are continuous in
x ∈ Ω uniformly with respect to t ∈ [0,∞) and

n∑
i,j=1

aij(x, t)ξiξj ≥ µ0|ξ|2 (2.2)

for all ξ ∈ Rn\{0} and (x, t) ∈ Ω∞, where µ0 is a positive constant.
We consider the following problem in the infinite cylinder Ω∞:

L(x, t,D)u− utt = f(x, t), (2.3)

u|t=0 = ut|t=0 = 0, (2.4)

u|S∞ = 0. (2.5)

A function u(x, t) is called a generalized solution of the problem (2.3)–(2.5) in
W 1,1(e−γt,Ω∞) if u(x, t) ∈ W̊ 1,1(e−γt,Ω∞), u(x, 0) = 0 and for each T > 0 the
following equality holds:∫

Ω∞

utηt dx dt−
∫

Ω∞

( n∑
i,j=1

aijuxj
ηxi

− auη
)
dx dt =

∫
Ω∞

f η dx dt (2.6)

for all test functions η = η(x, t) ∈ W̊ 1,1(e−γt,Ω∞) such that η(x, t) = 0 with
t ∈ [T,∞). Set

B[u, v](t) =
n∑

i,j=1

∫
Ω

aijuxj
vxi

dx.

The following lemma can be proved similarly to Garding’s inequality.

Lemma 2.1. Assume that coefficients aij = aij(x, t), i, j = 1 . . . n, a = a(x, t) of
the operator L(x, t,D) satisfy condition (2.2) and aij(x, t) are continuous in x ∈ Ω
uniformly with respect to t ∈ [0,∞). Then there exist two constants µ0 > 0, λ0 ≥ 0
such that

B[u, u](t) ≥ µ0‖u(x, t)‖2W 1(Ω) − λ0‖u(x, t)‖2L2(Ω)

for all functions u = u(x, t) ∈ W̊ 1,0(e−γt,Ω∞).

Remark. It follows from the above lemma that if the function a(x, t) in (2.1)
satisfies

a(x, t) ≤ −λ0, for all (x, t) ∈ Ω∞,

then

B1[u, u](x, t) ≡ B[u, u](t)−
∫

Ω

a(x, t)|u(x, t)|2dx ≥ µ0‖u(x, t)‖2W 1(Ω) (2.7)

for all functions u = u(x, t) ∈ W̊ 1,0(e−γt,Ω∞).
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3. Solvability of the problem

In this section we investigate the smoothness of generalized solutions with respect
to time. We begin by studying uniqueness of the problem.

Theorem 3.1. Assume that for a positive constant µ,

sup
{∣∣∂aij

∂t

∣∣, ∣∣∂a
∂t

∣∣ : (x, t) ∈ Ω∞, i, j = 1 . . . , n
}
≤ µ.

In addition, suppose a(x, t) ≤ −λ0, for all (x, t) ∈ Ω∞. Then (2.3)-(2.5) has at
most one generalized solution in W 1,1(e−γt,Ω∞) for γ > 0 arbitrary.

Proof. Suppose that there are two solutions u1, u2 in W̊ 1,1(e−γt,Ω∞). Putting
u = u1 − u2, so for each T > 0 the following equality holds:∫

Ω∞

utηt dx dt−
∫

Ω∞

( n∑
i,j=1

aijuxj
ηxi

− auη
)
dx dt = 0

for all test functions η = η(x, t) ∈ W̊ 1,1(e−γt,Ω∞) such that η(x, t) = 0 with
t ∈ [T,∞). For b with 0 < b < T , we set

η(x, t) =

{∫ t

b
u(x, s)ds, 0 ≤ t ≤ b,

0, t > b.

It is easy to check that η(x, t) ∈ W̊ 1,1(e−γt,Ω∞), η(x, t) = 0 with t ∈ [T,∞) and
ηt(x, t) = u(x, t). We have∫

Ω∞

ηttηt dx dt−
∫

Ω∞

( n∑
i,j=1

aijηtxj
ηxi

− aηtη
)
dx dt = 0.

Adding this equality and its complex conjugate, using aij = aji, i, j = 1, . . . n and
integrating by parts with respect to t, we obtain∫

Ω

|ηt(x, b)|2dx+B1[η, η](x, 0) +
∫

Ω∞

( n∑
i,j=1

∂aij

∂t
ηxj

ηxi
− ∂a

∂t
ηη

)
dx dt = 0. (3.1)

Putting vi(x, t) =
∫ 0

t
uxi

(x, s)ds, i = 1, . . . , n, v0(x, t) =
∫ 0

t
u(x, s)ds, we can write

ηxi
(x, t) =

∫ t

b

uxi
(x, s)ds = vi(x, b)− vi(x, t), ηxi

(x, 0) = vi(x, b).

η(x, t) =
∫ t

b

u(x, s)ds = v0(x, b)− v0(x, t), η(x, 0) = v0(x, b).

Substituting those into (3.1), then using the Cauchy’s inequality and (2.7), we
obtain∫

Ω

|ηt(x, b)|2dx+ µ0

n∑
i=0

∫
Ω

|vi(x, b)|2dx

≤ C1b

n∑
i=0

∫
Ω

|vi(x, b)|2dx+ C2

∫ b

0

( n∑
i=0

∫
Ω

|vi(x, t)|2dx
)
dt

≤ C1b
n∑

i=0

∫
Ω

|vi(x, b)|2dx+ C2

∫ b

0

( ∫
Ω

|ηt(x, t)|2dx+
n∑

i=0

∫
Ω

|vi(x, t)|2dx
)
dt

(3.2)



EJDE-2009/36 ASYMPTOTIC BEHAVIOR OF SOLUTIONS 5

where C1, C2 are positive constants. Put

J(t) =
∫

Ω

|ηt(x, b)|2dx+
n∑

i=0

∫
Ω

|vi(x, b)|2dx.

From (3.2) we get

J(b) ≤ C

∫ b

0

J(t)dt

for all b ∈ [0, µ0/2C1], where C is a positive constant. This implies that J(t) ≡ 0
on [0, µ0/2C1] by Gronwall-Bellman’s inequality. It follows u1 ≡ u2 on [0, µ0/2C1],
where C1 does not depend on b. By similar arguments for two functions u1, u2 on
[µ0/2C1, τ ], we can show that after finite steps u1 ≡ u2 on [µ0/2C1, τ ]. Since τ > 0
is arbitrary, so u1 = u2 in W 1,1(e−γt,Ω∞). The proof is complete. �

Now, we establish the existence of generalized solution of the mentioned problem
by Galerkin’s approximate method. We use the notation:

γ0 =
nµ

2µ0
,

where n is dimensional number of the space Rn, µ is the constant in theorem 3.1
and µ0 is the constant in lemma 2.1. We have following theorem.

Theorem 3.2. Assume that a(x, t) ≤ −λ0, for all (x, t) ∈ Ω∞ and the following
conditions are fulfilled:

(ii) sup
{∣∣∂kaij

∂tk

∣∣, ∣∣∂ka
∂tk

∣∣} : (x, t) ∈ Ω∞, i, j = 1, . . . , n; k ≤ h− 1
}
≤ µ, h ≥ 1,

(iii) ftk ∈ L∞(0,∞;L2(Ω)), k ≤ h,
(iv) ftk(x, 0) = 0, k ≤ h− 1.

Then (2.3)–(2.5) has a unique generalized solution u(x, t) in W 1,1(e−γt,Ω∞) for
every γ > γ0. Moreover, u(x, t) has derivatives with respect to t up to order h
belonging to W̊ 1,1(e−(2h+1)γt,Ω∞) and the following inequality holds:

‖uth‖2W 1,1(e−(2h+1)γt,Ω∞) ≤ C

h∑
k=0

‖ftk‖2L∞(0,∞;L2(Ω)),

where C is a positive constant independent of u and f .

Proof. The uniqueness follows from theorem 3.1. The existence is obtained using
Galerkin’s method. Let {ϕk}∞k=1 ⊂ C̊∞(Ω) be an orthogonal system in L2(Ω)
such that its linear closure in W 1(Ω) is the space W̊ 1(Ω). For each integer N we
consider the function uN (x, t) =

∑N
k=1 C

N
k (t)ϕk(x), where (CN

1 (t), . . . , CN
N (t)) is

the solution of the ordinary differential system∫
Ω

uN
ttϕldx+

∫
Ω

(
n∑

i,j=1

aiju
N
xj
ϕlxi

− auNϕl)dx = −
∫

Ω

fϕldx; l = 1, . . . , N, (3.3)

CN
k (0) =

d

dt
CN

k (0) = 0, k = 1, . . . N. (3.4)

Let us multiply (3.3) by dCN
k (t)/dt and take the sum with respect to l from 1 to

N . Then we integrate the equality obtained with respect to t from 0 to t and add
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this equality to its complex conjugate. Finally, integrating by part and applying
condition (3.4), we obtain∫

Ω

|uN
t (x, t)|2dx+

∫
Ω

( n∑
i,j=1

aiju
N
xj
uN

xi
− auNuN

)
|t=tdx

=
∫

Ωt

( n∑
i,j=1

∂aij

∂t
uN

xj
uN

xi
− ∂a

∂t
uNuN

)
dx dt− 2 Re

∫
Ωt

fuN
t dx dt.

Using (2.7) and Cauchy’s inequality, one has

‖uN
t (x, t)‖2L2(Ω) + µ0‖uN (x, t)‖2W 1(Ω)

≤
∫

Ωt

(
nµ

n∑
i=1

|uxi |2 + µ|uN |2 + δ|uN
t |2

)
dx dt+

t

δ
‖f‖2L∞(0,∞;L2(Ω))

≤ δ

∫ t

0

(
‖uN

t ‖2L2(Ω) +
nµ

δ
‖uN (x, t)‖2W 1(Ω)

)
dt+

t

δ
‖f‖2L∞(0,∞;L2(Ω)),

(3.5)

where δ is a positive constant. Choosing δ = nµ
µ0

and putting

JN (t) = ‖uN
t (x, t)‖2L2(Ω) + µ0‖uN (x, t)‖2W 1(Ω),

from inequality (3.5) we obtain

JN (t) ≤ nµ

µ0

∫ t

0

JN (τ)dτ + t
( µ0

nµ
‖f‖2L∞(0,∞;L2(Ω))

)
.

From this inequality and Gronwall-Bellman’s inequality it follows that

JN (t) ≤ C1e
nµ
µ0

t‖f‖2L∞(0,∞;L2(Ω)),

where C1 is a positive constant independent of N and f . Since e−γt ≤ 1 with γ > 0
and t ≥ 0, putting C0 = min{µ0, 1} we have

C0‖uN‖2W 1,1(e−γt,Ω∞) ≤ ‖uN
t (x, t)‖2L2(Ω) + µ0‖uN (x, t)‖2W 1(Ω)

≤ C1e
nµ
µ0

t‖f‖2L∞(0,∞;L2(Ω)).
(3.6)

Let γ be a positive constant such that γ > γ0 = nµ
2µ0

. Multiplying both sides of
(3.6) by e−2γt and integrating with respect to t from 0 to ∞, we get

‖uN‖2W 1,1(e−γt,Ω∞) ≤ C2‖f‖2L∞(0,∞;L2(Ω)), (3.7)

where C2 is a positive constant independent of N and f .
From (3.7) it follows that there exists a subsequence of the sequence {uN} with

converges weakly to a function u(x, t) in the space W 1,1(e−γt,Ω∞). We can check
that u(x, t) is a generalized solution of the problem.

Now we prove the smoothness with respect to time variable of the generalized
solution. We use the induction to show that the following inequalities are true for
all integer g ≥ 0:

‖uN
tg (x, t)‖2W 1(Ω) ≤ C3e

(2g+1)nµ+ε
µ0−ε t

g∑
k=0

‖ftk‖2L∞(0,∞;L2(Ω)), (3.8)

‖uN
tg (x, t)‖2W 1,1(e−(2g+1)γt ,Ω∞) ≤ C4

g∑
k=0

‖ftk‖2L∞(0,∞;L2(Ω)), (3.9)
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where 0 < ε < µ0, Ci is a positive constant independent of N and f ; i = 3, 4.
For g = 0 inequalities (3.8) and (3.9) are true according to relations (3.6) and

(3.7). Assume that s ≥ 1 and inequalities (3.8) and (3.9) hold for all g ≤ s− 1.
From identity (3.3) we have∫

Ω

uN
ts+2ϕldx+

∫
Ω

( n∑
i,j=1

∂s

∂ts
(
aiju

N
xj
ϕlxi

− auϕl

))
dx = −

∫
Ω

ftsϕldx.

Multiplying both sides of this identity by ds+1CN
l /dt

s+1 and taking the sum with
respect to l from 1 to N and integrating the result over (0, t). Then adding this
identity with its complex conjugate, we get∫

Ωt

∂

∂t

(
uN

ts+1 ūN
ts+1

)
dx dt

+ 2 Re
∫

Ωt

( n∑
i,j=1

(
aiju

N
xj

)
ts

(
ūN

xi

)
ts+1 −

(
auN

)
ts ū

N
ts+1

)
dx dt

= −2 Re
∫

Ωt

fts ūN
ts+1 dx dt.

(3.10)

Denote (
k

s

)
=

s!
k!(s− k)!

.

Since aij = āji with i, j = 1, 2, . . . , n, we have

2 Re
n∑

i,j=1

(aiju
N
xj

)ts(ūN
xi

)ts+1 − (auN )ts ūN
ts+1

=
∂

∂t

( n∑
i,j=1

aij(uN
xj

)ts(ūN
xi

)ts − auN
ts ūN

ts

)
− Re

m∑
i,j=1

∂aij

∂t
(uN

xj
)ts(ūN

xi
)ts +

∂a

∂t
uN

ts ūN
ts

+ 2Re
( n∑

i,j=1

s∑
k=1

(
k

s

)
∂

∂t

(∂kaij

∂tk
(uN

xj
)ts−k(ūN

xi
)ts

)
−

s∑
k=1

(
k

s

)
∂

∂t

(∂ka

∂tk
uN

ts−k ū
N
ts

))
− 2 Re

( n∑
i,j=1

s∑
k=1

(
k

s

)(∂k+1aij

∂tk+1
(uN

xj
)ts−k(ūN

xi
)ts

)
−

s∑
k=1

(
k

s

)
∂k+1a

∂tk+1
uN

ts−k ū
N
ts

)
− 2 Re

( n∑
i,j=1

s∑
k=1

(
k

s

)
∂kaij

∂tk
(uN

xj
)ts−k+1(ūN

xi
)ts −

s∑
k=1

(
k

s

)
∂ka

∂tk
uN

ts−k+1 ū
N
ts

)
.

(3.11)
From the condition uN (x, 0) = 0 we get∫

Ωt

∂

∂t

( n∑
i,j=1

aij(uN
xj

)ts(ūN
xi

)ts − auN
ts ūN

ts

)
dx dt

=
∫

Ω

( n∑
i,j=1

aij(uN
xj

)ts(ūN
xi

)ts − auN
ts ūN

ts

)∣∣∣t=t

t=0
dx = B1(uN

ts , uN
ts )(x, t).
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Therefore, from identities (3.10) and (3.11) it follows that∫
Ω

|uN
ts+1(x, t)|2dx+B1(uN

ts , uN
ts )(x, t)

= −2 Re
s∑

k=1

(
k

s

) ∫
Ω

( n∑
i,j=1

∂kaij

∂tk
(uN

xj
)ts−k(ūN

xi
)ts − ∂ka

∂tk
uN

ts−k ūN
ts

)
|t=tdx

+ 2 Re
s∑

k=1

(
k

s

) ∫
Ωt

( n∑
i,j=1

∂k+1aij

∂tk+1
(uN

xj
)ts−k( ¯uN

xi
)
ts −

∂k+1a

∂tk+1
uN

ts−k ūN
ts

)
dx dt

+ 2 Re
s∑

k=1

(
k

s

) ∫
Ωt

( n∑
i,j=1

∂kaij

∂tk
(uN

xj
)ts−k+1( ¯uN

xi
)
ts −

∂ka

∂tk
uN

ts−k+1 ūN
ts

)
dx dt

+ Re
∫

Ωt

( n∑
i,j=1

∂aij

∂t
(uN

xj
)ts

¯(uN
xi

)
ts +

∂a

∂t
uN

ts ūN
ts

)
dx dt− 2 Re

∫
Ωt

fts
¯uN

ts+1 dx dt.

From this equality, (2.7) and Cauchy’s inequality, we obtain

‖uN
ts+1(x, t)‖2L2(Ω) + µ0‖uN

ts (x, t)‖2W 1(Ω)

≤ ε‖uN
ts (x, t)‖2W 1(Ω) + C1(ε)

s−1∑
k=0

‖uN
tk(x, t)‖2W 1(Ω)

+ C2(ε)
s−1∑
k=0

∫ t

0

‖uN
tk(x, t)‖2W 1(Ω)dt

+
∫

Ωt

((
nµ(2s+ 1) + ε

) n∑
i=1

|(uxi
)ts |2 +

(
µ(2s+ 1) + ε

)
|uts |2

)
dx dt

+
∫

Ωt

δ|uts+1 |2 dx dt+
∫

Ωt

1
δ
|fts |2 dx dt

≤ ε‖uN
ts (x, t)‖2W 1(Ω) + C1(ε)

s−1∑
k=0

‖uN
tk(x, t)‖2W 1(Ω)

+ C2(ε)
s−1∑
k=0

∫ t

0

‖uN
tk(x, t)‖2W 1(Ω) dx dt+

∫ t

0

(
nµ(2s+ 1) + ε

)
‖uN

ts (x, t)‖2W 1(Ω)dt

+
∫ t

0

δ‖uts+1‖2L2(Ω)dt+
∫

Ωt

1
δ
|fts |2 dx dt,

where ε is a positive constant and Ci(ε) is positive constant that depends ε, i = 1, 2.
From this inequality we obtain

‖uN
ts+1(x, t)‖2L2(Ω) + (µ0 − ε)‖uN

ts (x, t)‖2W 1(Ω)

≤ C1(ε)
s−1∑
k=0

‖uN
tk(x, t)‖2W 1(Ω)

+ δ

∫ t

0

(nµ(2s+ 1) + ε)
δ

‖uts(x, t)‖2W 1(Ω) + ‖uts+1(x, t)‖2L2(Ω)

)
dt

+
∫

Ωt

1
δ
|fts |2 dx dt+ C2(ε)

s−1∑
k=0

∫ t

0

‖uN
tk(x, t)‖2W 1(Ω)dt,

(3.12)
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Substituting δ = (nµ(2s+1)+ε)
µ0−ε into (3.12), one can see that

‖uN
ts+1(x, t)‖2L2(Ω) + (µ0 − ε)‖uN

ts (x, t)‖2W 1(Ω)

≤ nµ(2s+ 1) + ε

µ0 − ε

∫ t

0

(
‖uN

ts+1(x, t)‖2L2(Ω) + (µ0 − ε)‖uN
ts (x, t)‖2W 1(Ω)

)
dt

+ C
( s−1∑

k=0

‖uN
tk(x, t)‖2W 1(Ω) +

s−1∑
k=0

∫ t

0

‖uN
tk(x, t)‖2W 1(Ω)dt+

∫
Ωt

|fts |2 dx dt
)
,

where C is a positive constant independent of N and f . From this inequality and
by the inductive hypothesis for (3.8), we get

‖uN
ts+1(x, t)‖2L2(Ω) + (µ0 − ε)‖uN

ts (x, t)‖2W 1(Ω)

≤ nµ(2s+ 1) + ε

µ0 − ε

∫ t

0

(
‖uN

ts+1(x, t)‖2L2(Ω) + (µ0 − ε)‖uN
ts (x, t)‖2W 1(Ω)

)
dt

+ C1(1 + t)e
nµ(2s−1)+ε

µ0−ε t
s−1∑
k=0

‖ftk‖2L∞(0,∞;L2(Ω)) + C2t‖fts‖2L∞(0,∞;L2(Ω)),

(3.13)

where Ci are positive constants independent of N and f ; i = 1, 2. Put

JN
s (t) = ‖uN

ts+1(x, t)‖2L2(Ω) + (µ0 − ε)‖uN
ts (x, t)‖2W 1(Ω),

φ(t) = C1(1 + t)e
nµ(2s−1)+ε

µ0−ε t
s−1∑
k=0

‖ftk‖2L∞(0,∞;L2(Ω)) + C2t‖fts‖2L∞(0,∞;L2(Ω)).

From (3.13) we have

JN
s (t) ≤ nµ(2s+ 1) + ε

µ0 − ε

∫ t

0

JN
s (τ)dτ + φ(t).

From this inequality and Gronwall-Bellman inequality we obtain

JN
s (t) ≤ Ce

nµ(2s+1)+ε
µ0−ε t

s∑
k=0

‖ftk‖2L∞(0,∞;L2(Ω)),

where C is a positive constant is independent of N and f . Therefore,

‖uN
ts+1(x, t)‖2L2(Ω) + (µ0 − ε)‖uN

ts (x, t)‖2W 1(Ω)

≤ Ce
nµ(2s+1)+ε

µ0−ε t
s∑

k=0

‖ftk‖2L∞(0,∞;L2(Ω)),
(3.14)

where C is positive constant independent of N and f . Therefore,

‖uN
ts (x, t)‖2W 1(Ω) ≤ C1e

(2s+1)nµ+ε
µ0−ε t

s∑
k=0

‖ftk‖2L∞(0,∞;L2(Ω)), (3.15)

where C1 is a positive constant independent of N and f . Hence (3.8) holds for s.
Since γ > γ0 = nµ

2µ0
, there exists a constant ε such that

2(2s+ 1)γ0 =
nµ(2s+ 1)

µ0
<
nµ(2s+ 1) + ε

µ0 − ε
< 2(2s+ 1)γ. (3.16)
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Multiplying both sides of (3.15) by e−2(2s+1)γt and integrating it with respect to t
from 0 to ∞. Then applying (3.16), we obtain

‖uN
ts (x, t)‖2W 1,1(e−(2s+1)γt,Ω∞) ≤ C2

s∑
k=0

‖ftk‖2L∞(0,∞;L2(Ω)),

where C2 is a positive constant independent of N and f . Hence (3.9) holds for s
and (3.9) is proved.

Since C2 from inequality (3.9) are independent of N , relation (3.9) yields the
inequality. The proof is complete. �

4. Asymptotical expansions of solutions

Let Ω be a bounded domain in Rn(n ≥ 2) with the boundary ∂Ω. We suppose
that ∂Ω\{0} is a smooth manifold and Ω in a neighborhood of the origin 0 coincides
with the cone K = {x : x/|x| ∈ G}, where G is a smooth domain on the unit
sphere Sn−1 in Rn. Set Q∞ = Ω × (0,∞) and S∞ = ∂Ω × (0,+∞). We will
use notations: Dα = ∂|α|/∂α1

x1
. . . ∂αn

xn
for each multi-index α = (α1, . . . , αn) ∈ Nn,

|α| = α1 + · · ·+ αn, utk = ∂ku/∂tk, r = |x| =
( ∑n

k=1 x
2
k

) 1
2 .

Suppose that w = (w1, . . . , wn−1) is a local coordinate system on the unit sphere
Sn−1. Let L0(0, t,D) be the principal part of the operator L(x, t,D) at the coor-
dinate origin. We can write L0(0, t,D) in the form

L0(0, t,D) = r−2Q(w, t,Dw, rDr),

where Q(w, t,Dw, rDr) is the linear operator with smooth coefficients, Dr = i∂/∂r

Dw = ∂/∂w1 . . . ∂wn−1. Consider the spectral problem

Q(ω, t, λ,Dw)v(w) = 0, w ∈ G, (4.1)

v|∂G = 0. (4.2)

It is well known that for every t ∈ [0,∞) its spectrum is discrete [1]. In the cone
K we consider Dirichlet problem for the equation

L0(0, t,D)u = r−iλ(t)−2
M∑

s=0

lns rfs(ω, t), (4.3)

The following lemma can be found in [8].

Lemma 4.1. Assume that fs(ω, t), s = 0, . . . ,M are infinitely differentiable func-
tions with respect to ω. Then there exists the solution of the Dirichlet problem for
(4.3) in the form

u(x, t) = r−iλ(t)

M+µ∑
s=0

lns rgs(ω, t), (4.4)

where gs, s = 0, . . .M + µ, are infinitely differentiable functions with respect to ω,
µ = 1 if λ0 is simple eigenvalue of problem (4.1)-(4.2), and µ = 0 if λ0 is not a
eigenvalue of this problem.

Now we will study the asymptotical expansions of solutions of problem (2.3)–
(2.5). Denote by K∞ a infinite cylinder with base K : K∞ = K × (0,∞). Rewrite
the equation (2.3) in the form

L0(0, t,D)u = F (x, t) (4.5)
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where F (x, t) = (utt + f) + [L0(0, t,D)− L(x, t,D)]u.

Lemma 4.2. Assume that u(x, t) is a generalized solution of problem (2.3)–(2.5) in
the space W 1,1(e−γt,K∞) such that u ≡ 0 whenever |x| > R, R a positive constant,
and utk ∈ W 2+l,0

β (e−(2k+1)γt,K∞), Ftk ∈ W l,0
β′ (e−(2k+1)γt,K∞) for k ≤ h, β′ <

β ≤ l + 1. In addition, suppose that the straight lines

Imλ = −β + l + 2− n

2
, Imλ = −β′ + l + 2− n

2
do not contain points of spectrum of problem (4.1)-(4.2) for every t ∈ [0,∞), and
in the strip

−β + l + 2− n

2
< Imλ < −β′ + l + 2− n

2
there exists only simple eigenvalue λ(t) of problem (4.1)-(4.2). Then the following
representation holds

u(x, t) = c(t)r−iλ(t)φ(ω, t) + u1(x, t),

where φ(x, t) is an infinitely differentiable function of (ω, t), ctk ∈ L2,loc(0,∞), and
(u1)tk ∈W l+2,0

β′ (e−(k+1)γt,K∞) for k ≤ h.

Proof. From the result of [8] it follows that for almost every t ∈ (0,∞) we have

u(x, t) = c(t)r−iλ(t)φ(ω, t) + u1(x, t), (4.6)

where φ(ω, t) is the energy function of the problem (4.1)-(4.2) which corresponds
to the eigenvalue λ(t), u1 ∈W 2+l,0

β′ (e−(k+1)γt,K∞) and

c(t) = i

∫
K

F (x, t)r−iλ(t)+2−nψ(x, t)dx,

where ψ(x, t) is the energy function of the problem conjugating to the problem
(4.1)-(4.2) which corresponds to the eigenvalue λ(t). Since Imλ(t) > β′− l−2+ n

2 ,
from F (x, t) ∈ W l,0

β′ (e−(2k+1)γt,K∞) it follows that c(t) ∈ L2,loc(0,∞). Hence the
assertion is proved for h = 0.

Assume that the assertion is true for 0, 1, . . . , h − 1. Denoting uth by v. From
(2.3) and (4.5) we obtain

L0(0, t,D)v = Fth −
h∑

k=1

(
h
k

)
L0tk(0, t,D)uth−k , (4.7)

where

L0tk =
n∑

i,j=1

∂kapq(0, t)
∂tk

∂

∂xj

∂

∂xi
.

Putting S0(ω, t) = r−iλ(t)φ(ω, t). From (4.7) it follows that

h∑
k=1

(
h
k

)
L0tk(0, t,D)uth−k

=
h∑

k=1

(
h
k

)
L0tk(0, t,D)

[
(cS0)th−k

]
+

h∑
k=1

(
h
k

)
L0tk(0, t,D)(u1)th−k .
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Using the inductive hypothesis and by arguments used in the proof of case h = 0
we find that

uth = v =
h∑

k=1

(
h
k

)
cth−k(S0)tk + d(t)S0 + u2,

where d(t) ∈ L2,loc(0,∞), u2 ∈W 2+l,0
β′ (e−(2h+1)γt,K∞). Putting S1 = S−1

0 (u1)th−1 ,
S2 = S−1

0 u2 − S−2
0 (S0)t(u1)th−1 . Since (u1)th−1 , u2 ∈ W l,0

β′ (e−(2h+1)γt,K∞) so

S1, S2 ∈W 0,0
−n

2
(e−(2h+1)γt,K∞). Therefore, I(t) = cth−1(t)− cth−1(0)−

∫ t

0
d(τ)dτ =∫ t

0
S2(x, τ)dτ − S1(x, t) + S1(x, 0) ∈ W 0

−n
2
(K). Hence I(t) ≡ 0 and cth = d ∈

L2,loc[0,∞), (u1)th = u2 ∈W 2m+l,0
β′ (e−(h+1)γt,K∞). This completes the proof. �

Theorem 4.3. Let u(x, t) be a generalized solution of (2.3)-(2.5) in the space
W 1,1(e−γt,K∞) such that u ≡ 0 whenever |x| > R, and ftk ∈ L∞(0,∞;W l

0(K))
for k ≤ 2l + h+ 1, ftk(x, 0) = 0 for k ≤ 2l + h. Assume that the straight lines

Imλ = 1− n

2
, Imλ = 2 + l − n

2
do not contain points of spectrum of (4.1)-(4.2) for every t ∈ [0,∞), and in the
strip

1− n

2
< Imλ < 2 + l − n

2
there exists only one simple eigenvalue λ(t) of (4.1)-(4.2). Then the following
representation holds

u(x, t) =
l∑

s=0

cs(t)r−iλ(t)+sP3l,s(ln r) + u1(x, t), (4.8)

where P3l,s is a polynomial of order less than 3l+1 and coefficients infinitely differ-
entiable functions of (ω, t), (cs)tk ∈ L2,loc(0,∞), (u1)tk ∈ W 2+l,0

0 (e−(2k+1)γt,K∞)
for k ≤ h+ l.

Proof. We will use induction on l. If l = 0 the statement follows from Lemma 4.2
with β = 1, β′ = 0 and theorem 3.2. Let the statement be true for j ≤ (l− 1). We
distinguish the following cases:
Case 1: 1− n

2 < Imλ(t) < 2 + j − n
2 . From the induction hypothesis,

u(x, t) =
j∑

s=0

cs(t)r−iλ(t)+sP3j,s(ln r) + u1(x, t), (4.9)

where P3j,s is a polynomial of less than 3j+1 and coefficients infinitely differentiable
functions of (ω, t), (cs)tk ∈ L2,loc(0,∞), (u1)tk ∈ W 2+j,0

0 (e−(2k+1)γt,K∞) for k ≤
h+ j. Therefore

L0(0, t,D)u1 = F1 − LS + Stt,

where F1 = (u1)tt + f + [L0(0, t,D)− L(x, t,D)]u1,

S =
j∑

s=0

cs(t)r−iλ(t)+sP3j,s(ln r).

Since ftk ∈ L∞(0,∞;W j+1
0 (K)) for k ≤ 2(j + 1) + h + 1 and ftk(x, 0) = 0 for

k ≤ 2j + h+ 1, so ftk ∈ L∞(0,∞;W j
0 (K)), k ≤ 2j + (h+ 2) + 1, and ftk(x, 0) = 0,
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k ≤ 2j+h+1. Therefore, (cs)tk ∈ L2,loc(0,∞) and (u1)tk ∈W j+2,0
0 (e−(2k+1)γt,K∞)

for k ≤ h + j + 2. Hence it follows that (F1)tk ∈ W j+1,0
0 (e−(2k+1)γt,K∞) for

k ≤ j + h+ 1. On the other hand

−LS + Stt = F2 +
j+1∑
s=0

c̃s(t)r−iλ(t)−2+sP̃3j+2,s(ln r),

where P̃3j+2,s is a polynomial having order less than 3j + 3 and its coefficients are
infinitely differentiable functions of (ω, t), (F2)tk ∈ W j+1,0

0 (e−(2k+1)γt,K∞), and
(c̃s)tk ∈ L2,loc(0,∞) for k ≤ h+ j + 1. Therefore we obtain

L0(0, t,D)u1 = F3 +
j+1∑
s=0

c̃s(t)r−iλ(t)−2+sP̃3j+2,s(ln r),

where F3 = F1+F2 ∈W j+1,0
0 (e−(2k+1)γt,K∞) ⊆ Hj,0

−1(e
−(2k+1)γt,K∞). By Lemma

3.1 we find

u1(x, t) =
j+1∑
s=0

c̃s(t)r−iλ(t)+sP̃3j+3,s(ln r) + u2(x, t),

where P̃3j+3,s is a polynomial having order less than 3j + 4 and its coefficients
are infinitely differentiable functions of (ω, t), (u2)tk ∈ W 2+j,0

−1 (e−(2k+1)γt,K∞) for
k ≤ h+ j+ 1. Therefore (u2)tk ∈W j+3,0

0 (e−(2k+1)γt,K∞) for k ≤ h+ j+ 1. Hence
and from (4.9) it follows that

u(x, t) =
j+1∑
s=0

cs(t)r−iλ(t)+sP3j+3,s(ln r) + u2(x, t),

where P3j+3,s is a polynomial having order less than 3j + 4 and its coefficients
are infinitely differentiable functions of (ω, t), (cs)tk ∈ L2,loc(0,∞), and (u2)tk ∈
W j+3,0

0 (e−(2k+1)γt,K∞) for k ≤ h+ j + 1.
Case 2: 2 + j − n

2 < Imλ(t) < 3 + j − n
2 . From theorem 3.2 we have utk ∈

W 1,1(e−(2k+1)γt,K∞). Hence (see [3]) utk ∈ W 2,0
1 (e−(2k+1)γt,K∞) for k ≤ h + 2l.

On the other hand, the strip 1 − n
2 ≤ Imλ ≤ 2 − n

2 does not contain points of
spectrum of the problem (4.1)-(4.2) for every t ∈ (0,∞). Hence and from theorems
on the smoothness of solutions of elliptic problems in domains with conical points
(see [8]) it follows that utk ∈W 2,0

0 (e−(2k+1)γt,K∞) for k ≤ h+ 2l.
We will prove that if ftk ∈ L∞(0,∞;W j

0 (K)) for k ≤ 2j+h+1 and ftk(x, 0) = 0
for k ≤ 2j+h, then utk ∈W 2+j,0

0 (e−(2k+1)γt,K∞), k ≤ h+2l−j. This assertion was
proved for j = 0. Assume that it is true for j − 1. Since ftk ∈ L∞(0,∞;W j−1

0 (K))
for k ≤ 2(j − 1) + (h+ 2) + 1 and ftk(x, 0) = 0 for k ≤ 2(j − 1) + h+ 2, then from
inductive hypothesis it follows that utk ∈W j+1,0

0 (e−(2k+1)γt,K∞), k ≤ h+2l−j+3.
Therefore, utk+2 ∈ W j−1,−1

−1 (e−(2k+3)γt,K∞) for k ≤ h + 2l − j. Hence and from
the fact that the strip

j + 1− n

2
< Imλ < j + 2− n

2
does not contain points of spectrum of (4.1)-(4.2) for every t ∈ [0,∞), we obtain
utk ∈W j+1,0

−1 (e−(2k+1)γt,K∞), k ≤ h+2l−j. Hence utk ∈W j+2,0
0 (e−(2k+1)γt,K∞)

for k ≤ h+ 2l − j.
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By Lemma 4.2 and from above arguments we obtain

u(x, t) = c(t)r−iλ(t)ϕ(ω, t) + u1(x, t),

where ϕ is an infinitely differentiable function of (ω, t) which does not depend on
the solution, ctk ∈ L2,loc(0,∞), and (u1)tk ∈W 2+l,0

0 (e−(k+1)γt,K∞) for k ≤ h+ l.
case 3: There exists t0 such that Imλ(t0) = 2 + j − n

2 . We can assume that
2 + j − ε − n

2 < Imλ(t) < 3 + j − ε − n
2 , 0 < ε < 1. By arguments used in case 1

and 2 we obtain (4.8). The proof is complete. �

Theorem 4.4. Let u(x, t) be a generalized solution of (2.3)-(2.5) in the space
W 1,1(e−γt,Ω∞), and ftk ∈ L∞(0,∞;W l

0(Ω)) for k ≤ 2l + h + 1, ftk(x, 0) = 0 for
k ≤ 2l + h. Assume that the straight lines

Imλ = 1− n

2
, Imλ = 2 + l − n

2
do not contain points of spectrum of (4.1)-(4.2) for every t ∈ [0,∞), and in the
strip

1− n

2
< Imλ < 2 + l − n

2
there exists only one simple eigenvalue λ(t) of (4.1)-(4.2). Then the following
representation holds

u(x, t) =
l∑

s=0

cs(t)r−iλ(t)+sP3l,s(ln r) + u1(x, t), (4.10)

where P3l,s is a polynomial of order less than 3l+1 and coefficients infinitely differ-
entiable functions of (ω, t), (cs)tk ∈ L2,loc(0,∞), (u1)tk ∈ W 2+l,0

0 (e−(2k+1)γt,Ω∞)
for k ≤ h+ l.

Proof. Surrounding the point 0 by a neighbourhood U0 with small diameter that
the intersection of Ω and U0 coincides with K. Consider a function u0 = ϕ0u,
where ϕ0 ∈ C̊∞(U0) and ϕ0 ≡ 1 in some neighbourhood of 0. The function u0

satisfies the system

L(x, t,D)u0 − (u0)tt = ϕ0f + L′(x, t,D)u,

where L′(x, t,D) is a linear differential operator having order less than 2. Coef-
ficients of this operator depend on the choice of the function ϕ0 and equal to 0
outside U0. Hence and from arguments analogous to the proof of Theorem 4.1, we
obtain

ϕ0u(x, t) =
l∑

s=0

cs(t)r−iλ(t)+sP3l,s(ln r) + u2(x, t), (4.11)

where P3l,s is a polynomial of order less than 3l + 1 and coefficients infinitely dif-
ferentiable functions of (ω, t), (cs)tk ∈ L2,loc(0,∞), (u2)tk ∈W 2+l,0

0 (e−(k+1)γt,Ω∞)
for k ≤ h+ l.

The function ϕ1u = (1− ϕ0)u equals to 0 in some neighbourhood of the conical
point. We can apply the known theorem on the smoothness of solutions of elliptic
problems in a smooth domain to this function and obtain ϕ1u ∈W 2+l

0 (Ω) for almost
every t ∈ (0,∞). Hence we have (ϕ1u)tk ∈ W 2+l,0

0 (e−(k+1)γt,Ω∞) for k ≤ h + l.
Since u = ϕ0u+ ϕ1u so from (4.11) we obtain (4.10). The proof is complete. �
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5. An example

In this section we apply the previous results to the Cauchy-Dirichlet problem
for the wave equation. Let Ω be a bounded domain in R2. It is shown that the
asymptotic of the generalized solution of the problem depends on the structure of
the boundary of the domain, and the right-hand side. We consider the Cauchy-
Dirichlet problem for wave equation in Ω∞:

∆u− utt = f(x, t) (5.1)

with initial conditions
u|t=0 = ut|t=0 = 0 (5.2)

and boundary condition
u|S∞ = 0, (5.3)

where ∆ is the Laplace operator.
Assume that in a neighborhood of the origin of coordinates, the boundary ∂Ω

coincides with a rectilinear angle having measure w0. Then spectral problem (4.1)-
(4.2) is Sturm-Liouville problem:

vww − λ2v = 0, 0 < w < w0, (5.4)

v(0) = v(w0) = 0. (5.5)

Eigenvalues of (5.4)-(5.5) are λk = ±i(πk/w0), k is a positive integer. They are
simple eigenvalues. Then it follows that mathopImλk = ±(πk/w0).

If w0 > π, then 0 < π/w0 < 1. On the other hand 0 < ω0 < 2π so (kπ/w0) > 1
for all k ≥ 2. Therefore, in the trip 0 ≤ Imλ ≤ 1 there exists only one simple
eigenvalue λ(t) = iπ/w0 of the problem (5.4)-(5.5). From Theorem 4.2 we obtain
the following result.

Theorem 5.1. Let u(x, t) be a generalized solution of (5.1)-(5.3) in the space
W 1,1(e−γt,Ω∞). In addition, suppose that ftk ∈ L∞(0,∞;L2(Ω)) for k ≤ h + 1,
ftk(x, 0) = 0 for k ≤ h. Then the following representation holds

u(x, t) = c(t)rπ/w0P (ln r) + u1(x, t),

where P is a polynomial having order less than 1 and its coefficients are infinitely
differentiable functions of (ω, t), ctk ∈ L2,loc(0,∞), (u1)tk ∈ W 2,0

0 (e−(2k+1)γt,Ω∞)
for k ≤ h.
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