Electronic Journal of Differential Equations, Vol. 2009(2009), No. 40, pp. 1–5. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

A NOTE ON NODAL NON-RADIALLY SYMMETRIC SOLUTIONS TO EMDEN-FOWLER EQUATIONS

MIGUEL RAMOS, WENMING ZOU

ABSTRACT. We prove the existence of an unbounded sequence of sign-changing and non-radially symmetric solutions to the problem $-\Delta u = |u|^{p-1}u$ in Ω , u = 0 on $\partial\Omega$, u(gx) = u(x), $x \in \Omega$, $g \in G$, where Ω is an annulus of \mathbb{R}^N $(N \geq 3), 1 and G is a non-transitive closed subgroup$ of the orthogonal group <math>O(N).

1. INTRODUCTION

In this note we consider the sign-changing and non-radially symmetric solutions to the following Emden-Fowler equation:

$$-\Delta u = |u|^{p-1}u, \quad x \in \Omega, \tag{1.1}$$

$$u = 0, \quad x \in \partial\Omega, \tag{1.2}$$

$$u(gx) = u(x), \quad x \in \Omega, \ g \in G, \tag{1.3}$$

where Ω is a unit ball $\Omega := \{x \in \mathbb{R}^N : |x| < 1\}$ or an annulus $\Omega := \{x \in \mathbb{R}^N : a < |x| < b\}, 0 < a < b, N \ge 3, 1 < p < (N+2)/(N-2)$ and G is a closed subgroup of the orthogonal group O(N) of degree N. Here gx is the product of the column vector x and the matrix g and a solution of (1.1)-(1.3) will be called a G-invariant solution.

It is known that (1.1)-(1.2) has infinitely many sign-changing radially symmetric solutions when 1 (cf. [1, 2, 3, 4]) and each one of them has finitely many zero points. The existence of sign-changing solutions of (1.1)-(1.2) with further information on the nodal domains is considered in [5] but no conclusions on the non-radial symmetry are derived.

Clearly, a radially symmetric solution is a *G*-invariant solution, for any subgroup G of O(N). The converse problem was considered in [6] where the author proved that there exist solutions which are *G*-invariant and not radially symmetric if G is not transitive on $S^{N-1} := \{x \in \mathbb{R}^N : |x| = 1\}$. In the sequel, we say that G is transitive if for any two points $x, y \in S^{N-1}$ there exists a $g \in G$ such that y = gx. Under this assumption, in [6, Theorem 1] it is proved that the problem (1.1)-(1.3) admits an unbounded sequence of *G*-invariant and non-radially symmetric

variational methods.

²⁰⁰⁰ Mathematics Subject Classification. 35J20, 35J25, 35B99.

 $Key\ words\ and\ phrases.$ Emden-Fowler equation; nodal solutions; symmetric solutions;

^{©2009} Texas State University - San Marcos.

Submitted February 19, 2009. Published March 19, 2009.

solutions. According to a celebrated theorem by Gidas, Ni and Nirenberg [8], nonradially symmetric solutions must change their sign if the domain is a ball. In this note we derive the conclusion that these solutions must indeed change sign in Ω , even if the domain is an annulus. Precisely, we prove the following.

Theorem 1.1. If G is not transitive on S^{N-1} , then there exists a sequence $\{w_k\}$ of solutions of (1.1)-(1.3) such that each w_k is G-invariant, sign-changing and non-radially symmetric. Moreover, $||w_k|| \to \infty$ as $k \to \infty$.

We denote by $\|\cdot\|$ the usual norm in $H_0^1(\Omega)$. We mention that, by construction, the solutions w_k have a well-determined Morse index (cf. [7, 9]), so that it is likely that further conclusions on their nodal domains can be derived, in the line of the work in [10].

We recall from [6, Corollaries 1 and 2] that Theorem 1.1 applies in case G is finite or has dimension not greater than N-2. A typical example is $G = \{Id, -Id\}$, where Id is the unit matrix. It follows that (1.1)-(1.3) has infinitely many *sign-changing* non-radially symmetric and even solutions. Another example is

$$G = \left\{ \begin{pmatrix} e & 0\\ 0 & w \end{pmatrix} : e \in O(m), \ w \in O(N-m) \right\}, \quad 1 \le m < N.$$

Then by Theorem 1.1, (1.1)-(1.3) has a sequence of solutions $\{u_k\}$ such that each u_k is sign-changing and $u_k(x) = u_k(|x'|, |x''|)$ for all $x' \in \mathbb{R}^m, x'' \in \mathbb{R}^{N-m}$ with $x = (x', x'') \in \Omega$, but $u_k(x) \neq u_k(|x|)$.

The proof of Theorem 1.1 is given in the next section. We combine the approach in [6] (namely the crucial estimates in Lemmas 2.1 and 2.2) with the method introduced in [9] for finding sign-changing solutions to superlinear elliptic equations such as the one in (1.1), which is essentially contained in the strict inequality (2.6) below.

2. Proof of Theorem 1.1

Let

$$H_0^1(\Omega, G) = \{ u \in H_0^1(\Omega) : u(gx) = u(x), x \in \Omega, g \in G \}$$

equipped with the inner product $\langle u, v \rangle = \int_{\Omega} \nabla u \cdot \nabla v dx$ and the corresponding norm $||u|| = \langle u, u \rangle^{1/2}$. We also denote by $||u||_{p+1}$ the $L^{p+1}(\Omega)$ norm of u. Solutions of (1.1)-(1.3) are critical points of the functional I defined by

$$I(u) = \frac{1}{2} \|u\|^2 - \frac{1}{p+1} \|u\|_{p+1}^{p+1}, \quad u \in H^1_0(\Omega, G).$$

We denote by $\{\lambda_k(\Omega, G)\}_{k \in \mathbb{N}}$ the increasing sequence of eigenvalues of the problem

$$-\Delta u = \lambda u, \quad x \in \Omega,$$

$$u = 0, \quad x \in \partial\Omega,$$

$$u(qx) = u(x), \quad x \in \Omega, \quad g \in G.$$

(2.1)

Lemma 2.1 (cf. [6, 1, 2, 3]). The set of radially symmetric critical points of I consists of a sequence $\{\pm u_k\}_{k\in\mathbb{N}}$ and the zero solution. Moreover,

$$0 < \beta_1 < \beta_2 < \cdots < \beta_k < \cdots \rightarrow \infty$$
, where $\beta_k = I(\pm u_k)$,

and there exists $A_0 > 0$ independent of k such that

$$A_0 k^{\frac{2(p+1)}{p-1}} \le \beta_k, \quad k \in \mathbb{N}$$

EJDE-2009/40

Let

$$G(x) = \{gx : g \in G\}, \quad x \in S^{N-1}.$$

Then G(x) is a closed submanifold of S^{N-1} and we denote by dim G(x) its dimension, so that $0 \leq \dim G(x) \leq N-1$. Let

$$m := m(G) := \max\{\dim G(x) : x \in S^{N-1}\}.$$

Lemma 2.2 (cf. [6]). Assume that G is not transitive on S^{N-1} . Then $0 \le m \le N-2$ and there exists a positive constant C_1 independent of k such that

$$\lambda_k(\Omega, G) \le C_1 k^{\frac{2}{N-m}}, \quad k \in \mathbb{N}.$$

Now, let E_k be the eigenspace associated to the eigenvalues $\lambda_i(\Omega, G)$ with $i = 1, \ldots, k$ and $S_k := \{u \in E_{k-1}^{\perp} : ||u||_{p+1} = 1\}$. As observed in [6], it follows from Lemma 2.2 that

$$\sup_{E_k} I \le B_0 k^{\frac{2(p+1)}{(N-m)(p-1)}},\tag{2.2}$$

while a simple computation shows that

$$\inf_{S_k} I \ge B_1 \lambda_k(\Omega, G)^\alpha - B_2, \tag{2.3}$$

for some positive constants B_0 , B_1 , B_2 independent of k, where α is given by $\alpha = \frac{(2+N)-p(N-2)}{2(p+1)} > 0.$

By observing that I(u) > 0 if u is a nontrivial critical point of I, we define

 $N_1 := \sup \{ c \in \mathbb{R} : c > 0 \text{ is a critical value of } I \text{ corresponding to } G \text{-invariant} \}$

sign-changing and non-radially symmetric critical points}

(We set $N_1 = 0$ in case this set is empty). To prove Theorem 1.1 we must show that the above set is nonempty and that $N_1 = \infty$. In the sequel we argue by contradiction by assuming that $N_1 < \infty$.

According to (2.3), we can fix $k_0 > 0$ such that

$$\inf_{S_k} I > N_1 \quad \text{for all } k \ge k_0. \tag{2.4}$$

Let

$$N_2 := \max\{k \in \mathbb{N} : A_0(k - k_0 + 1)^{\frac{2(p+1)}{p-1}} \le B_0 k^{\frac{2(p+1)}{(N-m)(p-1)}}\}.$$

Thanks to Lemma 2.2, N_2 is finite. We choose k^* large enough such that $k^* > \max\{k_0, N_2\}$. From now on we only consider the integers k lying in the interval $[k_0, k^*]$. Let

$$C^* = \sup_{E_{k^*}} I < \infty. \tag{2.5}$$

We also fix $R_k > 0$ in such a way that

 $||u||_{p+1} > 1$, I(u) < 0 for all $u \in E_k$ with $||u|| \ge R_k$.

We may assume that R_k increases with k.

Let P denote the positive cone of $H_0^1(\Omega, G)$, that is $P := \{u \in H_0^1(\Omega, G) : u(x) \ge 0, x \in \Omega\}$. It follows from [9, Lemma 2.4] that

$$\operatorname{dist}\left(\left(\cup_{k=k_0}^{k^*} S_k\right) \cap I^{C^*}, \pm P\right) > 0, \tag{2.6}$$

where $I^{C^*} := \{u : I(u) \leq C^*\}$. Let $D := \{u \in H^1_0(\Omega, G) : \operatorname{dist}(u, P) < \varepsilon_0\}$, $D^* := -D \cup D, \mathcal{U} := E \setminus D^*$. Then, for ε_0 small enough, we have

$$\left(\cup_{k=k_0}^{k^*} S_k\right) \cap I^{C^*} \subset \mathcal{U}.$$
(2.7)

Moreover, as shown in [11], $D^* \cap \mathcal{K} \subset (-P \cup P)$, where $\mathcal{K} := \{u \in H^1_0(\Omega, G) : I'(u) = 0\}$. For $k \in [k_0, k^*]$, we set

$$T_k := \{h : h \in C(\Theta_k, E), h \text{ is odd }, h(u) = u \text{ on } \partial \Theta_k\},\$$
$$\Theta_k := \{u \in E_k : ||u|| < R_k\}, \quad \partial \Theta_k := \{u \in E_k : ||u|| = R_k\}.$$

Define

$$Z_k := \left\{ h(\overline{\Theta_i \setminus A}) : h \in T_i, \ i \in [k, k^*], \ A \in \mathcal{E}, \\ \gamma(A) \le i - k, \ I(h(\overline{\Theta_i \setminus A})) \le C^* \right\},$$
(2.8)

where \mathcal{E} is the family of closed subsets A of $H_0^1(\Omega, G)$ such that $0 \notin A$ and $-u \in A$ whenever $u \in A$; $\gamma(A)$ denotes the genus of A. Clearly, $Z_k \neq \emptyset$ since $Id \in T_k$; also, $Z_{k+1} \subset Z_k$.

Lemma 2.3. $B \cap U \cap S_k \neq \emptyset$ for any $B \in Z_k$.

Proof. Thanks to (2.7) it is sufficient to prove that $B \cap S_k \neq \emptyset$. This, in turn, can be derived in a standard way. For completeness, we sketch the argument as in [12, Proposition 9.23]. We write $B = h(\overline{\Theta_i \setminus A})$ with $h \in T_i, k^* \ge i \ge k$ and $\gamma(A) \le i-k$. Let $W_1 := \{u \in \Theta_i : \|h(u)\|_{p+1} < 1\}$ and $W_2 := \{u \in \Theta_i : \|h(u)\|_{p+1} = 1\}$. Then W_1 is a symmetric bounded neighborhood of 0 in Θ_i and hence $\gamma(\partial W_1) = i$, while $\partial W_1 \subset W_2$ by our choice of R_k . Thus $\gamma(W_2) \ge i$ and so $\gamma(h(\overline{W_2 \setminus A})) \ge \gamma(\overline{W_2 \setminus A}) \ge$ k > k - 1. Hence $h(\overline{W_2 \setminus A}) \cap E_{k-1}^{\perp} \neq \emptyset$ and this proves the claim. \Box

Now, for $k_0 \leq k \leq k^*$ we define

$$c_k = \inf_{B \in Z_k} \max_{u \in B \cap \mathcal{U}} I(u).$$

Thanks to (2.4) and Lemma 2.3, c_k is well defined and $c_k \ge \inf_{S_k} I > N_1$. Clearly, $c_{k_0} \le c_{k_0+1} \le \cdots \le c_{k^*}$.

Lemma 2.4. If $c_k = c_{k+1} = \cdots = c_{k+\ell} =: c$, then $\gamma(\mathcal{K}_c \cap \mathcal{U}) \ge \ell + 1$, where $\mathcal{K}_c := \{u \in H^1_0(\Omega, G) : I(u) = c, I'(u) = 0\}.$

Proof. In view of a contradiction, assume that $\gamma(\mathcal{K}_c \cap \mathcal{U}) \leq \ell$. Since $\mathcal{K}_c^s := \mathcal{K}_c \cap \mathcal{U}$ is compact and $0 \notin \mathcal{K}_c^s$, there exists a closed neighborhood U of \mathcal{K}_c^s such that $\gamma(U) \leq \ell$. Let V be an open neighborhood of $\mathcal{K}_c \cap (-P \cup P) := \mathcal{K}_c^{pn}$ such that $V \subset D^*$. The well-known deformation lemma implies that for $\varepsilon > 0$ small enough we can find a flow $\eta \in C([0,1] \times E, E)$ such that $\eta(1, u)$ is odd in u, $\eta(1, I^{c+\varepsilon} \setminus (\overset{\circ}{U} \cup V)) \subset I^{c-\varepsilon}$ and $\eta(1, \cdot) = Id$ on $\partial \Theta_i$ for $i \in [k, k^*]$ (here we use the fact that I < 0 on $\partial \Theta_i$ and $c > N_1 \geq 0$). Moreover, the flow η keeps $\pm D$ invariant, that is $\eta(t, \pm D) \subset \pm D$ for every t (see for example [13, 11, 9, 14]). Hence, $\eta(1, I^{c+\varepsilon} \setminus \overset{\circ}{U}) \subset I^{c-\varepsilon} \cup D^*$. Choose $B \in Z_{k+\ell}$ such that $\max_{B \cap \mathcal{U}} I \leq c + \varepsilon$, $B = h(\overline{\Theta_i \setminus A})$ with $h \in T_i, i \in [k + \ell, k^*], \gamma(\underline{A}) \leq i - (k + \ell), \sup_B I \leq C^*$. Similarly to [12, Proposition 9.18] we find that $\overline{B \setminus U} \in Z_k$. Since η is a descending flow, also $\eta(1, \overline{B \setminus U}) \in Z_k$. But $\eta(1, \overline{B \setminus U}) \cap \mathcal{U} = \eta(1, \mathcal{U} \cap \overline{B \setminus U}) \cap \mathcal{U} \subset \eta(1, I^{c+\varepsilon} \setminus \overset{\circ}{U}) \cap \mathcal{U} \subset (I^{c-\varepsilon} \cup D^*) \cap \mathcal{U} \subset I^{c-\varepsilon}$. This contradicts the definition of c and proves the lemma. □

Proof of Theorem 1.1. Thanks to Lemma 2.4, we can conclude similarly to [6], and so we only sketch the argument. Since $c_k > N_1$ for all $k \in [k_0, k^*]$, by Lemma 2.1, we see that $\{c_{k_0}, c_{k_0+1}, \ldots, c_{k^*}\} \subset \{\beta_1, \beta_2, \ldots\}$. Assume $c_k = c_{k+1}$ for some $k \in [k_0, k^* - 1]$. Then, by Lemma 2.4, $\gamma(\mathcal{K}_{c_k} \cap \mathcal{U}) \geq 2$. But $c_k = \beta_i$ for some i,

4

 $\mathrm{EJDE}\text{-}2009/40$

and so $\mathcal{K}_{c_k} \cap \mathcal{U} = \{u_i, -u_i\}$. This is a contradiction and it follows that $\{c_k\}_{k=k_0}^{k^*}$ is strictly increasing. Therefore, $c_{k^*} = \beta_j$ for some $j \ge k^* - k_0 + 1$. Hence, by Lemma 2.1 and (2.2),

$$A_0(k^* - k_0 + 1)^{\frac{2(p+1)}{p-1}} \le \beta_j = c_{k^*} \le B_0(k^*)^{\frac{2(p+1)}{(N-m)(p-1)}}.$$

The very definition of N_2 implies $k^* \leq N_2$. This contradicts our choice of k^* and proves our claim that $N_1 = \infty$.

Acknowledgments. M. Ramos was supported by FCT, program POCI-ISFL-1-209 (Portugal/Feder-EU). W. Zou was supported by NSFC (10871109, 10571096), SRF-ROCS-SEM and the program of the Ministry of Education in China for NCET in Universities of China.

References

- R. Kajikiya; Sobolev norms of radially symmetric oscillatory solutions for superlinar elliptic equations, *Hiroshima Math. J.* 20 259–276 (1990).
- [2] R. Kajikiya; Radially symmetric solutions of semilinear elliptic equations, existence and Sobolev estimates, *Hiroshima Math. J.* 21 111–161 (1991).
- W.-M. Ni; Uniqueness of solutions of nonlinear Dirichlet problems, J. Differential Equations 50 289–304 (1983).
- [4] M. Struwe; Superlinear elliptic boundary value problems with ratational symmetry, Arch. Math. 39 233-240 (1982).
- [5] T. Bartsch; Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal. 186 117-152 (2001).
- [6] R. Kajikiya; Orthogonal group invariant solutions of the Emden-Fowler equation, Nonlinear Anal. TMA 44 845–896 (2001).
- [7] N. Ghoussoub; "Duality and perturbation methods in critical point theory", Cambridge Tracts in Mathematics, vol. 17, Cambridge University Press, Cambridge, 1993.
- [8] B. Gidas, W. Ni, L. Nirenberg; Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 209–243 (1979).
- [9] M. Ramos and W. Zou; Nodal solutions for perturbed symmetric elliptic equations via Morse index estimates, preprint CMAF 2007 (submitted).
- [10] X. F. Yang; Nodal sets and Morse indices of solutions of super-linear elliptic PDEs, J. Funct. Anal. 160 223–253 (1998).
- [11] M. Conti, L. Merizzi and S. Terracini; Remarks on variational methods and lower-upper solutions, NoDEA 6 371–393 (1999).
- [12] P. Rabinowitz; "Minimax methods in critical point theory with applications to differential equations", CBMS Reg. Conf. 65, Amer. Math. Soc., Providence, R. I., 1986.
- [13] T. Bartsch, Z. Liu and T. Weth; Sign changing solutions of superlinear Schrödinger equations, Comm. Partial Differential Equations 29 25–42 (2004).
- [14] M. Schechter and W. Zou; Sign-changing critical points of linking type theorems, Trans. Amer. Math. Soc. 358 5293–5318 (2006).

MIGUEL RAMOS

UNIVERSIDADE DE LISBOA, CMAF-FACULTY OF SCIENCE, AV. PROF. GAMA PINTO, 2, 1649-003-LISBOA, PORTUGAL

E-mail address: mramos@ptmat.fc.ul.pt

Wenming Zou

DEPARTMENT OF MATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY, BEIJING 100084, CHINA *E-mail address:* wzou@math.tsinghua.edu.cn