
Electronic Journal of Differential Equations, Vol. 2009(2009), No. 40, pp. 1–5.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

A NOTE ON NODAL NON-RADIALLY SYMMETRIC
SOLUTIONS TO EMDEN-FOWLER EQUATIONS

MIGUEL RAMOS, WENMING ZOU

Abstract. We prove the existence of an unbounded sequence of sign-changing

and non-radially symmetric solutions to the problem −∆u = |u|p−1u in Ω,

u = 0 on ∂Ω, u(gx) = u(x), x ∈ Ω, g ∈ G, where Ω is an annulus of RN

(N ≥ 3), 1 < p < (N + 2)/(N − 2) and G is a non-transitive closed subgroup

of the orthogonal group O(N).

1. Introduction

In this note we consider the sign-changing and non-radially symmetric solutions
to the following Emden-Fowler equation:

−∆u = |u|p−1u, x ∈ Ω, (1.1)

u = 0, x ∈ ∂Ω, (1.2)

u(gx) = u(x), x ∈ Ω, g ∈ G, (1.3)

where Ω is a unit ball Ω := {x ∈ RN : |x| < 1} or an annulus Ω := {x ∈ RN : a <
|x| < b}, 0 < a < b, N ≥ 3, 1 < p < (N + 2)/(N − 2) and G is a closed subgroup
of the orthogonal group O(N) of degree N . Here gx is the product of the column
vector x and the matrix g and a solution of (1.1)-(1.3) will be called a G-invariant
solution.

It is known that (1.1)-(1.2) has infinitely many sign-changing radially symmetric
solutions when 1 < p < (N + 2)/(N − 2) (cf. [1, 2, 3, 4]) and each one of them
has finitely many zero points. The existence of sign-changing solutions of (1.1)-
(1.2) with further information on the nodal domains is considered in [5] but no
conclusions on the non-radial symmetry are derived.

Clearly, a radially symmetric solution is a G-invariant solution, for any subgroup
G of O(N). The converse problem was considered in [6] where the author proved
that there exist solutions which are G-invariant and not radially symmetric if G
is not transitive on SN−1 := {x ∈ RN : |x| = 1}. In the sequel, we say that G is
transitive if for any two points x, y ∈ SN−1 there exists a g ∈ G such that y = gx.
Under this assumption, in [6, Theorem 1] it is proved that the problem (1.1)-
(1.3) admits an unbounded sequence of G-invariant and non-radially symmetric
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solutions. According to a celebrated theorem by Gidas, Ni and Nirenberg [8], non-
radially symmetric solutions must change their sign if the domain is a ball. In this
note we derive the conclusion that these solutions must indeed change sign in Ω,
even if the domain is an annulus. Precisely, we prove the following.

Theorem 1.1. If G is not transitive on SN−1, then there exists a sequence {wk}
of solutions of (1.1)-(1.3) such that each wk is G-invariant, sign-changing and
non-radially symmetric. Moreover, ‖wk‖ → ∞ as k →∞.

We denote by ‖ · ‖ the usual norm in H1
0 (Ω). We mention that, by construction,

the solutions wk have a well-determined Morse index (cf. [7, 9]), so that it is likely
that further conclusions on their nodal domains can be derived, in the line of the
work in [10].

We recall from [6, Corollaries 1 and 2] that Theorem 1.1 applies in case G is finite
or has dimension not greater than N−2. A typical example is G = {Id,−Id}, where
Id is the unit matrix. It follows that (1.1)-(1.3) has infinitely many sign-changing
non-radially symmetric and even solutions. Another example is

G =
{ (

e 0
0 w

)
: e ∈ O(m), w ∈ O(N −m)

}
, 1 ≤ m < N.

Then by Theorem 1.1, (1.1)-(1.3) has a sequence of solutions {uk} such that each
uk is sign-changing and uk(x) = uk(|x′|, |x′′|) for all x′ ∈ Rm, x′′ ∈ RN−m with
x = (x′, x′′) ∈ Ω, but uk(x) 6= uk(|x|).

The proof of Theorem 1.1 is given in the next section. We combine the approach
in [6] (namely the crucial estimates in Lemmas 2.1 and 2.2) with the method in-
troduced in [9] for finding sign-changing solutions to superlinear elliptic equations
such as the one in (1.1), which is essentially contained in the strict inequality (2.6)
below.

2. Proof of Theorem 1.1

Let
H1

0 (Ω, G) = {u ∈ H1
0 (Ω) : u(gx) = u(x), x ∈ Ω, g ∈ G}

equipped with the inner product 〈u, v〉 =
∫
Ω
∇u ·∇vdx and the corresponding norm

‖u‖ = 〈u, u〉1/2. We also denote by ‖u‖p+1 the Lp+1(Ω) norm of u. Solutions of
(1.1)-(1.3) are critical points of the functional I defined by

I(u) =
1
2
‖u‖2 − 1

p + 1
‖u‖p+1

p+1, u ∈ H1
0 (Ω, G).

We denote by {λk(Ω, G)}k∈N the increasing sequence of eigenvalues of the problem

−∆u = λu, x ∈ Ω,

u = 0, x ∈ ∂Ω,

u(gx) = u(x), x ∈ Ω, g ∈ G.

(2.1)

Lemma 2.1 (cf. [6, 1, 2, 3]). The set of radially symmetric critical points of I
consists of a sequence {±uk}k∈N and the zero solution. Moreover,

0 < β1 < β2 < · · · < βk < · · · → ∞, where βk = I(±uk),

and there exists A0 > 0 independent of k such that

A0k
2(p+1)

p−1 ≤ βk, k ∈ N.
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Let
G(x) = {gx : g ∈ G}, x ∈ SN−1.

Then G(x) is a closed submanifold of SN−1 and we denote by dim G(x) its dimen-
sion, so that 0 ≤ dim G(x) ≤ N − 1. Let

m := m(G) := max{dim G(x) : x ∈ SN−1}.

Lemma 2.2 (cf. [6]). Assume that G is not transitive on SN−1. Then 0 ≤ m ≤
N − 2 and there exists a positive constant C1 independent of k such that

λk(Ω, G) ≤ C1k
2

N−m , k ∈ N.

Now, let Ek be the eigenspace associated to the eigenvalues λi(Ω, G) with i =
1, . . . , k and Sk := {u ∈ E⊥

k−1 : ‖u‖p+1 = 1}. As observed in [6], it follows from
Lemma 2.2 that

sup
Ek

I ≤ B0k
2(p+1)

(N−m)(p−1) , (2.2)

while a simple computation shows that

inf
Sk

I ≥ B1λk(Ω, G)α −B2, (2.3)

for some positive constants B0, B1, B2 independent of k, where α is given by
α = (2+N)−p(N−2)

2(p+1) > 0.
By observing that I(u) > 0 if u is a nontrivial critical point of I, we define

N1 := sup
{
c ∈ R : c > 0 is a critical value of I corresponding to G-invariant

sign-changing and non-radially symmetric critical points
}

(We set N1 = 0 in case this set is empty). To prove Theorem 1.1 we must show
that the above set is nonempty and that N1 = ∞. In the sequel we argue by
contradiction by assuming that N1 < ∞.

According to (2.3), we can fix k0 > 0 such that

inf
Sk

I > N1 for all k ≥ k0. (2.4)

Let
N2 := max{k ∈ N : A0(k − k0 + 1)

2(p+1)
p−1 ≤ B0k

2(p+1)
(N−m)(p−1) }.

Thanks to Lemma 2.2, N2 is finite. We choose k∗ large enough such that k∗ >
max{k0, N2}. From now on we only consider the integers k lying in the interval
[k0, k

∗]. Let
C∗ = sup

Ek∗
I < ∞. (2.5)

We also fix Rk > 0 in such a way that

‖u‖p+1 > 1, I(u) < 0 for all u ∈ Ek with ‖u‖ ≥ Rk.

We may assume that Rk increases with k.
Let P denote the positive cone of H1

0 (Ω, G), that is P := {u ∈ H1
0 (Ω, G) : u(x) ≥

0, x ∈ Ω}. It follows from [9, Lemma 2.4] that

dist
((

∪k∗

k=k0
Sk

)
∩ IC∗ ,±P

)
> 0, (2.6)

where IC∗ := {u : I(u) ≤ C∗}. Let D := {u ∈ H1
0 (Ω, G) : dist(u, P ) < ε0},

D∗ := −D ∪D, U := E\D∗. Then, for ε0 small enough, we have(
∪k∗

k=k0
Sk

)
∩ IC∗ ⊂ U . (2.7)
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Moreover, as shown in [11], D∗ ∩ K ⊂ (−P ∪ P ), where K := {u ∈ H1
0 (Ω, G) :

I ′(u) = 0}. For k ∈ [k0, k
∗], we set

Tk := {h : h ∈ C(Θk, E), h is odd , h(u) = u on ∂Θk},
Θk := {u ∈ Ek : ‖u‖ < Rk}, ∂Θk := {u ∈ Ek : ‖u‖ = Rk}.

Define
Zk :=

{
h(Θi\A) : h ∈ Ti, i ∈ [k, k∗], A ∈ E ,

γ(A) ≤ i− k, I(h(Θi\A)) ≤ C∗},
(2.8)

where E is the family of closed subsets A of H1
0 (Ω, G) such that 0 6∈ A and −u ∈ A

whenever u ∈ A; γ(A) denotes the genus of A. Clearly, Zk 6= ∅ since Id ∈ Tk; also,
Zk+1 ⊂ Zk.

Lemma 2.3. B ∩ U ∩ Sk 6= ∅ for any B ∈ Zk.

Proof. Thanks to (2.7) it is sufficient to prove that B ∩ Sk 6= ∅. This, in turn, can
be derived in a standard way. For completeness, we sketch the argument as in [12,
Proposition 9.23]. We write B = h(Θi\A) with h ∈ Ti, k

∗ ≥ i ≥ k and γ(A) ≤ i−k.
Let W1 := {u ∈ Θi : ‖h(u)‖p+1 < 1} and W2 := {u ∈ Θi : ‖h(u)‖p+1 = 1}. Then
W1 is a symmetric bounded neighborhood of 0 in Θi and hence γ(∂W1) = i, while
∂W1 ⊂ W2 by our choice of Rk. Thus γ(W2) ≥ i and so γ(h(W2\A)) ≥ γ(W2\A) ≥
k > k − 1. Hence h(W2\A) ∩ E⊥

k−1 6= ∅ and this proves the claim. �

Now, for k0 ≤ k ≤ k∗ we define

ck = inf
B∈Zk

max
u∈B∩U

I(u).

Thanks to (2.4) and Lemma 2.3, ck is well defined and ck ≥ infSk
I > N1. Clearly,

ck0 ≤ ck0+1 ≤ · · · ≤ ck∗ .

Lemma 2.4. If ck = ck+1 = · · · = ck+` =: c, then γ(Kc ∩ U) ≥ ` + 1, where
Kc := {u ∈ H1

0 (Ω, G) : I(u) = c, I ′(u) = 0}.

Proof. In view of a contradiction, assume that γ(Kc∩U) ≤ `. Since Ks
c := Kc∩U is

compact and 0 6∈ Ks
c , there exists a closed neighborhood U of Ks

c such that γ(U) ≤ `.
Let V be an open neighborhood of Kc ∩ (−P ∪ P ) := Kpn

c such that V ⊂ D∗. The
well-known deformation lemma implies that for ε > 0 small enough we can find a

flow η ∈ C([0, 1] × E,E) such that η(1, u) is odd in u, η(1, Ic+ε\(
◦
U ∪V )) ⊂ Ic−ε

and η(1, ·) = Id on ∂Θi for i ∈ [k, k∗] (here we use the fact that I < 0 on ∂Θi and
c > N1 ≥ 0). Moreover, the flow η keeps ±D invariant, that is η(t,±D) ⊂ ±D

for every t (see for example [13, 11, 9, 14]). Hence, η(1, Ic+ε\
◦
U) ⊂ Ic−ε ∪ D∗.

Choose B ∈ Zk+` such that maxB∩U I ≤ c + ε, B = h(Θi\A) with h ∈ Ti, i ∈
[k + `, k∗], γ(A) ≤ i − (k + `), supB I ≤ C∗. Similarly to [12, Proposition 9.18]
we find that B\U ∈ Zk. Since η is a descending flow, also η(1, B\U) ∈ Zk. But

η(1, B\U)∩ U = η(1,U ∩B\U)∩ U ⊂ η(1, Ic+ε\
◦
U)∩ U ⊂ (Ic−ε ∪D∗)∩ U ⊂ Ic−ε.

This contradicts the definition of c and proves the lemma. �

Proof of Theorem 1.1. Thanks to Lemma 2.4, we can conclude similarly to [6], and
so we only sketch the argument. Since ck > N1 for all k ∈ [k0, k

∗], by Lemma
2.1, we see that {ck0 , ck0+1, . . . , ck∗} ⊂ {β1, β2, . . . }. Assume ck = ck+1 for some
k ∈ [k0, k

∗ − 1]. Then, by Lemma 2.4, γ(Kck
∩ U) ≥ 2. But ck = βi for some i,
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and so Kck
∩ U = {ui,−ui}. This is a contradiction and it follows that {ck}k∗

k=k0
is

strictly increasing. Therefore, ck∗ = βj for some j ≥ k∗−k0 +1. Hence, by Lemma
2.1 and (2.2),

A0(k∗ − k0 + 1)
2(p+1)

p−1 ≤ βj = ck∗ ≤ B0(k∗)
2(p+1)

(N−m)(p−1) .

The very definition of N2 implies k∗ ≤ N2. This contradicts our choice of k∗ and
proves our claim that N1 = ∞. �
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