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A NOTE ON NODAL NON-RADIALLY SYMMETRIC
SOLUTIONS TO EMDEN-FOWLER EQUATIONS

MIGUEL RAMOS, WENMING ZOU

ABSTRACT. We prove the existence of an unbounded sequence of sign-changing
and non-radially symmetric solutions to the problem —Awu = |[u[P~ 1y in Q,
u = 0 on 99, u(ger) = u(z), * € Q, g € G, where Q is an annulus of RV
(N>3),1<p<(N+2)/(N—2)and G is a non-transitive closed subgroup
of the orthogonal group O(N).

1. INTRODUCTION

In this note we consider the sign-changing and non-radially symmetric solutions
to the following Emden-Fowler equation:

—Au = [ulf"tu, x€Q, (1.1)
u=0, z€dQ, (1.2)
u(gr) =u(x), x€Q, ged, (1.3)

where € is a unit ball Q := {z € RY : |[z| < 1} or an annulus Q := {z € RY :a <
|z] <b},0<a<b N>3,1<p<(N+2)/(IN—-2)and G is a closed subgroup
of the orthogonal group O(N) of degree N. Here gz is the product of the column
vector z and the matrix g and a solution of - will be called a G-invariant
solution.

It is known that — has infinitely many sign-changing radially symmetric
solutions when 1 < p < (N +2)/(N —2) (cf. [1, 2, B, 4]) and each one of them
has finitely many zero points. The existence of sign-changing solutions of —
with further information on the nodal domains is considered in [5] but no
conclusions on the non-radial symmetry are derived.

Clearly, a radially symmetric solution is a G-invariant solution, for any subgroup
G of O(N). The converse problem was considered in [6] where the author proved
that there exist solutions which are G-invariant and not radially symmetric if G
is not transitive on S¥~! := {z € RY : |z| = 1}. In the sequel, we say that G is
transitive if for any two points z,y € S™V~! there exists a g € G such that y = gz.
Under this assumption, in [6, Theorem 1] it is proved that the problem -
admits an unbounded sequence of G-invariant and non-radially symmetric
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solutions. According to a celebrated theorem by Gidas, Ni and Nirenberg []], non-
radially symmetric solutions must change their sign if the domain is a ball. In this
note we derive the conclusion that these solutions must indeed change sign in €2,
even if the domain is an annulus. Precisely, we prove the following.

Theorem 1.1. If G is not transitive on S™V~1, then there exists a sequence {wy}
of solutions of (1.1)-(1.3) such that each wy is G-invariant, sign-changing and
non-radially symmetric. Moreover, ||wg| — oo as k — oo.

We denote by || - || the usual norm in H{(Q2). We mention that, by construction,
the solutions wy have a well-determined Morse index (cf. [7,[]), so that it is likely
that further conclusions on their nodal domains can be derived, in the line of the
work in [10].

We recall from [6, Corollaries 1 and 2] that Theorem [1.1]applies in case G is finite
or has dimension not greater than N —2. A typical example is G = {Id, —Id}, where
Id is the unit matrix. It follows that — has infinitely many sign-changing
non-radially symmetric and even solutions. Another example is

G:{<8 2}):660(7%), weON-m)}, 1<m<N.

Then by Theorem — has a sequence of solutions {uy} such that each
uy, is sign-changing and wuy(z) = ug(|2'],|z"]) for all 2/ € R™ 2" € RN~™ with
x=(a/,2") € Q, but ug(z) # ur(|z]).

The proof of Theorem [I-1]is given in the next section. We combine the approach
in [6] (namely the crucial estimates in Lemmas and with the method in-
troduced in [9] for finding sign-changing solutions to superlinear elliptic equations
such as the one in , which is essentially contained in the strict inequality
below.

2. PROOF OoF THEOREM [ 1]
Let
H3(Q,G) ={uec Hy(Q) : u(gz) = u(z),r € Q,g € G}
equipped with the inner product (u,v) = [, Vu-Vodz and the corresponding norm

]l = (u,u)/2. We also denote by ||u||,+1 the LP*1(Q) norm of u. Solutions of
(1.1)-(L.3) are critical points of the functional I defined by

1 1 .
I(u) = §HU||2 - ﬁ\\ulliil, u € H&(Q7G)~

We denote by {\;(£2, G)}ren the increasing sequence of eigenvalues of the problem

—Au=Xu, x€,
u=0, x€df, (2.1)
u(gr) =u(x), xz€Q, geq.
Lemma 2.1 (cf. [0, I, 2} B]). The set of radially symmetric critical points of I
consists of a sequence {ug}ren and the zero solution. Moreover,
0< B <Ba<- <Prp<-+—00, wherepy=1I(Fuyg),
and there exists Ay > 0 independent of k such that

2(p+1)

Aok 71 < By, keN.
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Let
Gx)={gr:9ec G}, zeSV L
Then G(z) is a closed submanifold of SN =1 and we denote by dim G(z) its dimen-
sion, so that 0 < dimG(z) < N — 1. Let

m :=m(G) := max{dim G(z) : x € SV '}

Lemma 2.2 (cf. [6]). Assume that G is not transitive on SN=1. Then 0 < m <
N — 2 and there exists a positive constant Cy independent of k such that

Me(Q,G) < Ck™ o, keN.

Now, let Ej be the eigenspace associated to the eigenvalues \;(2, G) with i =

1,....,k and Sy := {u € Ei- | : |Jullp+1 = 1}. As observed in [6], it follows from
Lemma 2.2] that i)
sup I < Bok@™W=mo-1) (2.2)
Ey
while a simple computation shows that
lélkfl Z Bl)\k(Q; G)a - BQ, (23)

for some positive constants By, By, By independent of k, where « is given by
(2+N)—p(N-2) >0

2(p+1) :
By observing that I(u) > 0 if u is a nontrivial critical point of I, we define

o =

Ni :=sup {c € R: ¢ > 0is a critical value of I corresponding to G-invariant
sign-changing and non-radially symmetric critical points}

(We set N3 = 0 in case this set is empty). To prove Theorem we must show
that the above set is nonempty and that N7 = oo. In the sequel we argue by
contradiction by assuming that Ny < co.

According to , we can fix kg > 0 such that

iglf[ > N; for all k > k. (2.4)
k

Let 2(p+1) 2(p+1)

Ny := max{k: eN: Ao(k‘ — ko + 1) =1 < BgkW-m)(p-1) }
Thanks to Lemma [2.2] N, is finite. We choose k* large enough such that k* >
max{kg, No}. From now on we only consider the integers k lying in the interval

ko, k*]. Let

C* =supl < oo. (2.5)
B

We also fix R > 0 in such a way that
|lullp+1 > 1, I(u) <0 forallu € Ey with ||u| > Ry.

We may assume that Ry increases with k.
Let P denote the positive cone of H} (2, G), that is P := {u € H}(Q,G) : u(x) >
0,z € }. It follows from [9, Lemma 2.4] that

dist (( Uk Sk) N IC*,iP) >0, (2.6)

where I¢" := {u : I(u) < C*}. Let D := {u € H}Q,G) : dist(u, P) < &0},
D*:=—-DUD, U := E\D*. Then, for gy small enough, we have

(UF_i, Se) NIY U, (2.7)



4 M. RAMOS, W. ZOU EJDE-2009/40

Moreover, as shown in [I1], D* N K C (=P U P), where K := {u € H}(Q,QG) :
I'(u) = 0}. For k € [ko, k*], we set
Tp:={h:heC(Ok, E),his odd , h(u) = u on 00},

O := {u € Fy : ||uH < Rk}, 00y = {u € FEy : ||u|| = Rk}.

Define
Z ={h(©;\A) :heT;, i€k k"], A€k,
A(A) < i -k, I(h(ONA) < O},

where € is the family of closed subsets A of H} (2, G) such that 0 ¢ A and —u € A

whenever u € A; v(A) denotes the genus of A. Clearly, Z; # () since Id € Ty; also,
Zk+1 C Zp.

Lemma 2.3. BNUN Sk # D for any B € Zy.

Proof. Thanks to it is sufficient to prove that B N Sy # (). This, in turn, can
be derived in a standard way. For completeness, we sketch the argument as in [12]
Proposition 9.23]. We write B = h(©;\A) with h € Tj, k* > i > k and y(A) <i—k.
Let Wy :={u € ©; : [|[h(u)|lp+1 < 1} and Wy := {u € ©; : ||h(u)|/p+1 = 1}. Then
W1 is a symmetric bounded neighborhood of 0 in ©; and hence v(0W7) = ¢, while
OW1 C Wa by our choice of Ry. Thus v(W2) > i and so y(h(W2\A)) > v(Wa\A) >
k >k — 1. Hence h(W2\A) N Ei- | # 0 and this proves the claim. O

Now, for kg < k < k* we define

(2.8)

¢ = inf max I(u).
BEZ, weBNU

Thanks to (2.4) and Lemma [2.3] ¢, is well defined and ¢, > infg, I > Np. Clearly,
Chy < Chot1 < oo <O

Lemma 2.4. If ¢x = cpy1 = -+ = Cpye =: ¢, then y(K. NU) > £+ 1, where
Ke:={ue H}(QG): I(u) =c,I'(u) = 0}.

Proof. In view of a contradiction, assume that y(KC.NU) < £. Since K2 := K.NU is
compact and 0 ¢ /3, there exists a closed neighborhood U of K¢ such that v(U) < 2.
Let V be an open neighborhood of I, N (—P U P) := K?™ such that V C D*. The
well-known deformation lemma implies that for € > 0 small enough we can find a
flow n € C([0,1] x E, E) such that n(1,u) is odd in u, n(1, I°*e\(U UV)) C I¢~¢
and n(1,-) = Id on 90, for i € [k, k*] (here we use the fact that I < 0 on 00, and
¢ > Ny > 0). Moreover, the flow n keeps D invariant, that is n(t,+D) C +£D

for every t (see for example [13| 11}, [9, [14]). Hence, n(1,1¢T¢\ U) C I°¢ U D*.
Choose B € Zj4¢ such that maxpry I < ¢+ ¢, B = h(0;\A) with h € T;,i €
[k + £,k*],v(A) < i— (k+£),supg I < C*. Similarly to [12, Proposition 9.18]
we find that B\U € Zj. Since 7 is a descending flow, also 7(1, B\U) € Z;. But
n(1, B\U) U = (1, n B\U) U C n(1, I\ U)NU © (I U D*) U C I°<.
This contradicts the definition of ¢ and proves the lemma. O

Proof of Theorem[I.1]. Thanks to Lemma we can conclude similarly to [6], and
so we only sketch the argument. Since ¢, > Ny for all k € [ko, k*], by Lemma
we see that {cry, Chot1,---sCk*} C {01, 02,...}. Assume ¢ = cgy1 for some
k € [ko,k* —1]. Then, by Lemma Y(Ke, NU) > 2. But ¢ = §; for some i,
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and so K., NU = {u;, —u;}. This is a contradiction and it follows that {ck}’,j*:ko is
strictly increasing. Therefore, cx+ = 3; for some j > k* — kg + 1. Hence, by Lemma

B and (3.

2(p+1

) 2(p+1)
Ao(k* — ko —+ 1) p—1 S ﬂj = Cl~* S Bo(k*)(N—M)(P—l) .

The very definition of Ny implies k* < N5. This contradicts our choice of k* and
proves our claim that N; = oo. (I
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