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EXISTENCE OF MILD SOLUTIONS OF A SEMILINEAR
EVOLUTION DIFFERENTIAL INCLUSIONS WITH NONLOCAL

CONDITIONS

REEM A. AL-OMAIR, AHMED G. IBRAHIM

Abstract. In this paper we prove the existence of a mild solution for a semi-
linear evolution differential inclusion with nonlocal condition and governed by

a family of linear operators, not necessarily bounded or closed, in a Banach

space. No compactness assumption is assumed on the evolution operator gen-
erated by the family operators. Also, we prove that the set of mild solutions

is compact.

1. Introduction

The study of Cauchy problems with nonlocal conditions, which is a generalization
for the classical Cauchy problems with initial condition, was motivated by physical
problems (see [2, 17]). The pioneering work on nonlocal conditions problems is due
to Byszewski [6, 7, 8, 9]. In the few past years, several papers have been devoted to
study the existence of solutions for differential equations or differential inclusions
with nonlocal conditions. Among others, we refer the reader to [1, 4, 5, 12, 16, 20].

Let E be a Banach space, I = [0, b], b > 0, C(I, E) be the Banach space of
all continuous functions from I to E with the norm of uniform convergence. Let
L(E) be the space of bounded linear operators on E and {A(t) : t ∈ I} be a family
of densely defined linear operator (not necessarily bounded or closed) on E and
T : ∆ = {(t, s) : 0 ≤ s ≤ t ≤ b} → L(E) be the evolution operator generated by
the family {A(t) : t ∈ I}.

Let F be a Carathèodory type multifunction from I × E to the collection of all
nonempty convex compact subsets of E, and let g : C(I, E) → E be a function.

Consider the following semilinear differential inclusion with nonlocal condition:

x′(t) ∈ A(t)x(t) + F (t, x(t)), t ∈ I

x(0) = g(x)
(1.1)

By a mild solution of problem (1.1) we mean a continuous function x : I → E such
that

x(t) = T (t, 0)g(x) +
∫ t

0

T (t, s)f(s)ds, t ∈ I
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where f is a Bochner integrable function such that f(s) ∈ F (s, x(s)), a.e. t ∈ I.
In the present paper we employ the methods of Kamenskii, Obukhowskii and

Zecca [18] and Cardinali and Rubbioni [10] to prove the existence of mild solution
for (p) without a compactness assumption on the evolution operator T which is
generated by the family {A(t) : t ∈ I}. The price that we pay to achieve this aim
is that we assume that F satisfies a compactness condition involving the Hausdorff
measure of noncompactness.

We would like to mention that in a recent paper Fan, Dong and Li [16] proved
the existence of mild solution for the semilinear differential equations with nonlocal
conditions in Banach space

x′(t) = A
(
x(t)

)
+ f(t, x(t)), t ∈ (0, b]

x(0) = g(x),
(1.2)

where A is the infinitesimal generator of a strongly continuous semigroup of bounded
linear operators {U(t) : t ∈ I}, f : I ×E → E is a Carathèodory type function and
satisfies a compactness condition involving the Hausdorff measure of noncompact-
ness and g is a continuous compact function.

Note that Corollary 3.3 generalizes the result of Fan, Dong and Li [16] to the
case when the function f become a multifunction. Moreover, since the nonlocal
conditions Cauchy problems is a generalization for the classical Cauchy problems
with initial conditions, our work generalizes many results in the literature, see for
example [10, 14, 18]. For differential inclusions with initial condition, we refer the
reader to [13, 15].

Our basic tools are the methods and results for semilinear differential inclusions,
the properties of non-compact measure and fixed point techniques.

2. Preliminaries and notation

Let I = [0, b], b > 0 , (E, ‖ · ‖) be a real Banach space, C(I, E) the space of E-
valued continuous functions on I with the uniform norm ‖x‖C = sup{‖x(t)‖, t ∈
I}, L1(I, E) the space of E−valued Bochner integrable functions on I with the
norm ‖f‖L1 =

∫ b

0
‖f(t)‖dt and Pk(E) (Pck(E)) the collection of nonempty compact

(convex compact) subsets of E

Definition 2.1. Let X and Y be two topological spaces and let P (Y ) the family
of nonempty subsets of Y . A multifunction G : X → P (Y ) is said to be upper
semicontinuous (u.s.c.) if G−1(V ) = {x ∈ X : G(x) ⊆ V } is an open subset
of X for every open V ⊆ Y . The multifunction G is called closed if its graph
ΓG = {(x, y) ∈ X × Y : y ∈ G(x)} is closed subset of the topological space X × Y .
For details and equivalent definitions see [11].

Definition 2.2. Let (A,≥) be a partially ordered set. A function β : P (E) → A
is called a measure of noncompactness (MNC) in E if

β(coΩ) = β(Ω)

for every Ω ∈ P (E).

Definition 2.3. A measure of noncompactness β is called:
(i) monotone if Ω0,Ω1 ∈ P (E), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1)
(ii) nonsingular if β({a} ∪ Ω) = β(Ω) for every a ∈ E, Ω ∈ P (E);
(iii) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.
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As an example of the measure of noncompactness possessing all these properties is
the Hausdorff of MNC which is defined by

χ(Ω) = inf{ε > 0 : Ω has a finite ε− net}.
For more information about the measure of noncompactness we refer the reader to
[3].

Definition 2.4. A multifunction G : E → Pk(E) is said to be χ-condensing if for
every bounded subset Ω ⊆ E the relation

χ(G(Ω)) ≥ χ(Ω)

implies the relative compactness of Ω.

Definition 2.5. A countable set {fn : n ≥ 1} ⊆ L1(I, E) is said to be semicompact
if

(i) it is integrably bounded: ‖fn(t)‖ ≤ ω(t) for a.e. t ∈ I and every n ≥ 1
where ω ∈ L1(I, R+)

(ii) the set {fn(t) : n ≥ 1} is relatively compact in E for a.e. t ∈ I.
Now, let for every t ∈ I = I , A(t) : E → E be a linear operator such that

(i) For all t ∈ I, D(A(t)) = D(A) ⊆ E is independent of t.
(ii) For each s ∈ I and each x ∈ E there is a unique solution v : [s, b] → E for

the evolution equation
v′(t) = A(t)v(t), t ∈ [s, b]

v(s) = x.
(2.1)

In this case an operator T can be defined as

T : ∆ = {(t, s) : 0 ≤ s ≤ t ≤ b} → L(E), T (t, s)(x) = v(t),

where v is the unique solution of (2.1) and L(E) is the family of linear bounded
operators on E.

Definition 2.6. The operator T is called the evolution operator generated by the
family {A(t) : t ∈ I}. It is known that (see [19])

(1) T (s, s) = IE

(2) T (t, r)T (r, s) = T (t, s), for all 0 ≤ s ≤ r ≤ t ≤ b.
(3) each operator T (t, s) is strongly differentiable and

∂T (t, s)
∂t

= A(t)T (t, s)
∂T (t, s)

∂s
= −T (t, s)A(s)

Definition 2.7. The operator G : L1(I,X) → C(I, X) defined by

Gf(t) =
∫ t

0

T (t, s)f(s)ds (2.2)

is called the generalized Cauchy operator, where T (., .) is the evolution operator
generated by the family of operators {A(t) : t ∈ I}.

In the sequel we will need the following known results.

Lemma 2.8 (cite[Proposition 4.2.1]k1). Every semicompact set is weakly compact
in the space L1(I, E).

Lemma 2.9 ([10, Theorem 2]). The generalized Cauchy operator G satisfies the
properties
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(G1) there exists ζ ≥ 0 such that

‖Gf(t)−Gh(t)‖ ≤ ζ

∫ t

0

‖f(s)− h(s)‖ds

for every f, h ∈ L1(I, E), t ∈ I.
(G2) for any compact K ⊆ E and sequence (fn)n≥1, fn ∈ L1(I, E) such that

for all n ≥ 1, fn(t) ∈ K, a. e. t ∈ I, the weak convergence fn ⇀ f0 in
L1(I, E) implies the convergence Gfn → Gf0 in C(I, E).

Lemma 2.10 ([18, Theorem 5.1]). Let S : L1(I, E) → C(I, E) be an operator
satisfying condition (G2) and the following Lipschits condition (weaker than (G1))
(G1’)

‖Sf − Sg‖C(I,E) ≤ ζ‖f − g‖L1(I,E).

Then for every semicompact set {fn}+∞n=1 ⊂ L1(I, E) the set {Sfn}+∞n=1 is rela-
tively compact in C(I, E). Moreover, if (fn)n≥1 converges weakly to f0 in L1(I, E)
then Sfn → Sf0 in C(I, E).

Lemma 2.11 ([18, Theorem 4.2.2]). Let S : L1(I, E) → C(I, E) be an operator
satisfying conditions (G1), (G2) and let the set {fn}∞n=1 be integrably bounded with
the property χ({fn(t) : n ≥ 1}) ≤ η(t), for a.e. t ∈ I, where η(.) ∈ L1

+(I, R+) and
χ is the Hausdorff MNC. Then

χ({Sfn(t) : n ≥ 1}) ≤ 2ζ

∫ t

0

η(s)ds

for all t ∈ I, where ζ ≥ 0 is the constant in condition (G1).

Theorem 2.12 ([18, Corollary 3.3.1]). If U is a closed convex subset of a Ba-
nach space and R is a closed β-condensing multifunction from U to the family of
nonempty convex compact subsets of U , where β is a nonsingular MNC defined on
the subsets of U , then R has a fixed point.

Theorem 2.13 ([18, Proposition 3.5.1]). Let W be a closed subset of a Banach
space E and R : W → Pck(E) be a closed multifunction which is β-condensing on
every bounded subset of W , where Pck(E) is the family of nonempty convex compact
subsets of E and β is a monotone measure of noncompactness. If the set of fixed
points for R is a bounded subset of E then it is compact.

3. Main Results

In the following theorem we prove the existence of mild solution for (1.1).

Theorem 3.1. Let I = [0, b], {A(t) : t ∈ I} be a family of linear (not necessarily
bounded) operators, A(t) : D(A) ⊂ E → E, D(A) not depending on t and dense
subset of E and T : ∆ = {(t, s) : 0 ≤ s ≤ t ≤ b} → L(E) be the evolution operator
generated by the family {A(t) : t ∈ I}.

Let F be a multifunction defined from I × E to the family of nonempty closed
convex subsets of E such that

(H1) for every x the multifunction t → F (t, x) admits a strongly measurable
selection and for a.e. t ∈ I the multifunction x → F (t, x) is upper semi-
continuous;
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(H2) there exists a function m ∈ L1(I, R+) such that for every x ∈ E

‖F (t, x)‖ ≤ m(t)(1 + ‖x‖) for a.e. t ∈ I;

(H3) there exists a function h ∈ L1(I, R+) such that for every bounded D ⊂ E:

χ(F (t,D)) ≤ h(t)χ(D) for a.e. t ∈ I,

where χ is the Hausdorff measure of noncompactness;
(H4) let g : C(I, E) → E be a continuous function that maps every bounded set

into relatively compact subset of E and that

‖g(x)‖ ≤ c‖x‖C + d, ∀x ∈ C(I, E),

for some positive constants c and d.
Then the nonlocal condition Cauchy problem (1.1) has a mild solution provided that

M(c + ‖m‖L1) 6= 1, (3.1)
where M = sup(t,s)∈∆ ‖T (t, s)‖L(E)

Proof. From the strong continuity of the evolution operator T on the compact set
∆, a positive real number M can be found such that

‖T (t, s)‖ ≤ M, ∀(t, s) ∈ ∆

Thus, the number M mentioned in the statement of the theorem is well defined.
From assumptions (H1) and (H2), see [10, Lemma 4], it follows that the super
position multioperator

sel F : C(I, E) → 2L1(I,E)

defied by

sel F (x) = S1
F (.,x(.)) = {f ∈ L1(I, E) : f(t) ∈ F (t, x(t)), a.e. t ∈ I}

is well defined and weakly closed in the following sense: if (xn)n≥1, (fn)n≥1 are
two sequences in C(I, E) and L1(I, E) respectively such that fn ∈ sel F (xn), for all
n ≥ 1 and if xn → x0 in C(I, E) and fn converges weakly to f0 in L1(I, E) then
f0 ∈ sel F (x0). Therefore, the multifunction R defined on C(I, E) by

R(x) = {y ∈ C(I, E) : y(t) = T (t, 0)g(x) +
∫ t

0

T (t, s)f(s)ds, f ∈ sel F (x)}, (3.2)

has nonempty values. It is easy to see that any fixed point for R is a mild solution
for (1.1). So, our goal is to prove that R satisfies the conditions of Theorem 2.12
in the preliminaries. The proof will be given in steps.
Step 1. The values of R are convex subsets in C(I, E). Let x ∈ C(I, E), y1, y2 ∈
R(x) and 0 < α < 1. From the definition of M we get

(1− α)y1 + αy2 = (1− α)T (t, 0)g(x) + αT (t, 0)g(x)

+
∫ t

0

((1− α)T (t, s)f(s) + αT (t, s)h(s))ds

= T (t, 0)g(x) +
∫ t

0

T (t, s)((1− α)f(s) + αh(s))ds ∈ R(x),

where f, h ∈ sel F (x). Which means that R(x) is convex for each x ∈ C(I, E).
Step 2. The values of R are compact subsets in C(I, E). Let x ∈ C(I, E) and
(zn)n≥1 be a sequence in R(x). To prove that R(x) is compact we have to show
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that (zn)n≥1 has a subsequence converging to a point z in R(x). By (3.2) for each
n ≥ 1,

zn(t) = T (t, 0)g(x) +
∫ t

0

T (t, s)fn(s)ds, where fn(s) ∈ F (s, x(s)), a.e. t ∈ I.

By (H2)
‖fn(t)‖ ≤ ‖F (t, x(t)‖ ≤ m(t)(1 + ‖x‖C), a.e. t ∈ I.

Thus the set {fn : n ≥ 1} is integrably bounded in L1(I, E). Further, the set
{fn(t) : n ≥ 1} is relatively compact in E for a.e. t ∈ I because by (H3) we have

χ({fn(t) : n ≥ 1}) ≤ χ(F (t, x(t))) ≤ h(t)χ({x(t)}) = 0, a.e. t ∈ I.

Hence the set {fn : n ≥ 1} is semicompact in L1(I, E). From Lemma 2.8, it follows
that {fn : n ≥ 1} is weakly compact in L1(I, E). So, without loss of generality we
can assume that the sequence (fn)n≥1 converges weakly to a function f in L1(I, E)
with f(t) ∈ F (t, x(t)) a.e. t ∈ I. By applying Lemma 2.10, Gfn → Gf , where G is
the generalized Cauchy operator defined by (2.2). Thus

lim
n→∞

zn(t) = T (t, 0)g(x) + Gf(t) = T (t, 0)g(x) +
∫ t

0

T (t, s)f(s)ds.

So that z ∈ R(x). Hence R(x) is compact.
Step 3. R is closed, i.e. its graph is closed. Let (xn)n≥1 and (yn)n≥1 be two
sequences in C(I, E) such that limn→∞ xn = x, limn→∞ yn = y in C(I, E) and
yn ∈ R(xn) for all n ≥ 1. By means of the definition of the generalized Cauchy
operator, we can write

yn = T (t, 0)g(xn) + Gfn(t), ∀n ≥ 1, ∀t ∈ I,

where fn ∈ sel F (xn). Since g is continuous on C(I, E), limn→∞ g(xn) = g(x) in
E. So,

lim
n→∞

T (t, 0)g(xn) = T (t, 0)g(x).

To apply Lemma 2.10 we have to show that the set {fn : n ≥ 1} is semicompact.
Since the sequence (xn)n≥1 converges uniformly to x, we can find a positive real
number k such that ‖xn‖C ≤ k, for all n ≥ 1. By (H2), for every n ≥ 1,

‖fn(t)‖ ≤ sup{‖z‖ : z ∈ F (t, , xn(t))}
≤ (1 + ‖xn‖C)m(t) ≤ (1 + k)m(t), a.e. t ∈ I.

This shows that the family {fn : n ≥ 1} is integrably bounded. Furthermore, by
(H3)

χ({fn(t) : n ≥ 1}) ≤ χ(F (t, Dt)), Dt = {xn(t) : n ≥ 1}
≤ h(t)χ(Dt), for a.e. t ∈ I.

Since (xn)n≥1 converges to x in C(I, E), the set Dt is relatively compact for
each t ∈ I and consequently χ(Dt) = 0. Thus for a.e. t ∈ I, the set {fn(t) : n ≥ 1}
is relatively compact in E. Then the set {fn : n ≥ 1} is semicompact in L1(I, E).
Invoking Lemma 2.8 this set is weakly compact in L1(I, E). So, without loss of
generality we can assume that fn converges weakly to a function f ∈ L1(I, E).
From [10, Lemma 4], we get f(t) ∈ F (t, x(t)), a.e. t ∈ I. Furthermore, by Lemma
2.10,

lim
n→∞

Gfn = Gf.
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Thus

y(t) = lim
n→∞

yn(t) = T (t, 0)g(x) + Gf

= T (t, 0)g(x) +
∫ t

0

T (t, s)f(s)ds,

which yields to, y ∈ R(x) and so R has a closed graph.
Step 4. R is condensing with respect to a nonsingular measure of noncompactness
defined on C(I, E)

Let us define a measure of noncompactness ν on C(I, E) as foloows: for each
bounded subset Ω of C(I, E) we put

ν(Ω) = max
D∈∆(Ω)

(γ(D), mod C(D)) ∈ R2, (3.3)

where ∆(Ω) is the collection of all the denumerable subsets of Ω;

γ(D) = sup
t∈I

e−Ltχ({x(t) : x ∈ D}); (3.4)

where mod C(D) is the modulus of equicontinuity of the set of functions D given
by the formula

mod C(D) = lim
δ→0

sup
x∈D

max
|t1−t2|≤δ

‖x(t1)− x(t2)‖; (3.5)

and L > 0 is a positive real number chosen so that

q = 2M sup
t∈I

∫ t

0

e−L(t−s)h(s)ds < 1 (3.6)

where M is defined above by M = sup(t,s)∈∆ ‖T (t, s)‖.
It is known that (see [18, Example 2.1.4]) ν is monotone, nonsingular and regular

measure of noncompactness on the space C(I, E).
To show that R is ν-condensing let Ω be a bounded subset of C(I, E) such that

ν(R(Ω)) ≥ ν(Ω).

We have to prove that Ω is relatively compact. Since ν is regular it suffices to prove
that ν(Ω) = (0, 0). For this purpose it is enough to show that ν(R(Ω)) = (0, 0).

Let D = {yn : n ≥ 1} be a countable subset of R(Ω) which achieves that
maximum. Then there exists a countable set {xn : n ≥ 1} of Ω such that yn ∈
R(xn), ∀n ≥ 1. Hence for every n ≥ 1 and every t ∈ I

yn(t) = T (t, 0)g(xn) +
∫ t

0

T (t, s)fn(s)ds = T (t, 0)g(xn) + Gfn(t), (3.7)

where fn ∈ sel F (xn). From the assumption that ν(R(Ω)) ≥ ν(Ω) and by (3.3) we
obtain

(γ({yn : n ≥ 1}),mod C({yn : n ≥ 1})) = ν(R(Ω)) ≥ ν(Ω)

≥ (γ({xn : n ≥ 1}),mod C({xn : n ≥ 1})).

Thus
γ({yn : n ≥ 1}) ≥ γ({xn : n ≥ 1}) (3.8)

and
mod C({yn : n ≥ 1}) ≥ mod C({xn : n ≥ 1}) (3.9)
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Using (H3) and the relation (3.4) we have, a.e. on I,

χ({fn(s) : n ≥ 1}) ≤ χ(F (s, {xn(s) : n ≥ 1}))
≤ χ({z : z ∈ F (s, xn(s)) : n ≥ 1})
≤ h(s)χ({xn(s) : n ≥ 1})
≤ h(s)eLs sup

t∈I
e−Ltχ({xn(t) : n ≥ 1})

≤ h(s)eLsγ({xn : n ≥ 1}).

By Lemma 2.11,

χ({Gfn(s) : n ≥ 1}) ≤ 2M

∫ s

0

h(t)eLt(γ({xn : n ≥ 1}))dt

= 2Mγ({xn : n ≥ 1})
∫ s

0

h(t)eLt.

Thus, by (3.7) and (3.8) we get

γ({xn : n ≥ 1}) ≤ γ({yn : n ≥ 1})
= sup

t∈I
e−Ltχ({yn(t) : n ≥ 1})

≤ sup
t∈I

e−Ltχ({T (t, 0)g(xn) : n ≥ 1})

+ sup
t∈I

e−Lt(χ({Gfn(t) : n ≥ 1})).

(3.10)

Since {xn : n ≥ 1} is a bounded set, the condition (H4) assumes that the set
{g(xn) : n ≥ 1} is relatively compact in E. So, for each t ∈ I the set {T (t, 0)g(xn) :
n ≥ 1} is relatively compact in E. Thus

χ({T (t, 0)g(xn) : n ≥ 1}) = 0, ∀t ∈ I.

So, (3.10) gives us

γ({xn : n ≥ 1}) ≤ γ({yn : n ≥ 1})
≤ sup

t∈I
e−Lt(χ({Gfn(t) : n ≥ 1}))

≤ sup
t∈I

e−Lt2Mγ({xn : n ≥ 1})
∫ t

0

eLsh(s)ds

= 2Mγ({xn : n ≥ 1}) sup
t∈I

e−Lt

∫ t

0

eLsh(s)ds

= 2Mγ({xn : n ≥ 1}) sup
t∈I

∫ t

0

e−L(t−s)h(s)ds

= γ({xn : n ≥ 1})q.

Because q < 1 we get γ({xn : n ≥ 1}) = 0 and consequently γ({yn : n ≥ 1}) = 0.
Thus the set {yn : n ≥ 1} is relatively compact in C(I, E). Hence

lim
δ→0

sup
n≥1

max
|t1−t2|<δ

‖yn(t1)− yn(t2)‖ = 0.

Thus, by (3.5), mod C({yn : n ≥ 1}) = 0. So, ν(R(Ω)) = (0, 0) and then ν(Ω) =
(0, 0).
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Step 5. To apply the fixed point theorem (Theorem 2.12.), we consider the closed
ball in C(I, E):

B(0, r) = {x ∈ C(I, E) : ‖x‖C ≤ r},
where r is a constant chosen so that

r ≥ Md + M‖m‖L1

1−Mc−M‖m‖L1
(3.11)

Note that from (3.1) the number r is well defined. Let us show that the multifunc-
tion R maps the closed ball B(0, r) into itself. Let x ∈ B(0, r) and y ∈ R(x). Then
for every t ∈ I

‖y(t)‖ ≤ ‖T (t, 0)g(x)‖+
∫ t

0

‖T (t, s)‖‖f(s)‖ds,

where f(s) ∈ F (s, x(s)), for a.e. s ∈ I. Using (H2), (H4) and the fact that
M = sup(t,s)∈∆ ‖T (t, s)‖, for any t ∈ I, we have

‖y(t)‖ ≤ M(c‖x‖C + d) + M

∫ t

0

m(s)(‖x(s)‖+ 1)ds

≤ Mcr + Md + M(r + 1)‖m‖L1

= r(Mc + M‖m‖L1) + Md + M‖m‖L1

≤ r. (from (3.11))

It results that ‖y‖C ≤ r. Then y ∈ B(0, r). Applying Theorem 2.12, there is a
x ∈ C(I, E) such that x ∈ R(x). Clearly the function x is a solution for (1.1) This
proves the theorem. �

Theorem 3.2. In addition of the assumptions in Theorem 3.1, suppose that

M(c + ‖m‖L1) < 1 (3.12)

where the numbers M, c and the function m are as in Theorem 3.1. Then the set
of mild solutions of (1.1) is a compact subset in C(I, E).

Proof. We proved through Theorem 3.1 that the values of the multifunction R
defined on C(I, E) by

R(x) = {y ∈ C(I, E) : y(t) = T (t, 0)g(x) +
∫ t

0

T (t, s)f(s)ds, f ∈ sel F (x)}

are nonempty convex compact subsets in C(I, E).
Since the set of mild solutions of (p) is the set of fixed points of R, then Theorem

2.13 implies that the set of mild solutions of (p) will be compact if we show that
the set of fixed points of R is a bounded subset in C(I, E). So, let x be a fixed
point for R. From conditions (H2) and (H4), for all t ∈ I,

‖x(t)‖ ≤ ‖T (t, 0)g(x)‖+
∥∥∫ t

0

T (t, s)f(s)ds
∥∥, f ∈ sel F (x)

≤ M(c‖x‖C + d) + M(‖m‖L1(1 + ‖x‖C)).

Thus,
‖x‖C(1−Mc−M‖m‖L1) ≤ Md + M‖m‖L1 .
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So,

‖x‖C ≤ Md + M‖m‖L1

1−M(c + ‖m‖L1)
.

This means that the set of fixed points of the multifunction R is bounded. Thanks
Theorem 2.13, the set of mild solutions for (1.1) is compact. �

In the following corollary we generalize the result of Fan, Dong and Li [16]. This
generalization deals to prove that the set of mild solutions of (1.2) is nonempty in
the case when the function f become a multifunction.

Corollary 3.3. Given a C0-semigroup Z = {U(t) : t ∈ I}, A be the infinitesimal
generator of Z and F and g be as in Theorem 3.1. Then there is a mild solution
for the semilinear differential inclusion:

x·(t) ∈ Ax(t) + F (t, x(t)), x(0) = g(x).

Proof. Consider the family {A(t); t ∈ I}, where A(t) = A for every t ∈ I and let
T : D → L(E) be an operator defined by T (t, s) = U(t − s), (t, s) ∈ ∆. Then, see
[6], the operator T is an evolution operator generated by the family {A(t); t ∈ I}.
By Theorem 3.1 there is a continuous function x : I → E such that

x(t) = T (t, 0)g(x) +
∫ t

0

T (t, s)f(s)ds; t ∈ I

= U(t)g(x) +
∫ t

0

U(t− s)f(s)ds; t ∈ I,

where f(s) ∈ F (s, x(s)), a.e. This means that x is a mild solution for the semilinear
differential inclusion

x·(t) ∈ Ax(t) + F (t, x(t)); t ∈ I

x(0) = g(x).

�

References

[1] S. Aizicovici and H. Lee; Nonlinear nonlocal Cauchy problems in Banach spaces, Appl. Math.
Lett. , Vol.18, 401-407 (2005).

[2] J. M. Ball; Initial boundary value problems for an extensible beam, J. Math. Anal. Appl.,

Vol. 42, 16-90 (1973).

[3] J. Banas and K. Goebel; Measure of noncompactness in Banach spaces, Lecture Notes in
Pure and Appl. Math,60, Marcel Dekker, New York (1980).

[4] M. Benchohra and S. Ntouyas; Nonlocal Cauchy problems for neutral functional differential
and integrodifferential inclusions in Banach spaces, J. Math. Anal. Appl.,Vol. 285, 573-590
(2001).

[5] M. Benchohra, E. P. Gatsori, L. Gorniewicz and S. K. Ntouyas; Controllability results for

evolution inclusions with nonlocal conditions, Journal for Analysis and its Applications, Vol.
22,No.2, 411-431 (2003).

[6] 6] L. Byszewski; Theorems about the existence and uniquness of solutions of a semilinear
evolution nonlocal Cauchy problem, J. Math. Anal.Appl. Vol. 162,494-505 (1991).

[7] L. Byszewski; Existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy

problem, Zesz. Nauk. Pol. Rzes. Fis., vol. 18, 109-112 (1993).
[8] L. Byszewski and V. Lakshmikantham; Theorem about the existence and uniqueness of so-

lutions of a nonlocal Cauchy problem in a Banach space, App. Anal., vol. 40, 11-19 (1990).

[9] L. Byszewski and H. Akca; Existence of solutions of a nonlinear functional differential evolu-
tion nonlocal problem. Nonlinear Anal., Vol. 34, 65-72 (1998).



EJDE-2009/42 EXISTENCE OF MILD SOLUTIONS 11

[10] T. Cardinali and P. Rubbioni; On the existence of mild solutions of semilinear evolution

differential inclusions, J. Math. Anal. and Appl., Vol. 308,620-635 (2005).

[11] C. Castaing and M. Valadier; Convex Analysis and Measurable Multifunctions, Lect. Notes
in Math., 580, Springer-Verlag, Berlin-New York, (1977).

[12] N. Chanarasekaras; Nonlocal Cauchy problem for quasilinear integrodifferential equations in

Banach spaces, Electronic Journal of Differential Equations, Vol. 2007, No. 33, 1-6 (2007).
[13] L. Guedda; On the existence of mild solutions for neutral functional differential inclusions

in Banach spaces, Electronic Journal of Qualitive Theory of Differential Equations 2, 1-15

(2007).
[14] A. G.Ibrahim; Topological properties of solution sets for functionl differential inclusions gov-

erned by a family of operators, Portugaliae Mathematica, Vol. 58 Fasc.3, 255-270 (2001).

[15] A. G. Ibrahim and A. M. Soliman; On the existence of mild solutions of semilinear functional
differential inclusions, Le Mathematiche, Vol. LXIII(2008)-Fasc. I,107-121.

[16] Z. Fan, Q. Dong and G. Li; Semilinear differential equations with non-local conditions in
Banach spaces. International Journal of Nonlinear Science, Vol. 2, No. 3, 131-139 (2006).

[17] W. E. Fitzgibbon; Global existence and boundedness of solutions to the extensible beam

equation, SIAM J. Math. Anal., Vol. 13, No.5, 739-745(1982).
[18] M. Kamenskii, V. Obukhowskii and P. Zecca; Condensing Multivalued Maps and Semilinear

Differential Inclusions in Banach Spaces, De Gruyter Ser. Nonlinear Anal. App. 7, Walter de

Gruyter, Berlin-New York (2001).
[19] A. Pazy; Semigroups of Linear Operators and Applications to Partial Differential Equations.

Springer-Verlag, New-York, (1983).

[20] X. Xue; Nonlinear differential equations with nonlocal conditions in Banach spaces, Nonlinear
Anal., Vol. 63, 575-586 (2005) .

Reem A. Al-Omair

King Faisal University, Collage of Education in Jubail, Mathematics Department, Jubail,
Saudi Arabia

E-mail address: omair-reem@hotmail.com

Ahmed G. Ibrahim
Cairo University, Faculty of Science, Mathematics Department, Egypt

E-mail address: agamal2000@yahoo.com


	1. Introduction
	2. Preliminaries and notation
	3. Main Results
	References

