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MULTIPLE POSITIVE SOLUTIONS FOR A SINGULAR
ELLIPTIC EQUATION WITH NEUMANN BOUNDARY

CONDITION IN TWO DIMENSIONS

BHATIA SUMIT KAUR, K. SREENADH

Abstract. Let Ω ⊂ R2 be a bounded domain with C2 boundary. In this

paper, we are interested in the problem

−∆u+ u = h(x, u)eu2
/|x|β , u > 0 in Ω,

∂u

∂ν
= λψuq on ∂Ω,

where 0 ∈ ∂Ω, β ∈ [0, 2), λ > 0, q ∈ [0, 1) and ψ ≥ 0 is a Hölder continuous

function on Ω. Here h(x, u) is a C1(Ω × R) having superlinear growth at

infinity. Using variational methods we show that there exists 0 < Λ <∞ such
that above problem admits at least two solutions in H1(Ω) if λ ∈ (0,Λ), no

solution if λ > Λ and at least one solution when λ = Λ.

1. Introduction

Let Ω ⊂ R2 be a bounded domain with C2 boundary and 0 ∈ ∂Ω. In this work,
we study weak solutions u ∈ H1(Ω) of the problem

−∆u+ u = h(x, u)eu2
/|x|β , u > 0 in Ω,

∂u

∂ν
= λψuq on ∂Ω,

(1.1)

where β ∈ [0, 2), λ > 0, q ∈ [0, 1) and h(x, t) satisfies the following conditions:
(H1) h(x, t) ∈ C1(Ω× R), h(x, u) ≥ 0 for all u ∈ R, h(x, u) = 0 if u < 0;
(H2) ∂h

∂t (x, t) ≥ 0 for t > 0, h(x, t) ∼ tk as t→ 0, uniformly in x, for some k > 1,
(H3) lim inft→∞

h(x,t)
t > 0 and lim supt→∞

h(x,t)
tp = 0 for some p > 1 uniformly

in x;
(H4) For any ε > 0, lim supt→∞

∂g
∂t (x, t)e−(1+ε)t2 = 0.

where g(x, u) = h(x, u)eu2
/|x|β and G(x, u) =

∫ u

0
g(x, s)ds. Associated to the

problem (1.1) we have the functional Jλ : H1(Ω) → R defined by

Jλ(u) =
1
2

∫
Ω

(|∇u|2 + |u|2)−
∫

Ω

G(x, u)− λ

q + 1

∫
∂Ω

ψ|u|q+1. (1.2)
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The Fréchet derivative of this functional is given by

〈J ′λ(u), φ〉 =
∫

Ω

∇u.∇φ+
∫

Ω

uφ−
∫

Ω

g(x, u)φ− λ

∫
∂Ω

ψ|u|q−1uφ, ∀φ ∈ H1(Ω).

Clearly, any positive critical point of Jλ is a weak solution of (1.1).
The exponential nature of the nonlinearity g(x, u) is motivated by the following

version of Moser-Trudinger inequality (due to Adimurthi-Yadava[2])

sup
‖u‖H1(Ω)≤1

∫
Ω

e2πu2
≤ C(|Ω|), (1.3)

where C is a positive constant. The above imbedding immediately implies that the
nonlinear map H1(Ω) 3 u 7→ euα ∈ L1(Ω) is a continuous map for all α ∈ (0, 2]
and is compact if and only if α ∈ (0, 2). The inequality (1.3) is a H1 version of the
following Moser-Trudinger inequality[12],[15]:

sup
‖u‖

H1
0(Ω)≤1

∫
Ω

e4πu2
≤ C(|Ω|).

In this case non-compactness of the imbedding H1
0 (Ω) 3 u 7→ eu2 ∈ L1(Ω) can be

shown by using a sequence of functions that are suitable truncations and dilations
of the fundamental solution for −∆ in R2. These functions are commonly referred
to as Moser functions in the literature. In case of the imbedding in (1.3), the
non-compactness can be shown by suitably modifying the Moser functions so that
they concentrate at a point on the boundary ∂Ω (see Lemma 2.1 below). The
inequality (1.3) cannot be used in our case due to the presence of the singularity
|x|−β . To overcome this, first we prove the following singular version of (1.3) using
the methods in [3]:

sup
‖u‖H1(Ω)≤1

∫
Ω

eαu2

|x|β
≤ C(|Ω|)

where C is a positive constant and α
2π + β

2 < 1. Moreover, the above inequality
does not hold if α

2π + β
2 > 1.

We prove the following existence and multiplicity results:

Theorem 1.1. There exists Λ ∈ (0,∞) such that (1.1) admits minimal solution
uλ for all λ ∈ (0,Λ).

Theorem 1.2. There exists 0 < Λ <∞ such that (1.1) has at least two solutions
for all λ ∈ (0,Λ), no solutions for λ > Λ and at least one solution when λ = Λ.

The minimal solution in the above theorem is obtained using sub-super solution
arguments as in [14] and this minimal solution is shown to be a local minimum of
Jλ. The second solution is obtained using the generalized mountain-pass theorem
of Ghoussoub-Priess[9].

At this point we briefly recall related existence and multiplicity results for elliptic
equations. The study of semilinear elliptic problems with critical nonlinearities of
Sobolev and Hardy-Sobolev type has recieved considerable interest in recent years.
In a recent work [3], authors considered Dirichlet Problem for (1.1) with superlinear
type nonlinearity and studied the existence of positive solutions. In [7],[11] authors
studied the existence and multiplicity with Hardy-Sobolev critical exponents.
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Neumann type Problems are studied in [4], [8],[7] and [14]. The Multiplicity
result for Neumann problem with Sobolev critical nonlinearity has been studied in
[8] where authors considered the problem

−∆u+ u = up, u > 0 in Ω,
∂u

∂ν
= λψuq on ∂Ω,

(1.4)

where Ω ⊂ RN , N ≥ 3 and 0 < q < 1 < p ≤ 2N
N−2 . They proved the following

theorem.

Theorem 1.3. There exists Λ̃ such that (P̃λ) admits at least two solutions for all
λ ∈ (0, Λ̃), one solution when λ = Λ̃ and no solution for λ > Λ̃.

Subsequently, the problem in two dimensions was considered in [14] where au-
thors proved the Theorem 1.3. In these works authors obtained the minimal solution
using sub-super solution method and the second solution by Mountain-pass argu-
ments. The main ingredient is the local minimum nature of the minimal solution
which was obtained using H1 verses C1 local minimizer arguments introduced in
[5].

The special features of this class of problems, considered in this paper, are they
involve critical singular growth. In this case main difficulty arise due to the fact
that the solutions are not C1 near origin. So the arguments like C1 verses H1

local minimizers cannot be carried out for a singular equation. So to establish the
local minimum nature of the minimal of solution we use Perron’s method as in [10].
To obtain the mountain-pass type solution, one studies the critical levels and the
convergence of Palaise-Smale sequences. The critical levels in our case are different
than in [14] where β = 0 case was studied. We recall the following Hardy-Sobolev
inequality, which is used in later sections.

Lemma 1.4. Let Ω ⊂ R2, then there exists a constant C > 0 such that for any
u ∈ H1(Ω) ( ∫

Ω

|u|p

|x|β
dx

)1/p

≤ C
( ∫

Ω

(|∇u|2 + u2)dx
)1/2

(1.5)

for any p <∞, and β < 2.

Notation. In this paper we make use of the following notation: If p ∈ (0,∞), p′

denotes the number p/(p− 1) so that p′ ∈ (1,∞) and 1/p+ 1/p′ = 1; Lp(Ω, |x|−β)
denotes the Lebesgue spaces with measure |x|−βdx and norm ‖.‖Lp(Ω,|x|−β); H1(Ω)
denotes the Sobolev space with norm ‖.‖; |A|n denotes the Lebesgue measure of
the set A ⊂ Rn.

2. A singular Moser-Trudinger inequality in H1(Ω)

In this section we show a singular version of Moser-Trudinger inequality in
H1(Ω). We recall the following lemma from [2, Lemma 3.3].

Lemma 2.1. Let ∂Ω is a smooth manifold. For every x0 ∈ ∂Ω, we can find a
L > 0 such that for each 0 < l < L there exists a function wl ∈ H1(Ω) satisfying

(1) wl ≥ 0, supp(wl) ⊂ B(x0, L) ∩ Ω
(2) ‖wl‖ = 1
(3) For all x ∈ B(x0, l) ∩ Ω, wl is constant and w2

l = 1
π log L

l + o(1) as l→ 0.
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Theorem 2.2. Let u ∈ H1(Ω). Then for every α > 0 and β ∈ [0, 2), we have∫
Ω

eαu2

|x|β
dx <∞. (2.1)

Moreover for any β ∈ [0, 2),

sup
{
α : sup

‖u‖≤1

∫
Ω

eαu2

|x|β
dx <∞

}
= π(2− β) (2.2)

Proof. Let t > 1 be such that βt < 2, then by Cauchy-Schwartz inequality,∫
Ω

eαu2

|x|β
dx ≤

( ∫
Ω

e
αt

t−1 u2
dx

)(t−1)/t( ∫
Ω

1
|x|tβ

)1/t

The above inequality along with (1.2) implies (2.1).

Now Suppose sup{α : sup‖u‖≤1

∫
Ω

eαu2

|x|β dx < ∞} < π(2 − β). Then there exists

α such that α
2π + β

2 < 1.
Again choose t > 1 such that α

2π + βt
2 = 1, and using Cauchy-Schwartz inequality

we obtain,

sup
‖u‖≤1

∫
Ω

eαu2

|x|β
dx ≤ sup

‖u‖≤1

( ∫
Ω

e2πu2
) α

2π
( ∫

Ω

1
|x| 2t

dx
) tβ

2
<∞ (2.3)

as 1− α
2π = 1− (1− tβ

2 ) = βt
2 < 1 and 2

t < 1.
Next, we show that (2.3) does not hold if α

2π + β
2 > 1. Let wl be the sequence of

Moser functions concentrated around 0 ∈ ∂Ω, as in Lemma 2.1, then∫
Ω

eαw2
l

|x|β
dx ≥ e

α
π log R

l

∫
B(l)

1
|x|β

dx

=
(L
l

)α/π l2−β

2π(2− β)

=
2πLα/2π

(2− β)
1

l2(
α
2π + β

2−1)

Since α
2π + β

2 > 1, the limit l → 0 of right-hand side of the above inequality is
infinity. Therefore,

sup
‖u‖≤1

∫
Ω

eαw2
l

|x|β
= ∞.

Hence the required supremum is π(2− β). �

3. Existence of minimal solution

In this section, we show that there exists a Λ > 0 such that Jλ possesses minimal
solution for λ ∈ (0,Λ). First we show that there exists a solution for λ small. We
can show the following strong comparison principle using Hopf lemma and weak
comparison arguments.

Lemma 3.1. Let u 6= 0 satisfies −∆u+ u ≥ 0 in Ω and ∂u
∂ν ≥ 0 on ∂Ω then u > 0

in Ω.

Lemma 3.2. There exists λ0 > 0, small such that (1.1) admits a solution for all
λ ∈ (0, λ0).
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Proof. Step 1: There exists λ0, δ > 0 and R0 > 0 such that Jλ(u) ≥ δ for all
‖u‖ = R0 and all λ < λ0. From assumption (H2) for h(x, u) and Hölder’s inequality,
we obtain that for some C1 > 0,∫

Ω

G(x, u) ≤ C1

∫
Ω

|u|k+1 e
u2

|x|β

=
∫

Ω

|u|k+1

|x|β/p′
eu2

|x|β/p

≤ C1‖u‖k+1
Lp′(k+1)(Ω,|x|−β)

( ∫
Ω

ep‖u‖2( u
‖u‖ )2

)1/p

.

Now since β < 2 it is possible to choose p > 1 and R > 0 such that pR2

2π + β
2 < 1.

Then, by (2.3) and Hardy-Sobolev inequality(1.5), the last inequality gives for some
C2 > 0, ∫

Ω

G(x, u) ≤ C2‖u‖k+1, ∀ ‖u‖ ≤ R. (3.1)

Also, by Hölder’s inequality and the trace imbedding H1(Ω) ↪→ L2(∂Ω) we get for
some C3 > 0, ∫

∂Ω

ψ|u|q+1 ≤ C3‖ψ‖L∞(∂Ω)‖u‖q+1
Lq+1(∂Ω) ≤ C3‖u‖q+1. (3.2)

Thus, from (3.1), (3.2) we have that, for R2
0 ∈ (0, 2π) small enough

Jλ(u) ≥ 1
2
‖u‖2 − C2‖u‖k+1 − λC3‖u‖q+1, ∀ ‖u‖ = R0. (3.3)

Since k > 1, we may choose λ0 > 0 small enough so that Jλ(u) > δ for some δ > 0
and for all λ ∈ (0, λ0).
Step 2: Jλ possesses a local minimum close to the origin for all λ ∈ (0, λ0).
It is easy to see that Jλ(tu) < 0 for t > 0 small enough and any u ∈ H1(Ω).
Indeed, min‖u‖≤R0 Jλ(u) < 0 and if this minimum is achieved at some uλ, then
necessarily ‖uλ‖ < R0 and hence uλ becomes a local minimum for Jλ. Now let
{un} ⊂ {‖u‖ ≤ R0} be a minimizing sequence, then there exists uλ such that
un ⇀ uλ in H1(Ω), un → uλ strongly in all Lp(Ω), and pointwise in Ω. Hence using
the compact imbedding of H1(Ω) into Lq+1(∂Ω),∫

Ω

|∇uλ|2 ≤ lim inf
n→∞

∫
Ω

|∇un|2,
∫

∂Ω

ψuq+1
n →

∫
∂Ω

ψuq+1
λ .

Since R2
0 and β satisfy R2

0
2π + β

2 < 1, by (2.2) and Vitali’s convergence theorem
we obtain,

∫
Ω
G(x, un) →

∫
Ω
G(x, uλ). From these facts it is clear that uλ is a

minimizer for Jλ in {‖u‖ ≤ R0} and hence is a local minimum. Now by (H1) and
maximum principle we get u > 0 in Ω. �

Lemma 3.3. Let Λ = sup{λ > 0 : (1.1) has a solution}. Then 0 < Λ <∞.

Proof. Let uλ be a solution of (1.1). Taking φ ≡ 1 in Ω in 〈J ′(uλ), φ〉 = 0, we get∫
Ω

uλ =
∫

Ω

g(uλ) + λ

∫
∂Ω

ψuq
λ.

Since ‖uλ‖L1(Ω) ≤ C1‖uλ‖Lp(Ω) and
∫
Ω
g(x, uλ) ≥ C2‖uλ‖p

Lp(Ω) for some p > 1,
for some constants C1, C2 > 0, we immediately obtain from above equation that
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‖uλ‖Lp(Ω) is bounded by a constant independent of λ for any p ≥ 1. Now taking
φ = u−q

λ in 〈J ′(uλ), φ〉 = 0 we get,

−q
∫

Ω

u−1−q
λ |∇uλ|2 +

∫
Ω

u1−q
λ =

∫
Ω

u−q
λ g(x, uλ) + λ

∫
∂Ω

ψ.

From the above equation it follows that Λ is finite and it is positive by Lemma
3.2. �

Lemma 3.4. There exists a solution for (1.1) for all λ ∈ (0,Λ).

Proof. Let λ ∈ (0,Λ), then choose λ2 ∈ (0,Λ) such that λ < λ2. Let uλ2 be a
solutions of (pλ2). Let µ = min∂Ω uλ2 . Let vλ be the solution of

−∆u+ u = 0, u > 0 in Ω,
∂u

∂ν
= λψµq on ∂Ω.

(3.4)

Clearly, uλ2 is a super solution of (3.4) above and hence uλ2 > vλ in Ω by Lemma
3.2. Let h̃λ and f̃λ be the cut-off functions defined as

(x ∈ Ω, t ∈ R) g̃λ(x, t) =


g(x, vλ(x)) t < vλ(x),
g(x, t) vλ(x) ≤ t ≤ uλ2(x),
g(uλ2(x)) t > uλ2(x),

(x ∈ ∂Ω, t ∈ R) f̃λ(x, t) =


λψ(x)µq t < vλ(x),
λψ(x)tq vλ(x) ≤ t ≤ uλ2(x),
λψ(x)uq

λ2
(x) t > uλ2(x).

Let G̃λ(x, u) =
∫ u

0
g̃λ(x, t)dt (x ∈ Ω), F̃λ(x, u) =

∫ u

0
f̃λ(x, t)dt, (x ∈ ∂Ω). Then the

functional J̃λ : H1(Ω) → R given by

J̃λ(u) =
1
2

∫
Ω

|∇u|2 + |u|2 −
∫

Ω

G̃λ(x, u)−
∫

∂

F̃λ(x, u)

is coercive and bounded below. Let uλ denote the global minimum of J̃λ on H1(Ω).
Clearly uλ is a solution of (1.1). �

Proof of Theorem 1.1. From Lemma 3.2 we know that there exists a solution uλ

for (1.1) for all λ ∈ (0,Λ). Let vλ be the unique solution of
−∆u+ u = 0, u > 0 in Ω,

∂u

∂ν
= λψuq on ∂Ω.

(3.5)

Clearly uλ is super solution of (3.5) and hence by Lemma 3.1 we have vλ ≤ uλ in
Ω. Now Define the sequence {un} using the monotone iteration

u1 = vλ

−∆un+1 + un+1 =
g(x, un)
|x|β

in Ω

∂un+1

∂ν
= λψuq

n on ∂Ω,

for n = 1, 2, 3, . . . . By the comparison theorem in Lemma 3.1, we get that the
sequence {un} is monotone; i.e., u1 ≤ u2 ≤ · · · ≤ un ≤ un+1 · · · ≤ uλ. By standard
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monotonicity arguments we obtain a solution uλ of (1.1) which will be also the
minimal solution. �

4. Existence of local minimum for Jλ with λ ∈ (0,Λ)

In this section we show that the solution uλ obtained in Theorem 1.1 is a local
minimum for Jλ in H1(Ω). We adopt the approach of [10] to prove the following
theorem.

Theorem 4.1. The solution uλ as in Lemma3.2 is a local minimum for Jλ in
H1(Ω).

Proof. Let λ2 > λ and uλ2 be the minimal solution of (Pλ2). Suppose if uλ is not
a local minimum for Jλ, then there exists a sequence {un} ⊂ H1(Ω) such that
un → uλ strongly in H1(Ω) and Jλ(un) < Jλ(uλ). Now define u := vλ where vλ is
the unique solution of (3.5) and u := uλ2 , then u < u in Ω. Consider the following
cut-off functions

vn(x) =


u(x), un(x) ≤ u(x)
un(x), u(x) ≤ un(x) ≤ u(x)
u(x), un(x) ≥ u(x)

and define wn = (un−u)+, wn = (un−u)−, Sn = supp(wn), Sn = supp(wn). Then
un = vn − wn + wn, vn ∈M = {u ∈ H1(Ω), u ≤ u ≤ u} and

Jλ(un) = Jλ(vn) +An +Bn

where

An =
1
2

∫
Sn

[(
|∇un|2 − |∇u|2

)
+

(
|un|2 − |u|2

)]
dx

−
∫

Sn

[G(x, un)−G(x, u)] dx− λ

1 + q

∫
Sn

ψ
(
uq+1

n − uq+1
)

and

Bn =
1
2

∫
Sn

[(
|∇un|2 − |∇u|2

)
+

(
|un|2 − |u|2

)]
dx

−
∫

Sn

[G(x, un)−G(x, u)] dx− λ

1 + q

∫
Sn

ψ
(
uq+1

n − uq+1
)
dx

Since Jλ(uλ) = infu∈M Jλ(u), we have Jλ(un) ≥ Jλ(uλ) + An + Bn. Now since
un → uλ strongly in H1(Ω) and u < uλ < u in Ω, we have meas(Sn), meas(Sn) → 0
as n→∞. Therefore,

‖wn‖, ‖wn‖ → 0 as n→∞. (4.1)

Since u is super-solution of (1.1), we get

An =
1
2

∫
Sn

[(
|∇un|2 − |∇u|2

)
+

(
|un|2 − |u|2

)]
dx

−
∫

Sn

[G(x, un)−G(x, u)] dx− λ

1 + q

∫
Sn

ψ
(
uq+1

n − uq+1
)

=
1
2
‖wn‖2 +

∫
Ω

(∇u∇wn + uwn)
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−
∫

Sn

[G(x, u+ wn)−G(x, u)] dx− λ

1 + q

∫
Sn

ψ
(
(u+ wn)q+1 − uq+1

)
=

1
2
‖wn‖2 +

∫
Sn

(g(x, u)− g(x, u+ θwn))wn − λ

∫
Sn∩Ω

ψ [(u+ θwn)q − uq]wn

for some 0 < θ < 1. It follows from (H4), (2.3) and Hölder’s inequalities that for n
sufficiently large,

An ≥
1
2
‖wn‖2 −

∫
Sn

∂g

∂t
(x, u+ θ′wn)w2

n + on(1)

≥ 1
2
‖wn‖2 − C1

∫
Sn

1
|x|β

e(u+wn)2(1+ε)w2
n + on(1)

≥ 1
2
‖wn‖2 − C2‖wn‖2|Sn|+ on(1) ≥ 0

for n large since |Sn| → 0 as n → ∞. Similarily, Bn ≥ 0. Therefore, Jλ(un) ≥
Jλ(uλ). This contradicts our assumption Jλ(un) < Jλ(uλ) and hence proves the
Theorem. �

5. Existence of Mountain-pass type solution

In this section we show the existence of second solution via Mountain-pass
lemma. Throughout this section we fix λ ∈ (0,Λ) and uλ will denote the local
minimum for Jλ obtained in Theorem 4.1. Define g̃λ : Ω× R → R by

g̃λ(x, s) =

{
g(x, s+ uλ(x))− g(x, uλ(x)) s ≥ 0,
0 s < 0,

and f̃λ : ∂Ω× R → R by

f̃λ(x, s) =

{
λψ(x)((s+ uλ(x))q − uq

λ(x)) s ≥ 0,
0 s < 0.

Let G̃λ(x, s) =
∫ s

0
g̃λ(x, t)dt, F̃λ(x, s) =

∫ s

0
f̃λ(x, t)dt. Consider the functional J̃λ :

H1(Ω) → R defined by

J̃λ(v) =
1
2

∫
Ω

(|∇v|2 + |v|2)−
∫

Ω

G̃λ(x, v)dx−
∫

∂Ω

F̃λ(x, v)dx. (5.1)

Since uλ is local minimum for Jλ, it can be easily checked that 0 is a local minimum
for J̃λ. Moreover, any critical point vλ ≥ 0 of J̃λ satisfies:

−∆vλ + vλ = g(x, vλ + uλ)− g(x, uλ), vλ > 0 in Ω,
∂vλ

∂ν
= f̃λ(x, vλ) on ∂Ω.

(5.2)

Hence it follows that wλ = uλ + vλ is a solution of (1.1). Therefore, to show
the existence of second solution, it is enough to find a 0 < v ∈ H1(Ω) which is a
critical point of J̃λ. This we can do by using a generalised version of Mountain-pass
theorem due to Ghoussoub-Priess[9].

First,we give the following generalized definition of Palais-Smale sequence around
a closed set.
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Definition 5.1. Let F ⊂ H1(Ω) be a closed set. We say that a sequence {vn} ⊂
H1(Ω) is a Palais-Smale sequence for J̃λ at the level ρ around F (a (P.S)F,ρ se-
quence, for short) if

lim
n→∞

dist(vn, F ) = 0, lim
n→∞

J̃λ(vn) = ρ, lim
n→∞

‖J̃ ′λ(vλ)‖(H1(Ω))∗ = 0.

Remark 5.2. Note that when F = H1(Ω), the above definition reduces to the
usual definition of a Palaise-Smale sequence at the level ρ.

We can show the following “Compactness result”.

Lemma 5.3. Let F ⊂ H1(Ω) be a closed set, ρ ∈ R. Let {vn} ⊂ H1(Ω) be a
(P.S)F,ρ sequence for J̃λ. Then (up to a subsequence), vn ⇀ v0 in H1(Ω),

lim
n→∞

∫
Ω

g̃λ(x, vn) =
∫

Ω

g̃λ(x, v0), lim
n→∞

∫
∂Ω

f̃λ(x, vn) =
∫

∂Ω

f̃λ(x, v0).

lim
n→∞

∫
Ω

G̃λ(x, vn) =
∫

Ω

G̃λ(x, v0), lim
n→∞

∫
∂Ω

F̃λ(x, vn) =
∫

∂Ω

F̃λ(x, v0).

Proof. Since {vn} is a (P.S)F,ρ sequence for J̃λ, we have the following relations as
n→∞:

1
2

∫
Ω

|∇vn|2 + v2
n −

∫
Ω

G̃λ(x, vn)−
∫

∂Ω

F̃λ(x, vn) = ρ+ on(1), (5.3)∣∣ ∫
Ω

∇vn∇φ+
∫

Ω

vnφ−
∫

Ω

g̃λ(x, vn)φ−
∫

∂Ω

f̃λ(x, vn)φ
∣∣ ≤ on(1)‖φ‖ ∀φ ∈ H1(Ω).

(5.4)

Step 1: supn ‖vn‖ < ∞, supn

∫
Ω
g̃λ(x, vn)vn < ∞, supn

∫
∂Ω
f̃λ(x, vn)vn < ∞.

From (H2), (H3) and the explicit form of f̃λ, given ε > 0, there exists sε > 0 such
that G̃λ(x, s) ≤ εg̃λ(x, s)s for all s ≥ sε. Using (5.3) together with this relation, we
get,

1
2
‖vn‖2 ≤

∫
Ω∩{vn≤sε}

G̃λ(x, vn) + ε

∫
Ω

g̃λ(x, vn)vn +
∫

∂Ω

f̃λ(x, vn)vn + ρ+ on(1)

≤ Cε + ε

∫
Ω

g̃λ(x, vn)vn +
∫

∂Ω

f̃λ(x, vn)vn + ρ+ on(1).

(5.5)
From (5.4) with φ = vn we obtain,∫

Ω

g̃λ(x, vn)vn +
∫

∂Ω

f̃λ(x, vn)vn ≤ ‖vn‖2 + on(1)‖vn‖. (5.6)

From the definition of h̃λ we have∫
∂Ω

f̃λ(x, vn)vn ≤ C‖vn‖1+q ≤ C +
1
4
‖vn‖2.

Hence, plugging the above inequality into (5.5) we get
1
4
‖vn‖2 + εon(1)‖vn‖ ≤ Cε + ρ+ on(1).

This shows that supn ‖vn‖ <∞ and hence by (5.6) the claim in Step 1 follows.
Since {vn} ⊂ H1(Ω) is bounded, up to a subsequence, vn ⇀ v0 in H1(Ω) for

some v0 ∈ H1(Ω).
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Step 2:

lim
n→∞

∫
Ω

g̃λ(x, vn) =
∫

Ω

g̃λ(x, v0), lim
n→∞

∫
∂Ω

f̃λ(x, vn) =
∫

∂Ω

f̃λ(x, v0), (5.7)

lim
n→∞

∫
Ω

G̃λ(x, vn) =
∫

Ω

G̃λ(x, v0), lim
n→∞

∫
∂Ω

F̃λ(x, vn) =
∫

∂Ω

F̃λ(x, v0). (5.8)

Let µ(A) =
∫

A
|x|−βdx and |B|1 denote the one dimensional Lebesgue measure of

a set B ⊂ ∂Ω. We first show that {g̃λ(., vn)} and {f̃λ(., vn)} are equi-integrable
families in L1(Ω) and L1(∂Ω) respectively, i.e., given ε > 0, there exists a δ > 0 such
that for any A ⊂ Ω, B ⊂ ∂Ω, with µ(A) + |B|1 < δ, we have supn

∫
A
|g̃λ(x, vn)| +∫

B
f̃λ(x, vn) ≤ ε. Once this is shown, (5.7) follows from Vitali’s convergence theo-

rem. Relation (5.8) follows from (5.7) by (H3) and the fact that the trace imbedding
H1(Ω) ↪→ L2(∂Ω) is compact.

Let C̃ = supn

( ∫
Ω
g̃λ(x, vn)vn +

∫
∂Ω
f̃λ(x, vn)vn

)
. By Step 1, C̃ < ∞. Given

ε > 0, define

µ1
ε = max

x∈Ω,|s|≤ 4C̃
ε

|g̃λ(x, s)||x|β , µ2
ε = max

x∈∂Ω,|s|≤ 4C̃
ε

|f̃λ(x, s)|.

Then for any A ⊂ Ω, B ⊂ ∂Ω with µ(A) ≤ ε
4µ1

ε
, |B|1 ≤ ε

4µ1
ε

we get,∫
A

|g̃λ(x, vn)|+
∫

B

|f̃(x, vn)|

≤
∫

A∩{|vn|≥ 4C̃
ε }

|g̃λ(x, vn)vn|
|vn|

+
∫

A∩{|vn|≤ 4C̃
ε }

|g̃λ(x, vn)|

+
∫

B∩{|vn|≥ 4C̃
ε }

|f̃λ(x, vn)vn|
|vn|

+
∫

B∩{|vn|≤ 4C̃
ε }

|f̃λ(x, vn)|

≤ ε

2
+ µ(A)µ1

ε + |B|1µ2
ε ≤ ε

This completes Step 2 and the proof of the Lemma. �

Now we note that J̃λ(0) = 0 and v = 0 is a local minimum for J̃λ. It is
also clear that limt→∞ J̃λ(tv) = −∞ for any v ∈ H1(Ω)\{0}. Hence, we may fix
e ∈ H1(Ω) such that J̃λ(e) < 0. Let Γ = {γ : [0, 1] → H1(Ω); γ is continuous,
γ(0) = 0, γ(1) = e}. We define the mountain-pass level

ρ0 = inf
γ∈Γ

sup
t∈[0,1]

J̃λ(γ(t)).

It follows that ρ0 ≥ 0. Let R0 = ‖e‖. If ρ0 = 0 we obtain that inf{J̃λ|‖v‖ = R} = 0
for all R ∈ (0, R0). We now let F = H1(Ω) if ρ0 > 0 and F = {‖v‖ = R0

2 } if ρ0 = 0.
We can now prove the following upper bound for ρ0.

Lemma 5.4. ρ0 <
π
2 (2− β).

Proof. Let {wn} be the sequence as in Lemma 2.1 by taking n = 1
l . We now

suppose ρ0 ≥ π
2 (2 − β) and derive a contradiction. This means that (thanks to

Lemma 3.1 in [13]) for some tn > 0,

J̃λ(tnwn) = sup
t>0

J̃λ(tnwn) ≥ π

2
(2− β), ∀n.
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Then the above inequality gives,

t2n
2
−

∫
Ω

G̃λ(x, tnwn)−
∫

∂Ω

F̃λ(x, tnwn) ≥ π

2
(2− β), ∀n. (5.9)

In particular,
t2n ≥ π(2− β), for all large n. (5.10)

Since tn yields is a maximum for the map t 7→ J̃λ(twn) on (0,∞), d
dt (J̃λ(twn))|t=tn

=
0. That is,

t2n =
∫

Ω

g̃λ(x, tnwn)tnwn +
∫

∂Ω

f̃λ(x, tnwn)tnwn. (5.11)

We note that infx∈Ω g̃λ(x, s) ≥ es2
for s large. Since tnwn → ∞ on {|x| ≤ δ

n} we
get from (5.11),

t2n ≥
∫
{|x|≤ δ

n}∩Ω

g̃λ(x, tnwn)tnwn

≥
∫
{|x|≤ δ

n}

et2nw2
n

|x|β
tnwn

=
√
πδ2√
2
et2n

log n
2π (tn(log n)1/2)

( ∫
|x|≤δ/n∩Ω

|x|−βdx
)

= Ce
t2n
π log n(

δ

n
)(2−β)tn(log n)1/2

= Ce(
t2n
π −(2−β)) log ntn(log n)1/2

Clearly the above inequality implies that {tn} is bounded sequence. Using (5.10)
in the above inequality,

t2n ≥
√
π

2
δ2eε log ntn(log n)1/2, for some ε > 0

which implies tn → ∞ as n → ∞, a contradiction. This contradiction shows that
ρ0 <

π
2 (2− β). �

Lemma 5.5. J̃λ has a critical point vλ of mountain-pass type with vλ > 0 in Ω.

Proof. Let {vn} ⊂ H1(Ω) be a (P.S)F,ρ sequence for J̃λ(for the existence of such a
sequence, see [9]). Then, by Lemma 5.3, up to a subsequence, vn ⇀ vλ in H1(Ω)
for some vλ ∈ H1(Ω). Clearly vn → vλ point wise a.e. in Ω. If vλ 6≡ 0,then it is
easy to see from (5.2) using weak maximum principle that vλ has no nonpositive
local minimum in Ω. By an application of Hopf maximum principle and the fact
that ∂vλ

∂ν ≥ 0 on ∂Ω, we conclude that minΩ vλ is achieved inside Ω. Hence vλ > 0
in Ω. So it is enough to show that vλ 6≡ 0. We divide the proof into steps:
Case 1: ρ0 = 0 In this case, from (5.3) we get

on(1) = J(vn) =
1
2

∫
Ω

(
|∇vn|2 + v2

n

)
−

∫
Ω

G̃(x, vn)dx−
∫

∂Ω

F̃ (x, vn)

=
1
2
‖vn‖2 + on(1)

Case 2: ρ0 ∈ (0, π
2 (2 − β)) Since J(vn) → ρ0, we obtain, ‖vn‖ → 2ρ0 as n → ∞.

This and Lemma 4.4 immediately imply that ‖vn‖ ≤ π(2−β)− ε0 for some ε0 > 0.
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Let 0 < δ < ε0
π(2−β)−ε0

and let q0 = π(2−β)
(1+δ)(π(2−β)−ε0)

. Then q0 > 1. Now we may
choose q such that 1 < q < q0. Now from the definition of g̃ we get

sup
x∈Ω

g̃(x, s)|x|β ≤ Ce(1+δ)s2

for some constant C1. Hence using the compact imbedding of H1(Ω) in Lp(Ω, |x|β),
we get ∫

Ω

vng̃(x, vn) ≤ C

∫
Ω

vn

|x|β
e(1+δ)v2

n

≤ C2‖vn‖Lq′(Ω,|x|β)

∫
Ω

vn

|x|β
e(1+δ)( vn

‖vn‖
)2‖vn‖2 = on(1)

since (1+δ)q[π(2−β)−ε0]
2π + β

2 < 1. This implies

on(1)‖vn‖ = 〈J ′(vn), vn〉 = ‖vn‖2 + on(1)

This contradicts the fact that ‖vn‖ → 2ρ0 > 0. Hence vλ 6≡ 0. �

Proof of Theorem 1.2. From Lemma 5.5 and the arguments in section 5, we obtain
that apart from uλ we obtain a second solution ũλ for all λ ∈ (0,Λ), and by
definition of Λ, (1.1) has no solution for λ > Λ. When λ = Λ, from Lemma 5.4 it
is clear that Jλ(uλ) ≤ Jλ(vλ) < 0. Let {λn} be a sequence such that λn → Λ and
{uλn

} be the corresponding sequence of solutions to (Pλn
). Then,

lim sup
n→∞

Jλn
(uλn

) ≤ 0, J ′λn
(uλn

) = 0. (5.12)

Now (5.12) implies that {uλn
} is a bounded sequence in H1(Ω). Hence there exists

uΛ such that uλn
⇀ uΛ in H1(Ω). Now it is easy to verify that uΛ is a weak solution

of (PΛ). �
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